曲线运动题型总结
曲线运动题型总结

曲线运动题型总结1. 引言曲线运动题是物理学中常见的题型之一,涉及到物体在一定时间内沿着曲线运动的情况。
掌握此类题型的解题技巧和方法,对于理解物体运动规律以及解决实际问题具有重要意义。
本文将对曲线运动题型进行总结,包括常见的曲线运动情况、解题方法和注意事项。
2. 匀速曲线运动在匀速曲线运动中,物体在运动过程中速度保持不变,但方向随时间而改变。
这种运动可以通过向心加速度来描述。
常见的匀速曲线运动包括圆周运动和斜抛运动。
2.1 圆周运动圆周运动是物体沿着圆形轨迹进行的运动。
在圆周运动中,物体的速度大小保持恒定,但方向不断改变。
解决圆周运动题目时,我们常常需要使用圆周运动的相关公式,如角速度、角加速度、向心力等。
同时,我们还需要考虑与圆周运动相关的物理量之间的关系,如速度和半径的关系、加速度和半径的关系等。
2.2 斜抛运动斜抛运动是物体在重力作用下,以一定的初速度和发射角度,沿抛物线轨迹进行的运动。
在斜抛运动中,物体在水平和垂直方向上具有不同的速度分量。
解决斜抛运动题目时,我们常常需要分解速度,将速度分解成水平和垂直分量,并分别考虑其运动情况。
此外,我们还需要考虑重力加速度对高度和时间的影响,以确定物体的运动轨迹和最终位置。
3. 变速曲线运动在变速曲线运动中,物体在运动过程中速度发生变化,同时方向也可能发生改变。
这种运动需要考虑速度和加速度的变化情况,经常涉及到曲线的切线和法线方向。
3.1 加速度在变速曲线运动中,加速度是一个重要的概念。
加速度可以影响物体的速度变化,从而导致物体在曲线上运动。
当加速度与速度方向一致时,物体的速度会逐渐增大;当加速度与速度方向相反时,物体的速度会逐渐减小。
3.2 切线和法线方向在曲线运动中,切线方向和法线方向是两个重要的概念。
切线方向与物体运动方向相同,并描述了物体在曲线上的切线运动情况;法线方向与切线垂直,并描述了物体在曲线上的向心运动情况。
在解决变速曲线运动题目时,我们需要根据物体在曲线上的运动情况,确定切线和法线方向,并进一步分析物体的加速度方向。
曲线运动知识点及例题

曲线运动1、在曲线运动中,质点在某一时刻(某一位置)的速度方向是在曲线上这一点的切线方向。
2、物体做直线或曲线运动的条件:(已知当物体受到合外力F 作用下,在F 方向上便产生加速度a )(1)若F (或a )的方向与物体速度v 的方向相同,则物体做直线运动; (2)若F (或a )的方向与物体速度v 的方向不同,则物体做曲线运动。
3、物体做曲线运动时合外力的方向总是指向轨迹的凹的一边。
平抛运动将物体用一定的初速度沿水平方向抛出,不计空气阻力,物体只在重力作用下所做的运动。
两分运动说明:(1)在水平方向上由于不受力,将做匀速直线运动;(2)在竖直方向上物体的初速度为零,且只受到重力作用,物体做自由落体运动。
1.水平方向速度:Vx =V o2.竖直方向速度:Vy =gt3.水平方向位移:x =V ot4.竖直方向位移:y =gt2/25.运动时间t =(2y/g )1/2(通常又表示为(2h/g)1/2)6.合速度22y x v v v +=任意时刻的运动方向可用该点速度方向与x 轴的正方向的夹角θ表示:xy v v =θtan合速度方向与水平夹角β:tgβ=Vy/Vx =gt/V07.合位移:s =( x2+y2)再开根位移方向与水平夹角y/x =gt/2Vo8.水平方向加速度:ax=0;竖直方向加速度:ay =g注:(1)平抛运动是匀变速曲线运动,加速度为g ,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;(2)运动时间由下落高度h(y)决定与水平抛出速度无关;(3)θ与β的关系为tgβ=2tgα;(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。
斜抛运动1、设物体初速度V,方向与水平成a角斜向下,t秒末位移2、水平方向匀速X=Vcosa*t3、竖直方向匀加速y=Vsina*t+gt^2/24、速度:Vx=VcosaVy=Vsina+gt匀速圆周运动质点沿圆周运动,在相等的时间里通过的圆弧长度相同。
高中物理曲线运动经典题型总结(可编辑修改word版)

42+ 32【题型总结】专题五曲线运动一、运动的合成和分解1.速度的合成:(1)运动的合成和分解(2)相对运动的规律v甲地=v甲乙+v乙地例:一人骑自行车向东行驶,当车速为 4m/s 时,他感到风从正南方向吹来,当车速增加到 7m/s 时。
