人教A版高中数学必修四课件第三章3.1.2(二).ppt
合集下载
高中数学必修一(人教版)《3.1.2 第二课时 分段函数》课件

题型一 分段函数求值问题
【学透用活】
[典例 1]
已知函数 f(x)=xx+ 2+12,x,x≤--2<2x,<2, 2x-1,x≥2.
(1)求 f(-5),f(- 3),ff-52的值; (2)若 f(a)=3,求实数 a 的值; (3)若 f(x)>2x,求 x 的取值范围.
[解] (1)由-5∈(-∞,-2],- 3∈(-2,2),-52∈(-∞,-2], 知 f(-5)=-5+1=-4,
【课堂思维激活】 一、综合性——强调融会贯通 1.下面是解“已知实数 a≠0,函数 f(x)=2-x+x-a,2ax,<x1≥,1. 若 f(1-a)=f(1+
a),求 a 的值”的过程:
解:由 f(1-a)=f(1+a),得 2(1-a)+a=-(1+a)-2a,即 2-a=-1- 3a,∴a=-32. 上述解题过程是否正确?请说明理由.
[解] 如图,过点 A,D 分别作 AG⊥BC,DH⊥BC, 垂足分别是 G,H.
因为四边形 ABCD 是等腰梯形,底角为 45°,AB= 2 2 cm,所以 BG=AG=DH=HC=2 cm.又 BC=7 cm,所以 AD=GH=3 cm.
①当点 F 在 BG 上,即 x∈[0,2]时,y=12x2; ②当点 F 在 GH 上,即 x∈(2,5]时,y=x+x2-2×2=2x-2;
(2)问:该企业选择哪家俱乐部比较合算?为什么?
解:(1)由题意得 f(x)=6x,x∈[12,30], g(x)=920x, +1520≤ ,x2≤ 0<20x, ≤30. (2)①当 12≤x≤20 时,令 6x=90,解得 x=15. 即当 12≤x<15 时,f(x)<g(x);当 x=15 时,f(x)=g(x);当 15<x≤20 时,f(x) >g(x). ②当 20<x≤30 时,f(x)>g(x). 综上,当 12≤x<15 时,选 A 俱乐部合算;当 x=15 时,两家俱乐部一样合算; 当 15<x≤30 时,选 B 俱乐部合算.
高中数学人教版A版必修4《两角和与差的正弦、余弦、正切公式》优质PPT课件

明目标、知重点
(3)sin
1π2-
3cos
π 12.
解
方法一
原式=212sin
1π2-
3 2 cos
π 12
=2sin
π 6sin
1π2-cos
π 6cos
π 12
=-2cosπ6+1π2=-2cos π4=- 2.
方法二
原式=212sin
1π2-
3 2 cos
π 12
=2cos
π 3sin
3.函数f(x)=sin x- 3cos x(x∈R)的值域是 [-2,2] .
解析
∵f(x)=212sin
x-
3 2 cos
x=2sinx-π3.
∴f(x)∈[-2,2].
明目标、知重点
1234
4.已知锐角
α、β
满足
sin
α
=2
5 5
,cos
β=
1100,则
α+β
=
.
解析 ∵α,β 为锐角,sin α=255,cos β= 1100,
1π2-sin
π 3cos
π 12
=2sin1π2-π3=-2sin
π4=-
2.
明目标、知重点
例 2 已知 α∈0,π2,β∈-π2,0,且 cos(α-β)=35,sin β=
-102,求 α 的值. 解 ∵α∈0,π2,β∈-π2,0,∴α-β∈(0,π). ∵cos(α-β)=35,∴sin(α-β)=45. ∵β∈-π2,0,sin β=-102,∴cos β=7102.
明目标、知重点
跟踪训练 2 已知 sin α=35,cos β=-153,α 为第二象限角,β
(3)sin
1π2-
3cos
π 12.
解
方法一
原式=212sin
1π2-
3 2 cos
π 12
=2sin
π 6sin
1π2-cos
π 6cos
π 12
=-2cosπ6+1π2=-2cos π4=- 2.
