高中物理曲线运动题型总结

合集下载

高考必备物理曲线运动技巧全解及练习题(含答案)及解析

高考必备物理曲线运动技巧全解及练习题(含答案)及解析

高考必备物理曲线运动技巧全解及练习题(含答案)及解析一、高中物理精讲专题测试曲线运动1.一宇航员登上某星球表面,在高为2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为5m ,且物体只受该星球引力作用求: (1)该星球表面重力加速度(2)已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍. 【答案】(1)4m/s 2;(2)110; 【解析】(1)根据平抛运动的规律:x=v 0t 得0515x t s s v === 由h =12gt 2 得:2222222/4/1h g m s m s t ⨯=== (2)根据星球表面物体重力等于万有引力:2G M mmg R 星星= 地球表面物体重力等于万有引力:2G M mmg R '地地=则222411=()10210M gR M g R '⨯=星星地地= 点睛:此题是平抛运动与万有引力定律的综合题,重力加速度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.2.如图所示,水平实验台A 端固定,B 端左右可调,将弹簧左端与实验平台固定,右端 有一可视为质点,质量为2kg 的滑块紧靠弹簧(未与弹黄连接),弹簧压缩量不同时, 将滑块弹出去的速度不同.圆弧轨道固定在地面并与一段动摩擦因素为0.4的粗糙水平地面相切D 点,AB 段最长时,BC 两点水平距离x BC =0.9m,实验平台距地面髙度h=0.53m ,圆弧半径R=0.4m ,θ=37°,已知 sin37° =0.6, cos37° =0.8.完成下列问題:(1)轨道末端AB 段不缩短,压缩弹黄后将滑块弹出,滑块经过点速度v B =3m/s ,求落到C 点时速度与水平方向夹角;(2)滑块沿着圆弧轨道运动后能在DE 上继续滑行2m,求滑块在圆弧轨道上对D 点的压力大小:(3)通过调整弹簧压缩量,并将AB 段缩短,滑块弹出后恰好无碰撞从C 点进入圆弧 轨道,求滑块从平台飞出的初速度以及AB 段缩短的距离. 【答案】(1)45°(2)100N (3)4m/s 、0.3m 【解析】(1)根据题意C 点到地面高度0cos370.08C h R R m =-=从B 点飞出后,滑块做平抛运动,根据平抛运动规律:212C h h gt -= 化简则0.3t s =根据 BC B x v t = 可知3/B v m s =飞到C 点时竖直方向的速度3/y v gt m s == 因此tan 1y Bv v θ==即落到圆弧C 点时,滑块速度与水平方向夹角为45° (2)滑块在DE 阶段做匀减速直线运动,加速度大小fa g mμ== 根据222E D DE v v ax -=联立两式则4/D v m s =在圆弧轨道最低处2DN v F mg m R-= 则100N F N = ,即对轨道压力为100N .(3)滑块弹出恰好无碰撞从C 点进入圆弧轨道,说明滑块落到C 点时的速度方向正好沿着轨迹该出的切线,即0tan yv v α''= 由于高度没变,所以3/y y v v m s '== ,037α=因此04/v m s '= 对应的水平位移为01.2AC x v t m ='= 所以缩短的AB 段应该是0.3AB AC BC x x x m ∆=-=【点睛】滑块经历了弹簧为变力的变加速运动、匀减速直线运动、平抛运动、变速圆周运动,匀减速直线运动;涉及恒力作用的直线运动可选择牛顿第二定律和运动学公式;而变力作用做曲线运动优先选择动能定理,对匀变速曲线运动还可用运动的分解利用分运动结合等时性研究.3.如图所示,光滑的水平平台上放有一质量M =2kg ,厚度d =0.2m 的木板,木板的左端放有一质量m =1kg 的滑块(视为质点),现给滑块以水平向右、的初速度,木板在滑块的带动下向右运动,木板滑到平台边缘时平台边缘的固定挡板发生弹性碰撞,当木板与挡板发生第二次碰撞时,滑块恰好滑到木板的右端,然后水平飞出,落到水平地面上的A点,已知木板的长度l=10m,A点到平台边缘的水平距离s=1.6m,平台距水平地面的高度h=3m,重力加速度,不计空气阻力和碰撞时间,求:(1)滑块飞离木板时的速度大小;(2)第一次与挡板碰撞时,木板的速度大小;(结果保留两位有效数字)(3)开始时木板右端到平台边缘的距离;(结果保留两位有效数字)【答案】(1) (2)v=0.67m/s (3)x=0.29m【解析】【分析】【详解】(1)滑块飞离木板后做平抛运动,则有:解得(2)木板第一次与挡板碰撞后,速度方向反向,速度大小不变,先向左做匀减速运动,再向右做匀加速运动,与挡板发生第二次碰撞,由匀变速直线运动的规律可知木板两次与挡板碰撞前瞬间速度相等.设木板第一次与挡板碰撞前瞬间,滑块的速度大小为,木板的速度大小为v由动量守恒定律有:,木板第一与挡板碰后:解得:v=0.67m/s(3)由匀变速直线运动的规律:,,由牛顿第二定律:解得:x=0.29m.【点睛】对于滑块在木板上滑动的类型,常常根据动量守恒定律和能量守恒定律结合进行研究.也可以根据牛顿第二定律和位移公式结合求出运动时间,再求木板的位移.4.