他感到风从东南方向(东偏南45º)吹来,则风对地的速度大小为()A. 7m/sB. 6m/sC. 5m/sD. 4 m/s解析:“他感到风从正南方向(东南方向)吹来” ,即风相对车的方向是正南方向(东南方向)。
而风相对地的速度方向不变,由此可联立求解。
解:∵θ=45°∴V 风对车=7—4=3 m/s∵V风对车+V车对地=V风对地V 风对∴V 风对地= =5答案:C2.绳(杆)拉物类问题m/sV 风对V 车对① 绳(杆)上各点在绳(杆)方向上的速度相等②合速度方向:物体实际运动方向分速度方向:沿绳(杆)伸(缩)方向:使绳(杆)伸(缩)垂直于绳(杆)方向:使绳(杆)转动例:如图所示,重物M 沿竖直杆下滑,并通过绳带动小车m 沿斜面升高.问:当滑轮右侧的绳与竖直方向成θ 角,且重物下滑的速率为v 时,小车的速度为多少?解:方法一:虚拟重物M 在Δt 时间内从A 移过Δh 到达C的运动,如图(1)所示,这个运动可设想为两个分运动所合成,即先随绳绕滑轮的中心轴O 点做圆周运动到B,位移为Δs1,然后将绳拉过Δs2到C.1若Δt 很小趋近于0,那么Δφ→0,则Δs1=0,又OA=OB,∠OBA=β=2 (180°-Δφ)→90°.亦即Δs1近似⊥Δs2,故应有:Δs2=Δh·cosθ∆s2因为∆t=∆h∆t ·cosθ,所以v′=v·cosθ方法二:重物M 的速度v 的方向是合运动的速度方向,这个v 产生两个效果:一是使绳的这一端绕滑轮做顺时针方向的圆周运动;二是使绳系着重物的一端沿绳拉力的方向以速率v′运动,如图(2)所示,由图可知,v′=v·cosθ.(1)(2)V 风对θV A2α A V A1 αV B V V B2α 船练习 1:一根绕过定滑轮的长绳吊起一重物 B ,如图所示,设汽车和重物的速度的大小分别为v A , v B ,则 ( ) A 、v A = v B B 、v A 〉v B C 、v A 〈v B D 、重物 B 的速度逐渐增大解析:(微元法)设经过 t ,物体前进 s 1 ,绳子伸长 s 2 : s 1 = v A t , s 2 = v B t ⇒ v B = v A cos⇒↓ , v B ↑ , s 2 = s 1 cos. ∵ cos 〈1 , ∴ v B 〈v A练习 2:如图所示,一轻杆两端分别固定质量为 m A 和 m B 的两个小球 A 和 B (可视为质点)。
高中物理曲线运动经典题型总结-(1)

专题曲线运动一、运动的合成和分解【题型总结】1.合力与轨迹的关系如图所示为一个做匀变速曲线运动质点的轨迹示意图,已知在B 点的速度与加速度相互垂直,且质点的运动方向是从A 到E ,则下列说法中正确的是( ) A .D 点的速率比C 点的速率大 B .A 点的加速度与速度的夹角小于90° C .A 点的加速度比D 点的加速度大D23练习1:则()A 、A v =4例1例2用最短的位移过河,则需时间为T 2,若船速大于水速,则船速与水速之比为((A) (B)(C) 1、 一A 、 沿[A .足球沿直线从球门的右上角射入球门B .篮球在空中划出一条规则的圆弧落入篮筐C .台球桌上红色球沿弧线运动D .羽毛球比赛时,打出的羽毛球在对方界内竖直下落。
2、如图所示为一空间探测器的示意图,P 1、P 2、P 3、P 4是四个喷气发动机,P 1、P 2的连线与空间一固定坐标系的x 轴平行,P 3、P 4的连线与y 轴平行.每台发动机开动时,都能向探测器提供推力,但不会使探测器转动.开始时,探测器以恒定的速率v o 向正x 方向平动.要使探测器改为向正x 偏负y 60°的方向以原来的速率v o 平动,则可() A .先开动P 1适当时间,再开动P 4适当时间 B.先开动P 3适当时间,再开动P 2适当时间 C.开动P 4适当时间D.先开动P 3适当时间,再开动P 4适当时间解析:火箭、喷气飞机等是由燃料的反作用力提供动力,所以P 1、P 2、P 3、P 4分别受到向左、上、右、下的作用力。
使探测器改为向正x 偏负y 60°的方向以原来的速率v o 平动,所以水平方向上要减速、竖直方向上要加速。