方法二
原式=212sin
1π2-
3 2 cos
π 12
=2cos
π 3sin
3.函数f(x)=sin x- 3cos x(x∈R)的值域是 [-2,2] .
解析
∵f(x)=212sin
x-
3 2 cos
x=2sinx-π3.
∴f(x)∈[-2,2].
明目标、知重点
1234
4.已知锐角
α、β
满足
sin
α
=2
5 5
,cos
β=
1100,则
α+β
=
.
解析 ∵α,β 为锐角,sin α=255,cos β= 1100,
1π2-sin
π 3cos
π 12
=2sin1π2-π3=-2sin
π4=-
2.
明目标、知重点
例 2 已知 α∈0,π2,β∈-π2,0,且 cos(α-β)=35,sin β=
-102,求 α 的值. 解 ∵α∈0,π2,β∈-π2,0,∴α-β∈(0,π). ∵cos(α-β)=35,∴sin(α-β)=45. ∵β∈-π2,0,sin β=-102,∴cos β=7102.
明目标、知重点
跟踪训练 2 已知 sin α=35,cos β=-153,α 为第二象限角,β
人教版高中数学必修4课件全册精品课件

例7 求函数 y coxs taxn的定义域.
x 22kx2k, k Z
4.三角函数的符号
sin
cos
tan
1y
0+ +
_o _
不存在
0
x
_0
-1
_o
y
+
1x
_
0
+o
y
+
0x
_
+
-1
sin ,csc
0
不存在
cos,sec tan , cot
已知三角函数值,求角
一、基本概念:
1.角的概念的推广 (1)正角,负角和零角.用旋转的观点定义角, 并规定了旋转的正方向,就出现了正角,负角和 零角,这样角的大小就不再限于00到3600的范围.
(2)象限角和轴线角.象限角的前提是角的顶点与 直角坐标系中的坐标原点重合,始边与轴的非负半 轴重合,这样当角的终边在第几象限,就说这个角 是第几象限的角,若角的终边与坐标轴重合,这个 角不属于任一象限,这时也称该角为轴线角.
(2)象限角、象限界角(轴线角)
①象限角
第一象限角:
(2k<<2k+
2
,
kZ)
第二象限角:
(2k+
2
<<2k+,
kZ)
第三象限角:
(2k+<<2k+
3
2
,
kZ)
第四象限角:
(2k+
3
2
<<2k+2,
kZ
或
2k-
2
<<2k,
2018-2019学年高一数学新人教A版必修四课件:第3章 3.1.2(一)

解析 答案
(2)计算:sin 14°cos 16°+sin 76°cos 74°. 解 原式=sin 14°cos 16°+sin(90°-14°)cos(90°-16°)
=sin 14°cos 16°+cos 14°sin 16° 1 =sin(14°+16°)=sin 30°= . 2
ห้องสมุดไป่ตู้解答
反思与感悟 解决给角求值问题的策略 (1)对于非特殊角的三角函数式求值问题,一定要本着先整体后局部的 基本原则,如果整体符合三角公式的形式,则整体变形,否则进行各 局部的变形. (2)一般途径有将非特殊角化为特殊角的和或差的形式,化为正负相消 的项并消项求值,化分子.分母形式进行约分,解题时要逆用或变用公 式.
第三章 §3.1
两角和与差的正弦、余弦和正切公式
3.1.2
两角和与差的正弦、余弦、正切公式(一)
学习目标
1.掌握两角差的余弦公式推导出两角和的余弦公式及两角和与差 的正弦公式. 2.会用两角和与差的正弦、余弦公式进行简单的三角函数的求值、 化简、计算等. 3.熟悉两角和与差的正弦、余弦公式的灵活运用,了解公式的正 用、逆用以及角的变换的常用方法.
内容索引
问题导学 题型探究
达标检测
问题导学
知识点一
两角和的余弦公式
思考 如何由两角差的余弦公式得到两角和的余弦公式? 答案 用-β代换cos(α-β)=cos αcos β+sin αsin β中的β便可得到.