如图所示,ABCD是一个地面和轨道均光滑的过山车轨道模型,现对静止在A处的滑块施加一个水平向右的推力F,使它从A点开始做匀加速直线运动,当它水平滑行2.5 m时到达B点,此时撤去推力F、滑块滑入半径为0.5 m且内壁光滑的竖直固定圆轨道,并恰好通过最高点C,当滑块滑过水平BD部分后,又滑上静止在D处,且与ABD等高的长木板上,已知滑块与长木板的质量分别为0.2 kg、0.1 kg,滑块与长木板、长木板与水平地面间的动摩擦因数分别为0.3、,它们之间的最大静摩擦力均等于各自滑动摩擦力,取g=10 m/s2,求:(1)水平推力F的大小;(2)滑块到达D点的速度大小;(3)木板至少为多长时,滑块才能不从木板上掉下来?在该情况下,木板在水平地面上最终滑行的总位移为多少?【答案】(1)1N(2)(3)t=1 s ;【解析】【分析】【详解】(1)由于滑块恰好过C点,则有:m1g=m1从A到C由动能定理得:Fx-m1g·2R=m1v C2-0代入数据联立解得:F=1 N(2)从A到D由动能定理得:Fx=m1v D2代入数据解得:v D=5 m/s(3)滑块滑到木板上时,对滑块:μ1m1g=m1a1,解得:a1=μ1g=3 m/s2对木板有:μ1m1g-μ2(m1+m2)g=m2a2,代入数据解得:a2=2 m/s2滑块恰好不从木板上滑下,此时滑块滑到木板的右端时恰好与木板速度相同,有:v共=v D-a1tv共=a2t,代入数据解得:t =1 s此时滑块的位移为:x 1=v D t -a 1t 2,木板的位移为:x 2=a 2t 2,L =x 1-x 2,代入数据解得:L =2.5 m v 共=2 m/s x 2=1 m达到共同速度后木板又滑行x ′,则有:v 共2=2μ2gx ′,代入数据解得:x ′=1.5 m木板在水平地面上最终滑行的总位移为:x 木=x 2+x ′=2.5 m点睛:本题考查了动能定理和牛顿第二定律、运动学公式的综合运用,解决本题的关键理清滑块和木板在整个过程中的运动规律,选择合适的规律进行求解.5.地面上有一个半径为R 的圆形跑道,高为h 的平台边缘上的P 点在地面上P′点的正上方,P′与跑道圆心O 的距离为L (L >R ),如图所示,跑道上停有一辆小车,现从P 点水平抛出小沙袋,使其落入小车中(沙袋所受空气阻力不计).问:(1)当小车分别位于A 点和B 点时(∠AOB=90°),沙袋被抛出时的初速度各为多大? (2)要使沙袋落在跑道上,则沙袋被抛出时的初速度在什么范围内?(3)若小车沿跑道顺时针运动,当小车恰好经过A 点时,将沙袋抛出,为使沙袋能在B 处落入小车中,小车的速率v 应满足什么条件?【答案】(1)()2A gv L R h =-22()2B g L R v h+=(2)0((L R v L R -≤≤+(3)1(41)0,1,2,3...)2v n n π=+= 【解析】 【分析】 【详解】(1)沙袋从P 点被抛出后做平抛运动,设它的落地时间为t ,则h=12gt 2解得t =(1) 当小车位于A 点时,有x A =v A t=L-R (2)解(1)(2)得v A =(L-R当小车位于B 点时,有B B x v t ==3)解(1)(3)得Bv (2)若小车在跑道上运动,要使沙袋落入小车,最小的抛出速度为v 0min =v A =(L-R 4) 若当小车经过C 点时沙袋刚好落入,抛出时的初速度最大,有x c =v 0max t="L+R" (5)解(1)(5)得 v 0max =(L+R所以沙袋被抛出时的初速度范围为(L-R ≤v 0≤(L+R (3)要使沙袋能在B 处落入小车中,小车运动的时间应与沙袋下落时间相同 t AB =(n+14)2Rv π(n=0,1,2,3…)(6)所以t AB解得v=12(4n+1)n=0,1,2,3…). 【点睛】本题是对平抛运动规律的考查,在分析第三问的时候,要考虑到小车运动的周期性,小车并一定是经过14圆周,也可以是经过了多个圆周之后再经过14圆周后恰好到达B 点,这是同学在解题时经常忽略而出错的地方.6.如图所示,粗糙水平地面与半径 1.6m R =的光滑半圆轨道BCD 在B 点平滑连接, O 点是半圆轨道BCD 的圆心, B O D 、、三点在同一竖直线上,质量2kg m =的小物块(可视为质点)静止在水平地面上的A 点.某时刻用一压缩弹簧(未画出)将小物块沿AB 方向水平弹出,小物块经过B 点时速度大小为10m/s (不计空气阻力).已知10m AB x =,小物块与水平地面间的动摩擦因数=0.2μ,重力加速度大小210m/s g =.求:(1)压缩弹簧的弹性势能;(2)小物块运动到半圆轨道最高点时,小物块对轨道作用力的大小; (3)小物块离开最高点后落回到地面上的位置与B 点之间的距离. 【答案】(1)140J (2)25N (3)4.8m 【解析】(1)设压缩弹簧的弹性势能为P E ,从A 到B 根据能量守恒,有212P B AB E mv mgx μ=+ 代入数据得140J P E =(2)从B 到D ,根据机械能守恒定律有2211222B D mv mv mg R =+⋅ 在D 点,根据牛顿运动定律有2Dv F mg m R+=代入数据解得25N F =由牛顿第三定律知,小物块对轨道作用力大小为25N (3)由D 点到落地点物块做平抛运动竖直方向有2122R gt = 落地点与B 点之间的距离为D x v t = 代入数据解得 4.8m x =点睛:本题是动能定理、牛顿第二定律和圆周运动以及平抛运动规律的综合应用,关键是确定运动过程,分析运动规律,选择合适的物理规律列方程求解.7.如图所示,表面光滑的长方体平台固定于水平地面上,以平台外侧的一边为x 轴,在平台表面建有平面直角坐标系xoy ,其坐标原点O 与平台右侧距离为d=1.2m 。