答案:A3、如图所示,A 、B 为两游泳运动员隔着水流湍急的河流站在两岸边,A 在较下游的位置,且A 的游泳成绩比B 好,现让两人同时下水游泳,要求两人尽快在河中相遇,试问应采用下列哪种方法才能实现?()A.A 、B 均向对方游(即沿虚线方向)而不考虑水流作用B.B 沿虚线向A 游且A 沿虚线偏向上游方向游C.A 沿虚线向B 游且B 沿虚线偏向上游方向游D.解析:1解:该tan B 处,221gt 。
曲线运动经典专题复习总结

一、绳拉小船问题1、汽车通过绳子拉小船,则( D ) A 、汽车匀速则小船一定匀速 B 、汽车匀速则小船一定加速 C 、汽车减速则小船一定匀速 D 、小船匀速则汽车一定减速2、如左图,若已知物体A 的速度大小为v A ,求重物B 的速度大小v B?3、如图,竖直平面内放一直角杆,杆的水平部分粗糙,竖直部分光滑,两部分个套有质量分别为m A =2.0kg 和m B =1.0kg 的小球A 和B ,A 小球与水平杆的动摩擦因数μ=0.20,AB 间用不可伸长的轻绳相连,图示位置处OA=1.5m ,OB=2.0m ,取g=10m/s 2,若用水平力F 沿杆向右拉A ,使B 以1m/s 的速度上升,则在B 经过图示位置上升0.5m 的过程中,拉力F 做了多少功?(6.8J)二、小船过河问题1、甲船对静水的速度为v 1,以最短时间过河,乙船对静水的速度为v 2,以最短位移过河,结果两船运动轨迹重合,水速恒定不变,则两船过河时间之比为( )A 、v 1/v 2B 、v 2/v 1C 、(v 1/v 2)2D 、(v 2/v 1)2 三、平抛与斜面 1、如左图一水平抛出的小球落到一倾角为θ的斜面上时,其速度方向与斜面垂直,运动轨迹如右图中虚线所示。
小球在竖直方向下落的距离与在水平方向通过的距离之比为( )A .1tan θ B .12tan θ C .tan θ D .2tan θ2如图,一物体自倾角为θ的固定斜面顶端平抛后落在斜面上,物体与斜面接触时速度与水平方向的夹角α满足( )A 、tan α=sin θB 、tan α=cos θC 、tan α=tan θD 、tan α=2tan θ3、如右图物体从倾角θ为的斜面顶端以v 0平抛,求物体距斜面的最大距离?4如图物体从倾角θ为的斜面顶端以v 0平抛,从抛出到离斜面最远所用的时间为t 1,沿斜面位移为s 1,从离斜面最远到落到斜面所用时间为t 2,沿斜面位移为s 2,则( )A 、t 1 =t 2B 、t 1<t 2C 、s 1=s 2D 、s 1<s 2 5:如图,一架在2000m 高空以200m/s 的速度水平匀速飞行的轰炸机,要想用两枚炸弹分别炸山脚和山顶的目标A 和B ,已知山高720m ,山脚与山顶的水平距离为1000m ,若不计空气阻力,取g=10m.s2,投弹的时间间隔为( ) A 、4s B 、5s C 、9s D 、16s6:光滑斜面顶端同时有两个小球开始运动,甲球做平抛运动,乙球由静止开始沿斜面下滑,当甲球落在斜面上P 点时,乙球( A 、还没到达p 点B 、正好到达p 点C 、已经经过p 点D 、无法确定BB四、等效平抛、类平抛1:如左图,光滑斜面长为l 1,宽为l 2,倾角为θ,一物体从斜面左上方P 点水平射入,从斜面右下方Q 点离开斜面,求入射速度2:如右图,小球从水平地面A 点以v 1斜抛到竖直墙壁时速度v2恰好与墙壁垂直,已知抛出点到墙的距离为L ,球与竖直墙的碰撞点与地面的高度为h ,求v 1和v 2 。
高考物理曲线运动常见题型及答题技巧及练习题(含答案)含解析

高考物理曲线运动常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试曲线运动1.已知某半径与地球相等的星球的第一宇宙速度是地球的12倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大? (3)细线所能承受的最大拉力?【答案】(1)01=4g g 星 (2)0024g sv H L=-201[1]42()s T mg H L L =+- 【解析】 【分析】 【详解】(1)由万有引力等于向心力可知22Mm v G m R R =2MmGmg R= 可得2v g R=则014g g 星=(2)由平抛运动的规律:212H L g t -=星 0s v t =解得0024g s v H L=- (3)由牛顿定律,在最低点时:2v T mg m L-星=解得:201142()s T mg H L L ⎡⎤=+⎢⎥-⎣⎦【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g 0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.2.