梳理 公式 简记符号 使用条件 cos αcos β-sin αsin β cos(α+β)=_____________________ C(α+β) _______ 任意角 α,β都是_______
跟踪训练 2 -4 3-3 A. 10
(2)计算:sin 14°cos 16°+sin 76°cos 74°. 解 原式=sin 14°cos 16°+sin(90°-14°)cos(90°-16°)
=sin 14°cos 16°+cos 14°sin 16° 1 =sin(14°+16°)=sin 30°= . 2
ห้องสมุดไป่ตู้解答
反思与感悟 解决给角求值问题的策略 (1)对于非特殊角的三角函数式求值问题,一定要本着先整体后局部的 基本原则,如果整体符合三角公式的形式,则整体变形,否则进行各 局部的变形. (2)一般途径有将非特殊角化为特殊角的和或差的形式,化为正负相消 的项并消项求值,化分子.分母形式进行约分,解题时要逆用或变用公 式.
第三章 §3.1
两角和与差的正弦、余弦和正切公式
3.1.2
两角和与差的正弦、余弦、正切公式(一)
学习目标
1.掌握两角差的余弦公式推导出两角和的余弦公式及两角和与差 的正弦公式. 2.会用两角和与差的正弦、余弦公式进行简单的三角函数的求值、 化简、计算等. 3.熟悉两角和与差的正弦、余弦公式的灵活运用,了解公式的正 用、逆用以及角的变换的常用方法.
内容索引
问题导学 题型探究
达标检测
问题导学
知识点一
两角和的余弦公式
思考 如何由两角差的余弦公式得到两角和的余弦公式? 答案 用-β代换cos(α-β)=cos αcos β+sin αsin β中的β便可得到.
梳理 公式 简记符号 使用条件 cos αcos β-sin αsin β cos(α+β)=_____________________ C(α+β) _______ 任意角 α,β都是_______
跟踪训练 2 -4 3-3 A. 10
高中数学选择性必修一(人教版)《3.1.2第二课时 直线与椭圆的位置关系及应用》课件

又 A(-2,0),∴―AM→·―A→N =(x1+2,y1)·(x2+2,y2)
=(k2+1)y1y2+45k(y1+y2)+1265=0,
即可得∠MAN=π2,故∠MAN 为定值.
二、应用性——强调学以致用 2.有一椭圆形溜冰场,长轴长是 100 m,短轴长是 60 m,现要
在这个溜冰场上划定一个各顶点都在溜冰场边界上的矩形 ABCD,且使这个矩形的面积最大,试确定这个矩形的顶点 的位置.这时矩形的周长是多少? [析题建模] 由题意结合对称性建立平面直角坐标系,根据 椭圆的对称性,可知矩形面积为点 A 的横、纵坐标之积的 4 倍,再结合椭圆方程求其横、纵坐标的值即可求矩形的周长.
(3)中点转移法 先设出弦的一个端点的坐标,再借助中点得出弦的另一个 端点的坐标,分别代入椭圆方程作差可得. 这三种方法中以点差法最为常用,点差法中体现的设而不 求思想,还可以用于解决对称问题.因为这类问题也与弦中点和 斜率有关.
[对点练清]
已知点 P(4,2)是直线 l:x+2y-8=0 被焦点在 x 轴上的椭圆所
(1)求椭圆 M 的方程; (2)若 k=1,求|AB|的最大值.
a2=b2+c2, [解] (1)由题意得ac= 36,
2c=2 2,
所以椭圆 M 的方程为x32+y2=1.
解得 a= 3,b=1.
(2)设直线 l 的方程为 y=x+m,A(x1,y1),B(x2,y2).
y=x+m, 由x32+y2=1, 得 4x2+6mx+3m2-3=0,
即xy11- -yx22=-ba22xy11++yx22.
因为 kAB=-12,AB 中点为(4,2), 所以-12=-2×ba22,即 a2=4b2,所以该椭圆的离心率为 e
人教A数学必修四:2-3-1课件

• A.①②
B.②③
• C.③④
D.②
• [分析] 应用平面向量基本定理解题时, 要抓住基向量e1与e2不共线和平面内向量a 用基底e1、e2表示的惟一性求解.