高中物理曲线运动经典题型总结(可编辑修改word版)

高中物理曲线运动经典题型总结(可编辑修改word版)

42+ 32【题型总结】专题五曲线运动一、运动的合成和分解1.速度的合成:(1)运动的合成和分解(2)相对运动的规律v甲地=v甲乙+v乙地例:一人骑自行车向东行驶,当车速为 4m/s 时,他感到风从正南方向吹来,当车速增加到 7m/s 时。

他感到风从东南方向(东偏南45º)吹来,则风对地的速度大小为()A. 7m/sB. 6m/sC. 5m/sD. 4 m/s解析:“他感到风从正南方向(东南方向)吹来” ,即风相对车的方向是正南方向(东南方向)。

而风相对地的速度方向不变,由此可联立求解。

解:∵θ=45°∴V 风对车=7—4=3 m/s∵V风对车+V车对地=V风对地V 风对∴V 风对地= =5答案:C2.绳(杆)拉物类问题m/sV 风对V 车对① 绳(杆)上各点在绳(杆)方向上的速度相等②合速度方向:物体实际运动方向分速度方向:沿绳(杆)伸(缩)方向:使绳(杆)伸(缩)垂直于绳(杆)方向:使绳(杆)转动例:如图所示,重物M 沿竖直杆下滑,并通过绳带动小车m 沿斜面升高.问:当滑轮右侧的绳与竖直方向成θ 角,且重物下滑的速率为v 时,小车的速度为多少?解:方法一:虚拟重物M 在Δt 时间内从A 移过Δh 到达C的运动,如图(1)所示,这个运动可设想为两个分运动所合成,即先随绳绕滑轮的中心轴O 点做圆周运动到B,位移为Δs1,然后将绳拉过Δs2到C.1若Δt 很小趋近于0,那么Δφ→0,则Δs1=0,又OA=OB,∠OBA=β=2 (180°-Δφ)→90°.亦即Δs1近似⊥Δs2,故应有:Δs2=Δh·cosθ∆s2因为∆t=∆h∆t ·cosθ,所以v′=v·cosθ方法二:重物M 的速度v 的方向是合运动的速度方向,这个v 产生两个效果:一是使绳的这一端绕滑轮做顺时针方向的圆周运动;二是使绳系着重物的一端沿绳拉力的方向以速率v′运动,如图(2)所示,由图可知,v′=v·cosθ.(1)(2)V 风对θV A2α A V A1 αV B V V B2α 船练习 1:一根绕过定滑轮的长绳吊起一重物 B ,如图所示,设汽车和重物的速度的大小分别为v A , v B ,则 ( ) A 、v A = v B B 、v A 〉v B C 、v A 〈v B D 、重物 B 的速度逐渐增大解析:(微元法)设经过 t ,物体前进 s 1 ,绳子伸长 s 2 : s 1 = v A t , s 2 = v B t ⇒ v B = v A cos⇒↓ , v B ↑ , s 2 = s 1 cos. ∵ cos 〈1 , ∴ v B 〈v A练习 2:如图所示,一轻杆两端分别固定质量为 m A 和 m B 的两个小球 A 和 B (可视为质点)。

高中物理曲线运动常见题型及答题技巧及练习题(含答案)

高中物理曲线运动常见题型及答题技巧及练习题(含答案)

高中物理曲线运动常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试曲线运动1.如图所示,倾角为45α=︒的粗糙平直导轨与半径为r 的光滑圆环轨道相切,切点为b ,整个轨道处在竖直平面内. 一质量为m 的小滑块从导轨上离地面高为H =3r 的d 处无初速下滑进入圆环轨道,接着小滑块从最高点a 水平飞出,恰好击中导轨上与圆心O 等高的c 点. 已知圆环最低点为e 点,重力加速度为g ,不计空气阻力. 求: (1)小滑块在a 点飞出的动能; ()小滑块在e 点对圆环轨道压力的大小;(3)小滑块与斜轨之间的动摩擦因数. (计算结果可以保留根号)【答案】(1)12k E mgr =;(2)F ′=6mg ;(3)42μ-= 【解析】 【分析】 【详解】(1)小滑块从a 点飞出后做平拋运动: 2a r v t = 竖直方向:212r gt = 解得:a v gr =小滑块在a 点飞出的动能21122k a E mv mgr == (2)设小滑块在e 点时速度为m v ,由机械能守恒定律得:2211222m a mv mv mg r =+⋅ 在最低点由牛顿第二定律:2m mv F mg r-= 由牛顿第三定律得:F ′=F 解得:F ′=6mg(3)bd 之间长度为L ,由几何关系得:()221L r =从d 到最低点e 过程中,由动能定理21cos 2m mgH mg L mv μα-⋅= 解得4214μ-=2.如图所示,半径R=2.5m 的竖直半圆光滑轨道在B 点与水平面平滑连接,一个质量m=0.50kg 的小滑块(可视为质点)静止在A 点.一瞬时冲量使滑块以一定的初速度从A 点开始运动,经B 点进入圆轨道,沿圆轨道运动到最高点C,并从C 点水平飞出,落在水平面上的D 点.经测量,D 、B 间的距离s1=10m,A 、B 间的距离s2=15m,滑块与水平面的动摩擦因数 ,重力加速度.求:(1)滑块通过C 点时的速度大小;(2)滑块刚进入圆轨道时,在B 点轨道对滑块的弹力; (3)滑块在A 点受到的瞬时冲量的大小. 【答案】(1) (2)45N (3)【解析】 【详解】(1)设滑块从C 点飞出时的速度为v c ,从C 点运动到D 点时间为t 滑块从C 点飞出后,做平抛运动,竖直方向:2R=gt 2 水平方向:s 1=v c t 解得:v c =10m/s(2)设滑块通过B 点时的速度为v B ,根据机械能守恒定律 mv B 2=mv c 2+2mgR 解得:v B =10m/s设在B 点滑块受轨道的压力为N ,根据牛顿第二定律:N-mg=m解得:N=45N(3)设滑块从A 点开始运动时的速度为v A ,根据动能定理;-μmgs 2=mv B 2-mv A 2 解得:v A =16.1m/s设滑块在A 点受到的冲量大小为I ,根据动量定理I=mv A解得:I=8.1kg•m/s ; 【点睛】本题综合考查动能定理、机械能守恒及牛顿第二定律,在解决此类问题时,要注意分析物体运动的过程,选择正确的物理规律求解.3.儿童乐园里的弹珠游戏不仅具有娱乐性还可以锻炼儿童的眼手合一能力。