如图所示,倾角为45α=︒的粗糙平直导轨与半径为r 的光滑圆环轨道相切,切点为b ,整个轨道处在竖直平面内. 一质量为m 的小滑块从导轨上离地面高为H =3r 的d 处无初速下滑进入圆环轨道,接着小滑块从最高点a 水平飞出,恰好击中导轨上与圆心O 等高的c 点. 已知圆环最低点为e 点,重力加速度为g ,不计空气阻力. 求: (1)小滑块在a 点飞出的动能; ()小滑块在e 点对圆环轨道压力的大小;(3)小滑块与斜轨之间的动摩擦因数. (计算结果可以保留根号)【答案】(1)12k E mgr =;(2)F ′=6mg ;(3)4214μ-= 【解析】 【分析】 【详解】(1)小滑块从a 点飞出后做平拋运动: 2a r v t = 竖直方向:212r gt = 解得:a v gr =小滑块在a 点飞出的动能21122k a E mv mgr == (2)设小滑块在e 点时速度为m v ,由机械能守恒定律得:2211222m a mv mv mg r =+⋅ 在最低点由牛顿第二定律:2m mv F mg r-=由牛顿第三定律得:F ′=F 解得:F ′=6mg(3)bd 之间长度为L ,由几何关系得:()221L r =+ 从d 到最低点e 过程中,由动能定理21cos 2m mgH mg L mv μα-⋅= 解得4214μ-=3.如图所示,半径为R 的四分之三圆周轨道固定在竖直平面内,O 为圆轨道的圆心,D 为圆轨道的最高点,圆轨道内壁光滑,圆轨道右侧的水平面BC 与圆心等高.质量为m 的小球从离B 点高度为h 处(332R h R ≤≤)的A 点由静止开始下落,从B 点进入圆轨道,重力加速度为g ).(1)小球能否到达D 点?试通过计算说明; (2)求小球在最高点对轨道的压力范围;(3)通过计算说明小球从D 点飞出后能否落在水平面BC 上,若能,求落点与B 点水平距离d 的范围.【答案】(1)小球能到达D 点;(2)03F mg ≤'≤;(3)()()21221R d R ≤≤【解析】 【分析】 【详解】(1)当小球刚好通过最高点时应有:2Dmv mg R =由机械能守恒可得:()22Dmv mg h R -=联立解得32h R =,因为h 的取值范围为332R h R ≤≤,小球能到达D 点; (2)设小球在D 点受到的压力为F ,则2Dmv F mg R ='+ ()22Dmv mg h R ='- 联立并结合h 的取值范围332R h R ≤≤解得:03F mg ≤≤ 据牛顿第三定律得小球在最高点对轨道的压力范围为:03F mg ≤'≤(3)由(1)知在最高点D 速度至少为min D v gR =此时小球飞离D 后平抛,有:212R gt =min min D x v t =联立解得min 2x R R =>,故能落在水平面BC 上,当小球在最高点对轨道的压力为3mg 时,有:2max 3Dv mg mg m R+=解得max 2D v gR = 小球飞离D 后平抛212R gt =', max max D x v t ='联立解得max 22x R =故落点与B 点水平距离d 的范围为:()()21221R d R -≤≤-4.一宇航员登上某星球表面,在高为2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为5m ,且物体只受该星球引力作用求: (1)该星球表面重力加速度(2)已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍. 【答案】(1)4m/s 2;(2)110; 【解析】(1)根据平抛运动的规律:x =v 0t 得0515x t s s v === 由h =12gt 2 得:2222222/4/1h g m s m s t ⨯===(2)根据星球表面物体重力等于万有引力:2G M mmg R 星星= 地球表面物体重力等于万有引力:2G M mmg R '地地=则222411=()10210M gR M g R '⨯=星星地地= 点睛:此题是平抛运动与万有引力定律的综合题,重力加速度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.5.如图所示,在竖直平面内有一半径为R 的14光滑圆弧轨道AB ,与水平地面相切于B 点。
