BP神经网络例二(分类)

合集下载

BP神经网络的应用

BP神经网络的应用

基于MATLAB的BP神经网络应用人工神经网络(Artificial Neural Networks,NN)是由大量的、简单的处理单元(称为神经元)广泛地互相连接而形成的复杂网络系统,它反映了人脑功能的许多基本特征,是一个高度复杂的非线性动力学系统。

神经网络具有大规模并行、分布式存储和处理、自组织、自适应和自学习能力,特别适合处理需要同时考虑许多因素和条件的、不精确和模糊的信息处理问题。

神经网络的发展与神经科学、数理科学、认知科学、计算机科学、人工智能、信息科学、控制论、机器人学、微电子学、心理学、微电子学、心理学、光计算、分子生物学等有关,是一门新兴的边缘交叉学科。

神经网络具有非线性自适应的信息处理能力,克服了传统人工智能方法对于直觉的缺陷,因而在神经专家系统、模式识别、智能控制、组合优化、预测等领域得到成功应用。

神经网络与其他传统方法相组合,将推动人工智能和信息处理技术不断发展。

近年来,神经网络在模拟人类认知的道路上更加深入发展,并与模糊系统、遗传算法、进化机制等组合,形成计算智能,成为人工智能的一个重要方向。

MATLAB是一种科学与工程计算的高级语言,广泛地运用于包括信号与图像处理,控制系统设计,系统仿真等诸多领域。

为了解决神经网络问题中的研究工作量和编程计算工作量问题,目前工程领域中较为流行的软件MATLAB,提供了现成的神经网络工具箱(Neural Network Toolbox,简称NNbox),为解决这个矛盾提供了便利条件。

神经网络工具箱提供了很多经典的学习算法,使用它能够快速实现对实际问题的建模求解。

在解决实际问题中,应用MATLAB 语言构造典型神经网络的激活传递函数,编写各种网络设计与训练的子程序,网络的设计者可以根据需要调用工具箱中有关神经网络的设计训练程序,使自己能够从烦琐的编程中解脱出来,减轻工程人员的负担,从而提高工作效率。

一、人工神经网络的研究背景和意义人工神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。

大数据挖掘与应用 第9章 BP神经网络分类算法

大数据挖掘与应用 第9章  BP神经网络分类算法
经元 i 到神经元 j 的连接权值; f
为激活函数或挤压函数。由于神经元采用了不同的激活
函数,使得神经元具有不同的信息处理特性,而神经元的信息处理特性是决定神经网络整体性
能的主要因素之一,因此激活函数具有重要的意义。
(1)阈值型函数,即 f x 为阶跃函数。
1, x 0
f x
9.1.2人工神经元模型
人们通过研究发现,大脑之所以能够处理极其复杂的
分析、推理工作,一方面是因为其神经元个数的庞大,
另一方面还在于神经元能够对输入信号进行非线性
处理。人工神经元模型就是用人工方法模拟生物神
经元而形成的模型,是对生物神经元的抽象、模拟与
简化,它是一个多输入、单输出的非线性元件,单
个神经元是前向型的。将人工神经元的基本模型和
1
f x
或 f x Leabharlann x1 e1 e x
(9-4)
其中 又称为 Sigmoid 函数的增益,其值决定了函数非饱和段的斜率, 越大, 曲线越陡。
(4)高斯函数。高斯函数(也称钟型函数)也是极为重要的一类激活函数,常用于径向基
神经网络(RBF 网络),其表达式为:
(1)按神经网络的拓扑结构可以分为反馈神经网络
模型和前馈神经网络模型;
(2)按神经网络模型的性能可分为连续型与离散型
神经网络模型,确定型与随机型神经网络模型;
(3)按学习方式可以分为有导师学习和无导师学习
神经网络模型;
(4)按连接突触性质可分为一阶线性关联和高阶非
线性关联神经网络模型。
1.误差后向传播神经网络
值时,细胞体的膜会发生单发性的尖峰电位,这一尖
峰电位将会沿着轴突传播到四周与其相联系的神经

bp人工神经网络的原理及其应用

bp人工神经网络的原理及其应用

廷塑签凰.B P人工神经网络的原理及其应用焦志钦(华南理工大学,广东广州510000)f}商鞫人工神经网络是计算智能和机器学习研究中最活跃的分交之一。

本文对神经网络中的BP算法的原理做了详尽的阐述,并用M a da b 程序对其进行了应用。

表明它具有强大的拟合功能。

房;建闭B P算法;M adab1人工神经网络的发展人工神经网络是一个由多个简单神经元相互关联构成的能够实现某种特定功能的并行分布式处理器。

单个神经元由杈值、偏置值、净输^和传输函数组成。

多输入单神经元模型如图1—1所示。

岛见:●仇图1—1多输入单神经元模型其中P为输入值,w.为连接权值,b为偏置值,f似o√为传输函数。

神经元值n=w p+b,输出值为a=f M。

人工神经网络的第一个应用是感知机网络和联想学习规则。

不幸的是,后来研究表明基本的感知机网络只能解决有限的几类问题。

单层感知机只能解决线性分类问题。

不能解决异或问题,也不能解决非线性问题,因此就有单层感知机发展为多层感知机。

多层神经网络中—个重要的方法是B P算法。

BP网络属于多层前向网络,如图1—2所示:卫咒鼍旬k图卜2卵网络模型2B P算法B P网络计算方法如式(2—1)所示,为简化,将神经元的阈值8视为连接权值来处理,并令xo=go=ho=一1,故式(5-1)可以改写为式(2—2)。