教科版高中物理必修2《曲线运动》归纳总结

教科版高中物理必修2《曲线运动》归纳总结

《曲线运动》归纳总结知识要点一、曲线运动1、定义运动轨迹为曲线的运动。

2、物体做曲线运动的方向做曲线运动的物体,速度方向始终在轨迹的切线方向上,即某一点的瞬时速度的方向,就是通过该点的曲线的切线方向。

3、曲线运动的性质由于运动的速度方向总沿轨迹的切线方向,又由于曲线运动的轨迹是曲线,所以曲线运动的速度方向时刻变化。

即使其速度大小保持恒定,由于其方向不断变化,所以说:曲线运动一定是变速运动。

由于曲线运动速度一定是变化的,至少其方向总是不断变化的,所以,做曲线运动的物体的加速度必不为零,所受到的合外力必不为零。

4、物体做曲线运动的条件物体做一般曲线运动的条件物体所受合外力(加速度)的方向与物体的速度方向不在一条直线上。

总之,做曲线运动的物体所受的合外力一定指向曲线的凹侧。

5、分类(1)匀变速曲线运动:物体在恒力作用下所做的曲线运动,如平抛运动。

(2)非匀变速曲线运动:物体在变力(大小变、方向变或两者均变)作用下所做的曲线运动,如圆周运动。

二、运动的合成与分解1、运动的合成从已知的分运动来求合运动,叫做运动的合成,包括位移、速度和加速度的合成,由于它们都是矢量,所以遵循平行四边形定则。

运动合成重点是判断合运动和分运动,一般地,物体的实际运动就是合运动。

2、运动的分解求一个已知运动的分运动,叫运动的分解,解题时应按实际“效果”分解,或正交分解。

3、合运动与分运动的关系(1)运动的等效性(合运动和分运动是等效替代关系,不能并存);(2)等时性:合运动所需时间和对应的每个分运动时间相等(3)独立性:一个物体可以同时参与几个不同的分运动,物体在任何一个方向的运动,都按其本身的规律进行,不会因为其它方向的运动是否存在而受到影响。

(4)运动的矢量性(加速度、速度、位移都是矢量,其合成和分解遵循平行四边形定则。

)4、运动的性质和轨迹(1)物体运动的性质由加速度决定(加速度为零时物体静止或做匀速运动;加速度恒定时物体做匀变速运动;加速度变化时物体做变加速运动)。

高中物理必修二曲线运动知识点总结全

高中物理必修二曲线运动知识点总结全

曲线运动知识点总结(MYX)一、曲线运动1、所有物体的运动从轨迹的不同可以分为两大类:直线运动和曲线运动。

2、曲线运动的产生条件:合外力方向与速度方向不共线(≠0°,≠180°)性质:变速运动3、曲线运动的速度方向:某点的瞬时速度方向就是轨迹上该点的切线方向。

4、曲线运动一定收到合外力,“拐弯必受力,”合外力方向:指向轨迹的凹侧。

若合外力方向与速度方向夹角为θ,特点:当0°<θ<90°,速度增大;当0°<θ<180°,速度增大;当θ=90°,速度大小不变。

5、曲线运动加速度:与合外力同向,切向加速度改变速度大小;径向加速度改变速度方向。

【例1】如图5-11所示,物体在恒力F作用下沿曲线从A运动到B,这时突然使它所受力反向,大小不变,即由F变为-F.在此力作用下,物体以后()A.物体不可能沿曲线Ba运动B.物体不可能沿直线Bb运动C.物体不可能沿曲线Bc运动D.物体不可能沿原曲线返回到A点【例2】关于曲线运动性质的说法正确的是()A.变速运动一定是曲线运动B.曲线运动一定是变速运动C.曲线运动一定是变加速运动D.曲线运动一定是加速度不变的匀变速运动【例3】关于曲线运动, 以下说法正确的是()图5-11A.曲线运动是一种变速运动B.做曲线运动的物体合外力一定不为零C.做曲线运动的物体所受的合外力一定是变化的D.曲线运动不可能是一种匀变速运动6、关于运动的合成与分解(1)合运动与分运动定义:如果物体同时参与了几个运动,那么物体实际发生的运动就叫做那几个运动的合运动。

那几个运动叫做这个实际运动的分运动.特征:①等时性;②独立性;③等效性;④同一性。

(2)运动的合成与分解的几种情况:①两个任意角度的匀速直线运动的合运动为匀速直线运动。

②一个匀速直线运动和一个匀变速直线运动的合运动为匀变速运动,当二者共线时轨迹为直线,不共线时轨迹为曲线。

曲线运动的性质与条件------高中物理模块典型题归纳(含详细答案)

曲线运动的性质与条件------高中物理模块典型题归纳(含详细答案)