曲线运动题型总结

专题五 曲线运动一、运动的合成和分解【题型总结】1.速度的合成:(1)运动的合成和分解 (2)相对运动的规律 乙地甲乙甲地+=例:一人骑自行车向东行驶,当车速为4m /s 时,他感到风从正南方向吹来,当车速增加到7m /s 时。
他感到风从东南方向(东偏南45º)吹来,则风对地的速度大小为( )A. 7m/sB. 6m /sC. 5m /sD. 4 m /s 解析:“他感到风从正南方向(东南方向)吹来” ,即风相对车的方向是正南方向(东南方向)。
而风相对地的速度方向不变,由此可联立求解。
解:∵θ=45°∴V 风对车=7— 4=3 m /s∵风对地车对地风对车V V V =+ ∴V 风对地=53422=+ m /s 答案:C2.绳(杆)拉物类问题① 绳(杆)上各点在绳(杆)方向......上的速度相等② 合速度方向:物体实际运动方向分速度方向:沿绳(杆)伸(缩)方向:使绳(杆)伸(缩)垂直于绳(杆)方向:使绳(杆)转动例:如图所示,重物M 沿竖直杆下滑,并通过绳带动小车m 沿斜面升高.问:当滑轮右侧的绳与竖直方向成θ角,且重物下滑的速率为v 时,小车的速度为多少?解:方法一:虚拟重物M 在Δt 时间内从A 移过Δh 到达C的运动,如图(1)所示,这个运动可设想为两个分运动所合成,即先随绳绕滑轮的中心轴O 点做圆周运动到B ,位移为Δs 1,然后将绳拉过Δs 2到C .若Δt 很小趋近于0,那么Δφ→0,则Δs 1=0,又OA =OB ,∠OBA =β=21(180°-Δφ)→90°. 亦即Δs 1近似⊥Δs 2,故应有:Δs 2=Δh ·cos θ因为t ht s ∆∆=∆∆2·cos θ,所以v ′=v ·cos θ方法二:重物M 的速度v 的方向是合运动的速度方向,这个v 产生两个效果:一是使绳的这一端绕滑轮做顺时针方向的圆周运动;二是使绳系着重物的一端沿绳拉力的方向以速率v ′运动,如图(2)所示,由图可知,v ′=v ·cos θ.(1) (2)练习1:一根绕过定滑轮的长绳吊起一重物B ,如图所示,设汽车和重物的速度的大小分别为B A v v ,,则( ) A 、B A v v = B 、B A v v 〉 C 、B A v v 〈 D 、重物B 的速度逐渐增大 解析:(微元法)设经过t ,物体前进1s ,绳子伸长2s :t v s A =1,t v s B =2⇒θcos A B v v =⇒ ↓θ ,↑B v θcos 12s s =. ∵1cos 〈θ, ∴AB v v 〈V 风对车 V 风对地V 车对地练习2:如图所示,一轻杆两端分别固定质量为m A 和m B 的两个小球A 和B (可视为质点)。
高中物理曲线运动常见题型及答题技巧及练习题(含答案)及解析

高中物理曲线运动常有题型及答题技巧及练习题 ( 含答案 ) 及分析一、高中物理精讲专题测试曲线运动1. 如图,圆滑轨道abcd 固定在竖直平面内,ab水平,bcd 为半圆,在b 处与 ab 相切.在直轨道 ab 上放着质量分别为 m A =2kg 、 m B =1kg的物块 A 、 B (均可视为质点),用轻质细绳将A 、B 连结在一同,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能E p =12J .轨道左边的圆滑水平川面上停着一质量 M =2kg 、长 L=0.5m 的小车,小车上表面与ab 等高.现将细绳剪断,以后A 向左滑上小车,B 向右滑动且恰巧能冲到圆弧轨道的最高点 d 处.已知 A 与小车之间的动摩擦因数μ知足 0.1 ≤μ≤,0.3g 取 10m/ s 2,求( 1) A 、 B 走开弹簧瞬时的速率 v A 、v B ;( 2)圆弧轨道的半径 R ;(3) A 在小车上滑动过程中产生的热量Q (计算结果可含有μ).【答案】( 1) 4m/s ( 2) 0.32m(3) 当知足0.1 ≤μ <0.2 , Q 1μ; 当知足 0.2 ≤μ≤ 0.3时 =10时, 1mA v121(m A M ) v 222【分析】【剖析】(1)弹簧恢复到自然长度时,依据动量守恒定律和能量守恒定律求解两物体的速度; (2)依据能量守恒定律和牛顿第二定律联合求解圆弧轨道的半径R ;( 3)依据动量守恒定律和能量关系求解恰巧能共速的临界摩擦力因数的值,而后议论求解热量 Q.