• [解析] 由平面向量基本定理可知,①④ 是正确的.对于②,由平面向量基本定理
可知,一旦一个平面的基底确定,那么任 意一个向量在此基底下的实数对是唯一的 .对于③,当λ1λ2=0或μ1μ2=0时不一定 成立.故选B.
已知平行四边形 ABCD 的对角线交于点 C,B→M=13B→C, C→N=13C→D,O→A=a,O→B=b,用 a、b 表示O→D=__________, O→N=________,M→N=________.
[解析] B→A=a-b,B→M=16B→A=16a-16b, O→M=O→B+B→M=16a+56b,O→D=a+b, O→N=O→C+C→N=12O→D+16O→D=23O→D=23a+23b, M→N=O→N-O→M=12a-16b.
[解析] (1)A→C=l1+l2,B→D=l2-l1,D→C=l1,B→C=l2. (2)B→C=A→C-A→B=-2O→A-A→B=-l1-2l3, D→A=C→B=-B→C=l1+2l3. (3)A→B=l4-l3,B→C=O→C-O→B=-O→A-O→B=-l3-l4.
• 已知e1,e2是平面内两个不共线向量,a= 3e1-2e2,b=-2e1+e2,c=7e1-4e2,用 a和b表示c,则c=________.
• 2.3 平面向量的基本定理及 坐标表示
• 1.平面向量基本定理:如果e1、e2是同一
平不面共内线 的两个
向量,那么对于
这一平面内的任意向量a,有且只有一对
实数λ1、λ2,使a=λ1e1+λ2e2.
人教A版高中数学必修四课件1.4.2三角函数的图像和性质(3) (2).pptx
y
y
图
1
1
象
2
o -1
2
3
2
2 x
o 3 2 x
2 -1 2
2
定义域
R
R
值域
[-1,1]
[-1,1]
性 周期性
T=2
T=2
奇偶性
奇函数
偶函数
质
单调性
[2k
2
,2k
2
]增函数
[2k ,2k ]增函数
[2k ,2k 3 ]减函数 [2k ,2k ]减函数
2
2
课堂小结
1. 正弦函数、余弦函数的周期性; 2. 正弦函数、余弦函数的奇偶性; 3. 正弦函数、余弦函数的性质还有哪些呢?
-
(-o12 ,0)
( 2 ,0)
2
( ,-1)
3
线
4
5 6 xБайду номын сангаас
思考辨析
周期函数的定义
一般地,对于函数f(x),如果存在一个非 零常数T,使得当 x取定义域内的每一个值 时,都有f( x+T )=f(x), 那么函数f(x)就叫 做周期函数,非零常数T叫做这个函数的 周期。
对于一个周期函数f(x) ,如果在它所有的周 期中存在一个最小的正数,那么这个最小 正数就叫做f(x)的最小正周期。
归纳总结
y Asin(wx 及y Acos(wx
的最小正周期
f ( x) A sin( x )
A sin[( x ) 2 ]
A sin[( x 2 ) ] f ( x 2 )
y Asin(wx 及y A cos(wx x R
的最小正周期为T 2
归纳总结
高中数学第三章三角恒等变换3.1.2两角和与差的正弦、余弦、正切公式(1)课件新人教A版必修4
2
2
(2) 3 sin x cos x.
解:(1)1 cos x 3 sin x (2) 3 sin x cos x
2
2
sin 30 cos x cos 30 sin x
2( 3 sin x 1 cos x)
2
2
sin(30 x);
2(sin x cos 30 cos x sin 30 )
解:原式 sin(72 18 ) sin 90 1.
第十三页,共31页。
例1 已知 sin 3 , 是第四象限角,求 sin( ),
5
4
cos( )的值.
4
解:由sin=-
3 5
,
是第四象限角,得
cos 1 sin2 1 ( 3)2 4 , 55
于是有sin( ) sin cos cos sin
第七页,共31页。
探究(tànjiū)二:两角和与差的正弦公式
1.利用哪些公式可以实现正弦(zhèngxián)、余弦的互 化?