曲线运动的性质与条件------高中物理模块典型题归纳(含详细答案)一、单选题1.一辆汽车在水平公路上转弯,沿曲线由M向N行驶,速度逐渐减小,下图中分别画出了汽车转弯时所受合力F的四种方向,你认为正确的是()A. B. C. D.2.如图所示,一物体在水平恒力的作用下沿光滑水平面做曲线运动,当物体从M点运动到N 点时,其速度方向恰好改变了90°,则物体从M点到N点的运动过程中,物体的速度将()A.不断增大B.不断减小C.先增大后减小D.先减小后增大3.关于曲线运动,下面叙述正确的是()A.曲线运动一定是变速运动B.变速运动一定是曲线运动C.物体做曲线运动时,所受外力的合力一定是变力D.物体做曲线运动时,所受外力的合力可能与速度方向在同一直线上4.关于物体做曲线运动的条件,下列说法正确的是()A.物体在恒力作用下不可能做曲线运动B.物体在变力作用下一定做曲线运动C.做曲线运动的物体所受的力的方向一定是变化的D.合力方向与物体速度方向既不相同、也不相反时,物体一定做曲线运动5.关于曲线运动,下列说法正确的是()A.曲线运动不一定是变速运动B.做曲线运动的物体可以没有加速度C.曲线运动可以是匀速率运动D.做曲线运动的物体加速度一定恒定不变6.一个物体在光滑水平面上沿曲线MN运动,如图所示,其中A点是曲线上的一点,虚线1、2分别是过A点的切线,已知该过程中物体所受到的合外力是恒力,则当物体运动到A点时,合外力的方向可能是()A.沿F1或F5的方向B.沿F2或F4的方向C.沿F2的方向D.不在MN曲线所决定的水平面内7.物体在几个力的作用下处于平衡状态,若撤去其中某一个力而其余力的性质(大小、方向、作用点)不变,物体的运动情况可能是()A.静止B.匀加速直线运动C.匀速直线运动D.匀速圆周运动8.如图所示,一质点做曲线运动从M点到N点速度逐渐减小,当它通过P点时,其速度和所受合外力的方向关系可能正确的是()A. B. C. D.9.若已知物体的速度方向和它所受合力的方向,如图所示,可能的运动轨迹是()A. B. C. D.10.物体在几个力作用下做匀速直线运动,今将一个力撤掉,关于质点运动的说法:()A.物体一定做匀变速运动B.物体可能做匀速直线运动C.物体做曲线运动D.物体一定做变速直线运动11.关于曲线运动,下列说法正确的是()A.曲线运动不一定是变速运动B.曲线运动可以是匀速运动C.做曲线运动的物体一定有加速度D.做曲线运动的物体加速度一定恒定不变12.如图所示,若已知物体运动初速度v0的方向及该物体受到的恒定合外力F的方向,图中虚线表示物体的运动轨迹,下列正确的是()A. B.C. D.13.下列有关曲线运动的说法错误的是()A.做匀速圆周运动的物体所受的合外力方向一定与速度方向垂直B.速度方向发生变化的运动一定是曲线运动C.曲线运动的加速度可以保持恒定D.速率保持不变的运动可以是曲线运动14.在弯道上高速行驶的赛车,突然后轮脱离赛车,关于脱离的后轮的运动情况,以下说法正确的是( )A.仍然沿着汽车行驶的弯道运动B.沿着与弯道垂直的方向飞出C.沿着脱离时轮子前进的方向做直线运动,离开弯道D.上述情况都有可能15.下列说法正确的是()A.竖直平面内做匀速圆周运动的物体,其合外力可能不指向圆心B.匀速直线运动和自由落体运动的合运动一定是曲线运动C.曲线运动的物体所受合外力一定为变力D.火车超过限定速度转弯时,车轮轮缘将挤压铁轨的外轨16.一辆汽车在水平公路上转弯,沿曲线由M向N行驶,速度逐渐减小.如图所示,分别画出了汽车转弯时所受合力的四种方向,你认为正确的是()A. B. C. D.二、多选题17.质量为m的物体,在F1、F2、F3三个共点力的作用下做匀速直线运动,保持F1、F2不变,仅将F3的方向改变90°(大小不变)后,物体可能做()A.加速度大小为的匀变速直线运动B.加速度大小为的匀变速直线运动C.匀速圆周运动D.加速度大小为的匀变速曲线运动18.如图所示,平面直角坐标系xOy与水平面平行,在光滑水平面上一做匀速直线运动的质点以速度v通过坐标原点O,速度方向与x轴正方向的夹角为α,与此同时给质点加上沿x 轴正方向的恒力F x和沿y轴正方向的恒力F y,则此后()A.因为有F x,质点一定做曲线运动B.如果F y<F x,质点相对原来的方向向y轴一侧做曲线运动C.如果F y=F x tan α,质点做直线运动D.如果F x>F y cot α,质点相对原来的方向向x轴一侧做曲线运动19.下列关于曲线运动的说法,正确的是()A.曲线运动的加速度可能为零B.曲线运动可以是匀速运动C.曲线运动可以是匀变速运动D.曲线运动一定是变速运动20.一辆汽车在水平公路上转弯,沿曲线由M向N行驶.图中分别画出了汽车转弯时所受合力F的方向,可能正确的是()A. B. C. D.21.若已知物体的速度方向和它所受合力的方向,如图所示,可能的运动轨迹是()A. B. C. D.22.一质点以水平向右的恒定速度v通过P点时受到一个恒力F的作用,则此后该质点的运动轨迹可能是图中的()A.aB.bC.cD.d23.如图所示为一个做匀变速曲线运动的质点的轨迹示意图,已知在B点时的速度与加速度相互垂直,则下列说法中正确的是()A.D点的速率比C点的速率小B.A点的加速度与速度的夹角大于90°C.A点的加速度比D点的加速度大D.从A到D加速度与速度的夹角一直减小24.关于曲线运动下列说法中正确的是()A.某点瞬时速度的方向就在曲线上该点的切线上B.曲线运动一定是变速运动C.做曲线运动的物体的速度方向时刻改变D.曲线运动不一定是变速运动25.关于曲线运动的速度,下列说法正确的是()A.速度的大小与方向都在时刻变化B.速度的方向不断发生变化,速度的大小不一定发生变化C.速度的大小不断发生变化,速度的方向不一定发生变化D.质点在某一点的速度方向是在曲线的这一点的切线方向26.物体受到几个外力的作用而做匀速直线运动,如果撤去其中的一个力而保持其余的力的大小方向都不变,则物体可能做()A.匀减速直线运动B.匀速圆周运动C.匀加速直线运动D.匀加速曲线运动答案一、单选题1.【答案】C【解析】【解答】解:汽车从M点运动到N,曲线运动,必有些力提供向心力,向心力是指向圆心的;汽车同时减速,所以沿切向方向有与速度相反的合力;向心力和切线合力与速度的方向的夹角要大于90°,所以选项ABD错误,选项C正确.故答案为C.【分析】汽车在水平的公路上转弯,所做的运动为曲线运动,故在半径方向上合力不为零且是指向圆心的;又是做减速运动,故在切线上合力不为零且与瞬时速度的方向相反,分析这两个力的合力,即可看出那个图象时对的.2.【答案】D【解析】【解答】曲线运动的轨迹在速度方向与合力方向之间,对M、N点进行分析可知开始时恒力与速度夹角为钝角,后来夹角为锐角,则物体的速度先减小后增大,D符合题意。