【详解】(1)设弹簧恢复到自然长度时A 、B 的速度分别为 v A 、 v B , 由动量守恒定律:0= m A v A m B v B 由能量关系: E P =1m A v A 2 1m B v B 222解得 v A =2m/s ;v B =4m/s(2)设 B 经过 d 点时速度为 v d ,在 d 点:m B g m B v d 2R由机械能守恒定律:1m B v B 2 =1m B v d 2 m B g 2R22解得 R=0.32m(3)设 μ =1μv,由动量守恒定律:时 A 恰巧能滑到小车左端,其共同速度为m A v A =(m A M )v 由能量关系: 1m A gL1m A v A 21m A M v 222解得 μ1=0.2议论:(ⅰ)当知足 0.1 ≤μ <0时.2, A 和小车不共速, A 将从小车左端滑落,产生的热量为Q 1 m A gL 10(J )(ⅱ)当知足0.2 ≤μ≤ 0.A3和小车能共速,产生的热量为时, Q 11m A v 121 m A M v2 ,解得 Q 2=2J222. 如下图,水平长直轨道AB 与半径为R=0.8m 的圆滑1 竖直圆轨道BC 相切于B , BC4与半径为r=0.4m 的圆滑1 竖直圆轨道 CD 相切于C ,质量m=1kg 的小球静止在A 点,现用4F=18N 的水平恒力向右拉小球,在抵达 AB 中点时撤去拉力,小球恰能经过 球与水平面的动摩擦因数μ=0.2,取 g=10m/s 2.求:D 点.已知小( 1)小球在 D 点的速度 v D 大小 ; ( 2)小球在 B 点对圆轨道的压力 N B 大小;( 3) A 、B 两点间的距离 x .【答案】 (1) v D 2m / s ( 2)45N (3)2m【分析】 【剖析】 【详解】(1)小球恰巧过最高点 D ,有:2 mgmv Dr解得: v D 2m/s(2)从 B 到 D ,由动能定理:mg(R r )1mv D 21mv B 22 2设小球在 B 点遇到轨道支持力为 N ,由牛顿定律有:2 N mgmv BRN B =N联解③④⑤得: N=45N(3)小球从 A 到 B ,由动能定理:Fxmgx1 mv B2 22解得: x 2m故此题答案是: (1) v2m / s( 2) 45N (3)2mD【点睛】利用牛顿第二定律求出速度,在利用动能定理求出加快阶段的位移,3. 如下图,在圆滑的圆锥体顶部用长为的细线悬挂一质量为 的小球, 因锥体固定在水平面上,其轴线沿竖直方向,母线与轴线之间的夹角为,物体绕轴线在水平面内做匀速圆周运动,小球静止时细线与母线给好平行,已知,重力加快度 g 取 若北小球运动的角速度,求此时细线对小球的拉力大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题型一.运动的合成与分解:例1:一人骑自行车向东行驶,当车速为4m /s 时,他感到风从正南方向吹来,当车速增加到7m /s 时。
他感到风从东南方向(东偏南45º)吹来,则风对地的速度大小为( ) A. 7m/s B. 6m /s C. 5m /s D. 4 m /s解析:“他感到风从正南方向(东南方向)吹来” ,即风相对车的方向是正南方向(东南方向)。
而风相对地的速度方向不变,由此可联立求解。
解:∵θ=45°∴V 风对车=7— 4=3 m /s ∵风对地车对地风对车V V V =+ ∴V 风对地=53422=+ m /s 答案:C变式1.匀速上升的载人气球中,有人水平向右抛出一物体,取竖直向上为y 轴正方向,水平向右为x 轴正方向,取抛出点为坐标原点,则地面上的人看到的物体运动轨迹是下图中的:A B C D解析:物体具有竖直向上的初速度,在空中只受重力作用,所以做斜上抛运动(水平方向作匀速运动、竖直方向做竖直上抛运动。
)答案:B变式2. 一个劈形物体M ,各面都光滑,放在固定的斜面上,上表面水平,在上表面放一个光滑小球m ,劈形物体由静止开始释放,则小球在碰到斜面前的运动轨迹是( )A 、 沿斜面向下的直线B 、竖直向下的直线C 、无规则的曲线D 、抛物线解析:由于小球初速度为零,所以不可能做曲线运动;又因为小球水平方向不受力,水平方向运动状态不变,所以只能向下运动。