提示(tíshìs)i:n cos( ) 2
sin(
)
cos
2
(
)
第八页,共31页。
2.由两角和与差的余弦公式如何推导两角和与 差的正弦(zhèngxián)公式?
(2) 2 cos x 6 sin x.
解:(1)原式 (2 2 sin x 2 cos x)
2
2
2sin(x ).
4
(2)原式 2 (2 1 cos x 3 sin x)
2
2
2 2 sin( x).
6
第二十一页,共31页。
1.(2015·四川高考)下列函数中,最小正周期为π且图象关
2021版高中数学人教A必修4课件:本章整合2
真题放送
-35-
本章整合
知识建构
综合应用
真题放送
1 2 3 4 5 6 7 8 9 10 11 12 13 14
13(2015·江苏高考)已知向量a=(2,1),b=(1,-2),若ma+nb=(9,-
8)(m,n∈R),则m-n的值为 .
解析:由ma+nb=(9,-8)得, m(2,1)+n(1,-2)=(9,-8), 即(2m+n,m-2n)=(9,-8),
真题放送
-25-
本章整合
知识建构
综合应用
1 2 3 4 5 6 7 8 9 10 11 12 13 14
真题放送
4(2015·陕西高考)对任意平面向量a,b,下列关系式中不恒成立的是(
)
A.|a·b|≤|a||b| B.|a-b|≤||a|-|b|| C.(a+b)2=|a+b|2 D.(a+b)·(a-b)=a2-b2 解析:当a与b为非零向量且反向时,B显然错误. 答案:B
-26-
本章整合
知识建构
综合应用
1 2 3 4 5 6 7 8 9 10 11 12 13 14
真题放送
-27-
本章整合
知识建构
综合应用
1 2 3 4 5 6 7 8 9 10 11 12 13 14
真题放送
-28-
本章整合
知识建构
综合应用
1 2 3 4 5 6 7 8 9 10 11 12 13 14
真题放送
-29-
本章整合
知识建构
综合应用
1 2 3 4 5 6 7 8 9 10 11 12 13 14
真题放送
高中数学人教A版必修2第三章3.1.1倾斜角与斜率课件
5 1
23
(4)倾斜角 900,斜率不存在.
高 中 数 学 人 教A版必 修2第 三章3. 1.1倾斜 角与斜 率课件
高 中 数 学 人 教A版必 修2第 三章3. 1.1倾斜 角与斜 率课件
题型二
斜率公式的应用
例2、经过两点A(m2+2,m2-3),B(3-m-m2,2m)的直线l的
下列哪些说法是正确的(
)
A 、任一条直线都有倾斜角,也都有斜率 F
B、直线的倾斜角越大,斜率也越大
F
C 、平行于x轴的直线的倾斜角是 00或1800 F
D 、两直线的倾斜角相等,它们的斜率也相等F
E 、两直线的斜率相等,它们的倾斜角也相等 T
F 、直线斜率的范围是R
T
高 中 数 学 人 教A版必 修2第 三章3. 1.1倾斜 角与斜 率课件
x2 )
公式的特点:
(1)与两点的顺序无关;
(2) 公式表明,直线对于x轴的倾斜度,可以通 过直线上任意两点的坐标来表示,而不需要求 出直线的倾斜角; (3)当x1=x2时,公式不适用,此时直线与x轴垂 直,α=900
高 中 数 学 人 教A版必 修2第 三章3. 1.1倾斜 角与斜 率课件
练习: 高中数学人教A版必修2第三章3.1.1倾斜角与斜率课件
y
y
y
y
α
o
x o α x oα x o α x
高 中 数 学 人 教A版必 修2第 三章3. 1.1倾斜 角与斜 率课件
不是
高 中 数 学 人 教A版必 修2第 三章3. 1.1倾斜 角与斜 率课件
下图中直线l1,l2,l3的倾斜角 大致是一个什么范围内的角?
y l3
l2 l1