高中物理曲线运动常见题型及答题技巧及练习题(含答案)及解析

高中物理曲线运动常见题型及答题技巧及练习题(含答案)及解析

高中物理曲线运动常有题型及答题技巧及练习题 ( 含答案 ) 及分析一、高中物理精讲专题测试曲线运动1. 如图,圆滑轨道abcd 固定在竖直平面内,ab水平,bcd 为半圆,在b 处与 ab 相切.在直轨道 ab 上放着质量分别为 m A =2kg 、 m B =1kg的物块 A 、 B (均可视为质点),用轻质细绳将A 、B 连结在一同,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能E p =12J .轨道左边的圆滑水平川面上停着一质量 M =2kg 、长 L=0.5m 的小车,小车上表面与ab 等高.现将细绳剪断,以后A 向左滑上小车,B 向右滑动且恰巧能冲到圆弧轨道的最高点 d 处.已知 A 与小车之间的动摩擦因数μ知足 0.1 ≤μ≤,0.3g 取 10m/ s 2,求( 1) A 、 B 走开弹簧瞬时的速率 v A 、v B ;( 2)圆弧轨道的半径 R ;(3) A 在小车上滑动过程中产生的热量Q (计算结果可含有μ).【答案】( 1) 4m/s ( 2) 0.32m(3) 当知足0.1 ≤μ <0.2 , Q 1μ; 当知足 0.2 ≤μ≤ 0.3时 =10时, 1mA v121(m A M ) v 222【分析】【剖析】(1)弹簧恢复到自然长度时,依据动量守恒定律和能量守恒定律求解两物体的速度; (2)依据能量守恒定律和牛顿第二定律联合求解圆弧轨道的半径R ;( 3)依据动量守恒定律和能量关系求解恰巧能共速的临界摩擦力因数的值,而后议论求解热量 Q.【详解】(1)设弹簧恢复到自然长度时A 、B 的速度分别为 v A 、 v B , 由动量守恒定律:0= m A v A m B v B 由能量关系: E P =1m A v A 2 1m B v B 222解得 v A =2m/s ;v B =4m/s(2)设 B 经过 d 点时速度为 v d ,在 d 点:m B g m B v d 2R由机械能守恒定律:1m B v B 2 =1m B v d 2 m B g 2R22解得 R=0.32m(3)设 μ =1μv,由动量守恒定律:时 A 恰巧能滑到小车左端,其共同速度为m A v A =(m A M )v 由能量关系: 1m A gL1m A v A 21m A M v 222解得 μ1=0.2议论:(ⅰ)当知足 0.1 ≤μ <0时.2, A 和小车不共速, A 将从小车左端滑落,产生的热量为Q 1 m A gL 10(J )(ⅱ)当知足0.2 ≤μ≤ 0.A3和小车能共速,产生的热量为时, Q 11m A v 121 m A M v2 ,解得 Q 2=2J222. 如下图,水平长直轨道AB 与半径为R=0.8m 的圆滑1 竖直圆轨道BC 相切于B , BC4与半径为r=0.4m 的圆滑1 竖直圆轨道 CD 相切于C ,质量m=1kg 的小球静止在A 点,现用4F=18N 的水平恒力向右拉小球,在抵达 AB 中点时撤去拉力,小球恰能经过 球与水平面的动摩擦因数μ=0.2,取 g=10m/s 2.求:D 点.已知小( 1)小球在 D 点的速度 v D 大小 ; ( 2)小球在 B 点对圆轨道的压力 N B 大小;( 3) A 、B 两点间的距离 x .【答案】 (1) v D 2m / s ( 2)45N (3)2m【分析】 【剖析】 【详解】(1)小球恰巧过最高点 D ,有:2 mgmv Dr解得: v D 2m/s(2)从 B 到 D ,由动能定理:mg(R r )1mv D 21mv B 22 2设小球在 B 点遇到轨道支持力为 N ,由牛顿定律有:2 N mgmv BRN B =N联解③④⑤得: N=45N(3)小球从 A 到 B ,由动能定理:Fxmgx1 mv B2 22解得: x 2m故此题答案是: (1) v2m / s( 2) 45N (3)2mD【点睛】利用牛顿第二定律求出速度,在利用动能定理求出加快阶段的位移,3. 如下图,在圆滑的圆锥体顶部用长为的细线悬挂一质量为 的小球, 因锥体固定在水平面上,其轴线沿竖直方向,母线与轴线之间的夹角为,物体绕轴线在水平面内做匀速圆周运动,小球静止时细线与母线给好平行,已知,重力加快度 g 取 若北小球运动的角速度,求此时细线对小球的拉力大小。

[荐]高中物理:曲线运动与抛体运动-必考知识点总结

[荐]高中物理:曲线运动与抛体运动-必考知识点总结

【下载后获高清版】高中物理:曲线运动与抛体运动-必考知识点总结+例题分析详解1.曲线运动⑴加速度方向(即受力方向)与速度方向不一致导致曲线运动。

如果加速度恒定不变称为定加速运动,如抛体运动;如果加速度变化则为变加速运动,如圆周运动。

⑵运动的合成与分解。

运动的分解遵循实际效果分解:先确定合运动的方向即物体的实际运动方向,再按照实际的效果分解,对绳杆来讲一般按照沿绳或杆、垂直绳或杆的方向分解。

[例1] 如图,人在岸上拉船,已知船的质量为m,水的阻力恒为f,当轻绳与水平面的夹角为θ时,船的速度为ν,此时人的拉力大小为F,则此时下列说法正确的是()A.人拉绳行走的速度为ν·cosθB.人拉绳行走的速度为ν/cosθC.船的加速度为(F·cosθ-f)/mD.船的加速度为(F-f)/m解析:运动的分解①找出合运动--小船向前运动;②运动分解--沿着绳的方向和垂直绳的方向A正确,B错误;力的分解,小船受到拉力F、阻力f、重力G和浮力N,在水平方向有加速度,选C。

注意:运动的分解与力的分解都是矢量的分解,分解的原则是便于解决问题。

比如把运动分解成水平方向和竖直方向,可不可以?当然可以,但是会使问题分析变得更复杂。

⑶小船渡河模型:等效直角三角形,如图①最快过河(过河时间最短:船头指向对岸)②最近过河(过河位移最小:时和时,哪个速度大哪个是斜边,另一个速度为直角边)[例2]在宽度为d的街上,有一连串相同的汽车以平行于街边沿的速度ν向右鱼贯通过,已知汽车的宽度为b,两车间的间距为a,如图所示,一行人想用尽可能小的速度沿一直线穿过此街,试求此人过街所需的时间。