答案:C练习1. 如图所示,一块橡皮用细线悬挂于O 点,用铅笔靠着线的左侧水平向右匀速移动,运动中始终保持悬线竖直,则橡皮运动的速度( )A.大小和方向均不变B.大小不变,方向改变V 风对V 风对V 车对mC.大小改变,方向不变D.大小和方向均改变练习2、如图所示为一空间探测器的示意图,P 1 、P 2 、P 3 、P 4是四个喷气发动机, P 1 、P 2的连线与空间一固定坐标系的x 轴平行,P 3 、P 4的连线与y 轴平行.每台发动机开动时,都能向探测器提供推力,但不会使探测器转动.开始时,探测器以恒定的速率v o 向正x 方向平动.要使探测器改为向正x 偏负y 60° 的方向以原来的速率v o 平动,则可( ) A .先开动P 1 适当时间,再开动P 4 适当时间 B. 先开动P 3 适当时间,再开动P 2 适当时间 C. 开动P 4 适当时间D. 先开动P 3 适当时间,再开动P 4 适当时间解析:火箭、喷气飞机等是由燃料的反作用力提供动力,所以 P 1 、P 2 、P 3 、P 4分别受到向左、上、右、下的作用力。
使探测器改为向正x 偏负y 60° 的方向以原来的速率v o 平动,所以水平方向上要减速、竖直方向上要加速。
答案:A题型二. (牵连速度)绳(杆)拉物类问题 1.绳(杆)上各点在绳(杆)方向......上的速度相等 2.合速度方向:物体实际运动方向3.分速度方向:沿绳(杆)伸(缩)方向:使绳(杆)伸(缩)4.垂直于绳(杆)方向:使绳(杆)转动例2:如图所示,重物M 沿竖直杆下滑,并通过绳带动小车m 沿斜面升高.问:当滑轮右侧的绳与竖直方向成θ角,且重物下滑的速率为v 时,小车的速度为多少? 解:方法一:虚拟重物M 在Δt 时间内从A 移过Δh 到达C的运动,如图(1)所示,这个运动可设想为两个分运动所合成,即先随绳绕滑轮的中心轴O 点做圆周运动到B ,位移为Δs 1,然后将绳拉过Δs 2到C .若Δt 很小趋近于0,那么Δφ→0,则Δs 1=0,又OA =OB ,∠OBA =β=(180°-Δφ)→90°.亦即Δs 1近似⊥Δs 2,故应有:Δs 2=Δh ·cos θ因为·cos θ,所以v ′=v ·cos θ 21t ht s ∆∆=∆∆2方法二:重物M 的速度v 的方向是合运动的速度方向,这个v 产生两个效果:一是使绳的这一端绕滑轮做顺时针方向的圆周运动;二是使绳系着重物的一端沿绳拉力的方向以速率v ′运动,如图(2)所示,由图可知,v ′=v ·cos θ.(1) (2)变式3:一根绕过定滑轮的长绳吊起一重物B ,如图所示,设汽车和重物的速度的大小分别为B A v v ,,则( )A 、B A v v = B 、B A v v 〉C 、B A v v 〈D 、重物B 的速度逐渐增大解析:(微元法)设经过t ,物体前进1s ,绳子伸长2s :t v s A =1,t v s B =2⇒θcos A B v v =⇒↓θ ,↑B v ,θcos 12s s =. ∵1cos 〈θ, ∴A B v v 〈变式4:如图所示,一轻杆两端分别固定质量为m A 和m B 的两个小球A 和B (可视为质点)。
将其放在一个直角形光滑槽中,已知当轻杆与槽左壁成α角时,A 球沿槽下滑的速度为V A ,求此时B 球的速度V B ?解:A 球以V A 的速度沿斜槽滑下时,可分解为:一个使杆压缩的分运动,设其速度为V A1;一个使杆绕B 点转动的分运动,设其速度为V A2。
而B 球沿斜槽上滑的运动为合运动,设其速度为V B ,可分解为:一个使杆伸长的分运动,设其速度为V B1,V B1=V A1;一个使杆摆动的分运动设其速度为V B2;由图可知:ααcos sin 11A A B B V V V V === αcot ⋅=A B V V5. 在水平面上有A 、B 两个物体,通过一根跨过定滑轮的不可伸长的轻绳相连接,现A 物体以v A 的速度向右匀速运动,当绳被拉成与水平面夹角分别为α、β时,B 物体的运动速度vB为V(绳始终有拉力)( ) A.A v sin sin βα B. A v sin cos βα C. A v cos sin βα D. A v cos cos βα6.如图所示,纤绳以恒定速率v 0沿水平方向通过定滑轮牵引小船靠岸,当纤绳与水面夹角为θ时,船靠岸的速度是 ,若使船匀速靠岸,则纤绳的速度是 。