解析:我们可以将车看成静止的,则人相当于本身具有一个沿街边的反向速度v,方向向左。

只考察穿过车流空间内的情形,如图,显然当的方向与a、b构成的矩形的对角线垂直时,取最小值。

所以,设过街时间为t,则有·cosθ·t=d,得t=2.抛体运动抛体运动属于恒定加速度的运动,按照初速度与加速度的方向,分为平抛、类平抛和斜抛运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题 曲线运动一、运动的合成和分解【题型总结】1.合力与轨迹的关系如图所示为一个做匀变速曲线运动质点的轨迹示意图,已知在B 点的速度与加速度相互垂直,且质点的运动方向是从A 到E ,则下列说法中正确的是( ) A .D 点的速率比C 点的速率大 B .A 点的加速度与速度的夹角小于90° C .A 点的加速度比D 点的加速度大D .从A 到D 加速度与速度的夹角先增大后减小 2.运动的合成和分解例:一人骑自行车向东行驶,当车速为4m /s 时,他感到风从正南方向吹来,当车速增加到7m /s 时。

他感到风从东南方向(东偏南45o )吹来,则风对地的速度大小为( ) A. 7m/s B. 6m /s C. 5m /s D. 4 m /s 3.绳(杆)拉物类问题例:如图所示,重物M 沿竖直杆下滑,并通过绳带动小车m 沿斜面升高.问:当滑轮右侧的绳与竖直方向成θ角,且重物下滑的速率为v 时,小车的速度为多少?练习1:一根绕过定滑轮的长绳吊起一重物B ,如图所示,设汽车和重物的速度的大小分别为B A v v ,,则( )A 、B A v v = B 、B A v v 〉C 、B A v v 〈D 、重物B 的速度逐渐增大4.渡河问题例1:在抗洪抢险中,战士驾驶摩托艇救人,假设江岸是平直的,洪水沿江向下游流去,水流速度为v 1,摩托艇在静水中的航速为v 2,战士救人的地点A 离岸边最近处O 的距离为d ,如战士想在最短时间内将人送上岸,则摩托艇登陆的地点离O 点的距离为( )例2:某人横渡一河流,船划行速度和水流动速度一定,此人过河最短时间为了T 1;若此船用最短的位移过河,则需时间为T 2,若船速大于水速,则船速与水速之比为( )(A) (B) (C) (D)【巩固练习】 1、 一个劈形物体M ,各面都光滑,放在固定的斜面上,上表面水平,在上表面放一个 光滑小球m ,劈形物体由静止开始释放,则小球在碰到斜面前的运动轨迹是( ) A 、 沿斜面向下的直线 B 、竖直向下的直线 C 、无规则的曲线 D 、抛物线 [同类变式]下列说法中符合实际的是:( )A .足球沿直线从球门的右上角射入球门B .篮球在空中划出一条规则的圆弧落入篮筐C .台球桌上红色球沿弧线运动D .羽毛球比赛时,打出的羽毛球在对方界内竖直下落。

2、如图所示为一空间探测器的示意图,P 1 、P 2 、P 3 、P 4是四个喷气发动机, P 1 、P 2的连线与空间一固定坐标系的x 轴平行,P 3 、P 4的连线与y 轴平行.每台发动机开动时,都能向探测器提供推力,但不会使探测器转动.开始时,探测器以恒定的速率v o 向正x 方向平动.要使探测器改为向正x 偏负y 60° 的方向以原来的速率v o 平动,则可( )A .先开动P 1 适当时间,再开动P 4 适当时间 B. 先开动P 3 适当时间,再开动P 2 适当时间 C. 开动P 4 适当时间D. 先开动P 3 适当时间,再开动P 4 适当时间解析:火箭、喷气飞机等是由燃料的反作用力提供动力,所以 P 1 、P 2 、P 3 、P 4分别受到向左、上、右、下的作用力。

使探测器改为向正x 偏负y 60° 的方向以原来的速率v o 平动,所以水平方向上要减速、竖直方向上要加速。

答案:A3、如图所示,A 、B 为两游泳运动员隔着水流湍急的河流站在两岸边,A 在较下游的位置,且A 的游泳成绩比B 好,现让两人同时下水游泳,要求两人尽快在河中相遇,试问应采用下列哪种方法才能实现?( )A. A 、B 均向对方游(即沿虚线方向)而不考虑水流作用 B. B 沿虚线向A 游且A 沿虚线偏向上游方向游 C. A 沿虚线向B 游且B 沿虚线偏向上游方向游M mD. 都应沿虚线偏向下游方向,且B 比A 更偏向下游解析:游泳运动员在河里游泳时同时参与两种运动,一是被水冲向下游,二是沿自己划行方向的划行运动。

游泳的方向是人相对于水的方向。

选水为参考系,A 、B 两运动员只有一种运动,由于两点之间直线最短,所以选A 。

二、平抛运动【题型总结】 1.斜面问题: ①分解速度:例:如图所示,以水平初速度0v 抛出的物体,飞行一段时间后,垂直撞在倾角为θ的斜面上,求物体完成这段飞行的时间和位移。

解:gtv v v y x 0tan ==θ , ∴θtan 0⋅=g v t 练习:如图所示,在倾角为370的斜面底端的正上方H 处,平抛一小球,该小球垂直打在斜面上的一点,求小球抛出时的初速度。

解:小球水平位移为0x v t =,竖直位移为212y gt =,由图可知,20012tan 37H gtv t -=,又00tan 37v gt =,解之得:0153gH v =.②分解位移:例:如图,在倾角为θ的斜面顶端A 处以速度0v 水平抛出一小球,落在斜面上的某一点B 处,设空气阻力不计,求小球从A 运动到B 处所需的时间和位移。

解:设小球从A 处运动到B 处所需的时间为t ,则水平位移t v x 0= ,竖直位移221gt y =。

θtan )(2102t v gt = ,∴g v t θtan 20= θθθθsin tan 2sin 21sin 2202g v gt S S y ===练习1:(求平抛物体的落点)如图,斜面上有a 、b 、c 、d 四个点,ab =bc =cd 。

从a 点正上方的O 点以速度v 0水平抛出一个小球,它落在斜面上b 点。

若小球从O 点以速度2v 0水平抛出,不计空气阻力,则它落在斜面上的 A .b 与c 之间某一点 B .c 点 C .c 与d 之间某一点 D .d 点解析:当水平速度变为2v 0时,如果作过b 点的直线be ,小球将落在c 的正下方的直线上一点,连接O 点和e 点的曲线,和斜面相交于bc 间的一点,故A 对。

答案:A练习2:(证明某一夹角为定值)从倾角为θ的足够长的A 点,先后将同一小球以不同的初速度水平向右抛出,第一次初速度为v 1,球落到斜面上前一瞬间的速度方向与斜面的夹角为,第二次初速度,球落在斜面上前一瞬间的速度方向与斜面间的夹角为,若,试比较的大小。

解析:,所以。

即以不同初速度平抛的物体落在斜面上各点的速度是互相平行的。

练习3:(求时间或位移之比)如图所示,AB 为斜面,BC 为水平面,从A 点以水平初速度v 向右抛出一小球,其落点与A 的水平距离为s 1,从A 点以水平初速度2v 向右抛出一小球,其落点与A 的水平距离为s 2,不计空气阻力,可能为:A. 1:2B. 1:3C. 1:4D. 1:5解析:若两物体都落在水平面上,则运动时间相等,有,A 是可能的。

若两物体都落在斜面上,由公式得,运动时间分别为,。

水平位移,C 是可能。

若第一球落在斜面上,第二球落在水平面上(如图所示),不会小于1:4,但一定小于1:2。

故1:3是可能的,1:5不可能。

答案:ABC练习4:(斜面上的最值问题)在倾角为θ的斜面上以初速度v 0平抛一物体,经多长时间物体离斜面最远,离斜面的最大距离是多少?解:方法一:如图所示,速度方向平行斜面时,离斜面最远,由,则运动时间为,此时横坐标为。

又此时速度方向反向延长线交横轴于处: 。

方法二:建立如图所示坐标系,,,把运动看成是沿x 方向初速度为,加速度为的匀加速运动和沿y 方向的初速度为,加速度为的匀减速运动的合运动。

最远处,所以,2.类平抛运动:例:如图所示,光滑斜面长为a ,宽为b ,倾角为θ ,一物体从斜面右上方P 点水平射入,而从斜面左下方顶点Q 离开斜面,求入射初速度。

解:物体在光滑斜面上只受重力和斜面对物体的支持力,因此物体所受到的合力大小为F =θsin mg ,方向沿斜面向下;根据牛顿第二定律,则物体沿斜面方向的加速度应为a 加=θsin g mF=,又由于物体的初速度与a 加垂直,所以物体的运动可分解为两个方向的运动,即水平方向是速度为v 0的匀速直线运动,沿斜面向下的是初速度为零的匀加速直线运动。

在水平方向上有 b= v 0 t ,沿斜面向下的方向上有a =21a 加t 2。

∴ag bt b v 2sin 0θ==。

练习:如图所示,有一个很深的竖直井,井的横截面为一个圆,半径为R ,且井壁光滑,有一个小球从井口的一侧以水平速度0v 抛出与井壁发生碰撞,撞后以原速率被反弹,求小球与井壁发生第n 次碰撞处的深度。

解:由于小球与井壁相碰时,小球的速率不变,因此在水平方向上小球一直是匀速率运动,当小球与井壁相碰n 次时,小球在水平方向上通过的路程:nR S x 2= ,所以用的时间02v nRv S t x ==,由于小球在竖直方向上做的是自由落体运动,因此小球在竖直方向上的位移20222022)2(2121v gR n v nR g gt S y === 即小球与井壁发生第n 次碰撞时的深度为2222v gR n3.相对运动中的平抛运动:例:正沿平直轨道以速度v 匀速行驶的车厢内,前面高h 的支架上放着一个小球,如图所示,若车厢突然改以加速度a ,做匀加速运动,小球落下,则小球在车厢底板上的落点到架子的水平距离为多少? 解:方法一:小球水平运动ghv S 21⋅=,小车水平运动g h a g h v S 22121⋅+⋅= ,∴△g ah S S S =-=12 方法二:0=相对v ,a a =)(水平相对, ∴ △gahgh a S =⋅=2)2(21 [同类变式]若人在车厢上观察小球,则小球运动轨迹为 直线 (填“直线”或“曲线”) 因为0=相对v ,22g a a +=相对,所以运动轨迹为直线。

练习:沿水平直路向右行驶的车内悬一小球,悬线与竖直线之间夹一大小恒定的角θ,如图所示,已知小球在水平底板上的投影为O 点,小球距O 点的距离为h.,若烧断悬线,则小球在底板上的落点P 应在O 点的________侧;P 点与O 点的距离为________。

解:烧断悬线前,悬线与竖直方向的夹角θ,解析小球的受力可知小球所受合力θtan mg F = ,根据牛顿第二定律知,车与球沿水平向右做匀加速运动,其加速度为θtan g m Fa ==, ①(题设隐含条件),烧断悬线后,小球将做平抛运动,设运动时间为t ,则有 221gt h = ②,对小球:g h v vt s 21==③,对小车:gh g g h v at vt s 2tan 2122122⋅+=+=θ 球对车的水平位移△θtan 21⋅-=-=h s s s ,负号表示落点应在O 点的左侧,距离OP 为htan θ 。

【巩固练习】1、如图所示,房间里距地面H 高的A 点处有一盏白炽灯(可视为点光源), 一小球以初速度0v 从A 点沿水平方向垂直于墙壁抛出,恰好落在墙角B 处, 那么,小球抛出后,它的影点在墙上的运动情况是( )A .匀速运动B .匀加速运动C .变速运动D .无法判断解析:由相似三角形可知:AEAFEP FQ =,由平抛规律可得:EP =21gt 2,AE =v 0t ,AF =v 0。

相关文档
最新文档