(填:匀速、加速、减速)题型三.渡河问题(1)以时间为限制条件:①时间最短:使船头垂直于河岸航行.船短v d t =(d 为河宽) αsin ds =(α为合速度与水流速度的夹角) ②普通情况:βsin 船v dt =(β为船头与河岸的夹角)(2)以位移为限制条件:①船水v v 〈 d S =短 (d 为河宽) θsin 船v dt =(θ为船头与河岸的夹角)②船水v v 〉 22船水合v v v -= 船水短v dv S =船的真实方向指的是船的航行方向;船的划行方向指的是船头指向。
例1:在抗洪抢险中,战士驾驶摩托艇救人,假设江岸是平直的,洪水沿江向下游流去,水流速度为v 1,摩托艇在静水中的航速为v 2,战士救人的地点A 离岸边最近处O 的距离为d ,如战士想在最短时间内将人送上岸,则摩托艇登陆的地点离O 点的距离为()解析:摩托艇要想在最短时间内到达对岸,其划行方向要垂直于江岸,摩托艇实际的运动是相对于水的划行运动和随水流的运动的合运动,垂直于江岸方向的运动速度为v 2,到达江岸所用时间t=2v d;沿江岸方向的运动速度是水速v 1在相同的时间内,被水冲下的距离,即为登陆点距离0点距离211v dv t v s ==。
答案:C例2:某人横渡一河流,船划行速度和水流动速度一定,此人过河最短时间为了T 1;若此船用最短的位移过河,则需时间为T 2,若船速大于水速,则船速与水速之比为( )(A) (B) (C) (D)解析:设船速为1v ,水速为2v ,河宽为d ,则由题意可知 : 11v dT = ①当此人用最短位移过河时,即合速度v 方向应垂直于河岸,如图所示,则22212vv d T -=②联立①②式可得:1222121v v v T T -= ,进一步得2122221T T T v v -= 答案:A3、如图所示,A 、B 为两游泳运动员隔着水流湍急的河流站在两岸边,A 在较下游的位置,且A 的游泳成绩比B 好,现让两人同时下水游泳,要求两人尽快在河中相遇,试问应采用下列哪种方法才能实现?( )A. A 、B 均向对方游(即沿虚线方向)而不考虑水流作用B. B 沿虚线向A 游且A 沿虚线偏向上游方向游C. A 沿虚线向B 游且B 沿虚线偏向上游方向游D. 都应沿虚线偏向下游方向,且B 比A 更偏向下游解析:游泳运动员在河里游泳时同时参与两种运动,一是被水冲向下游,二是沿自己划行方向的划行运动。
游泳的方向是人相对于水的方向。
选水为参考系,A 、B 两运动员只有一种运动,由于两点之间直线最短,所以选A 。
二、平抛运动【题型总结】 题型一.斜面问题: 1.分解速度:例1:如图所示,以水平初速度0v 抛出的物体,飞行一段时间后,垂直撞在倾角为θ的斜面上,求物体完成这段飞行的时间和位移。
解:gtv v v y x 0tan ==θ , ∴θtan 0⋅=g v t θθθθ222002tan 2)1tan 2(tan 21tan g v t v gt S S S x y +=⋅+=⋅+= 变式1:如图所示,在倾角为370的斜面底端的正上方H 处,平抛一小球,该小球垂直打在斜面上的一点,求小球抛出时的初速度。
解:小球水平位移为0x v t =,竖直位移为212y gt =,由图可知,20012tan 37H gt v t -=,又00tan 37v gt=,解之得:0v =①解位移:例2:如图,在倾角为θ的斜面顶端A 处以速度0v 水平抛出一小球,落在斜面上的某一点B 处,设空气阻力不计,求小球从A 运动到B 处所需的时间和位移。
解:设小球从A 处运动到B 处所需的时间为t ,则水平位移t v x 0= ,竖直位移221gt y =。
θtan )(2102t v gt = ,∴gv t θtan 20= θθθθsin tan 2sin 21sin 2202g v gt S S y ===练习1:(求平抛物体的落点)如图,斜面上有a 、b 、c 、d 四个点,ab =bc =cd 。
从a 点正上方的O 点以速度v 0水平抛出一个小球,它落在斜面上b 点。
若小球从O 点以速度2v 0水平抛出,不计空气阻力,则它落在斜面上的A .b 与c 之间某一点B .c 点C .c 与d 之间某一点D .d 点解析:当水平速度变为2v 0时,如果作过b 点的直线be ,小球将落在c 的正下方的直线上一点,连接O 点和e 点的曲线,和斜面相交于bc 间的一点,故A 对。
答案:A练习2:(证明某一夹角为定值)从倾角为θ的足够长的A 点,先后将同一小球以不同的初速度水平向右抛出,第一次初速度为v 1,球落到斜面上前一瞬间的速度方向与斜面的夹角为,第二次初速度,球落在斜面上前一瞬间的速度方向与斜面间的夹角为,若,试比较的大小。