92‘i互%蕾一8少j=I,2,…,,17也=,f∑峭一日.J j卢7,22,…,n2(2,1)^=,f2郴一日。

Jj卢7,,…,(2—1)心y,--f凭峭叫i j=1,2,…,n29=7i互w刚∥j=1,2,..’,几7^-f嚷郴一日小』=7,2,…,n2(2—2)M=f f三峭一日,Jj j=l,2,…,n2,=,B P算法是一种有导师的学习算法,这种算法通常是应用最速下降法。

图2—1描述了B P网络的一部分,其中包括工作信号(实线)和误差信号(虚线)两部分。

2002。

10。

1。

0。

’。

年。

BP神经网络PPT全文

BP神经网络PPT全文
常要求激活函数是连续可微的
输出层与隐含层的激活函数可以不同,并且输出层
各单元的激活函数可有所区别
2024/8/16
26
2 多层网络的表达能力
按照Kolmogorov定理,任何一个判决均可用 前式所示的三层神经网络实现。
即: 只要给定足够数量的隐含层单元、适 当的非线性函数、以及权值, 任何由输入向输 出的连续映射函数均可用一个三层前馈神经网络 实现。
神经网络的计算通过网络结构实现;
不同网络结构可以体现各种不同的功能;
网络结构的参数是通过学习逐渐修正的。
2024/8/16
7
(1)基本的人工神经元模型
McCulloch-Pitts神经元模型
输入信号;链接强度与权向量;
信号累积
2024/8/16
激活与抑制
8
人工神经元模型的三要素 :
一组连接 一个加法器 一个激励函数
➢ 树突(dendrites), 接收来自外接的信息 ➢ 细胞体(cell body), 神经细胞主体,信息加工 ➢ 轴突(axon), 细胞的输出装置,将信号向外传递,
与多个神经元连接 ➢突触 (synapsse), 神经元经突触向其它神经元(胞体 或树突)传递信号
2024/8/16
5
(2)生物神经元的基本特征
5 假定:第l层为当前处理层;
其前一层l 1、当前层l、后一层l 1的计算单元序号为i, j,k;
位于当前层第j个计算单元的输出为Olj,j 1,..., nl
前层第i个单元到本层第j个单元的连接权值为ilj , i 1,..., nl1
本层第j个单元到后层第k个单元的连接权值为
l 1 jk
,
连接权值,突触连接强度

BP_net 分类

BP_net 分类

BP神经网络分类/预测1. 数据预处理在训练神经网络前一般需要对数据进行预处理,一种重要的预处理手段是归一化处理。

下面简要介绍归一化处理的原理与方法。

(1) 什么是归一化?数据归一化,就是将数据映射到[0,1]或[-1,1]区间或更小的区间,比如(0.1,0.9) 。

(2) 为什么要归一化处理?<1>输入数据的单位不一样,有些数据的范围可能特别大,导致的结果是神经网络收敛慢、训练时间长。

<2>数据范围大的输入在模式分类中的作用可能会偏大,而数据范围小的输入作用就可能会偏小。

<3>由于神经网络输出层的激活函数的值域是有限制的,因此需要将网络训练的目标数据映射到激活函数的值域。

例如神经网络的输出层若采用S形激活函数,由于S形函数的值域限制在(0,1),也就是说神经网络的输出只能限制在(0,1),所以训练数据的输出就要归一化到[0,1]区间。

<4>S形激活函数在(0,1)区间以外区域很平缓,区分度太小。

例如S形函数f(X)在参数a=1时,f(100)与f(5)只相差0.0067。

(3) 归一化算法一种简单而快速的归一化算法是线性转换算法。

线性转换算法常见有两种形式:<1>y = ( x - min )/( max - min )其中min为x的最小值,max为x的最大值,输入向量为x,归一化后的输出向量为y 。

上式将数据归一化到[ 0 , 1 ]区间,当激活函数采用S形函数时(值域为(0,1))时这条式子适用。

<2>y = 2 * ( x - min ) / ( max - min ) - 1这条公式将数据归一化到[ -1 , 1 ] 区间。

当激活函数采用双极S形函数(值域为(-1,1))时这条式子适用。

(4) Matlab数据归一化处理函数归一化处理数据可以采用premnmx,postmnmx,tramnmx这3个函数。

<1>premnmx语法:[pn,minp,maxp,tn,mint,maxt] = premnmx(p,t)pn:p矩阵按行归一化后的矩阵minp,maxp:p矩阵每一行的最小值,最大值tn:t矩阵按行归一化后的矩阵mint,maxt:t矩阵每一行的最小值,最大值作用:将矩阵p,t归一化到[-1,1] ,主要用于归一化处理训练数据集。

BP神经网络数学原理及推导过程

BP神经网络数学原理及推导过程

BP神经网络数学原理及推导过程BP神经网络(Backpropagation Neural Network),也称为反向传播神经网络,是一种常见的人工神经网络模型,主要用于解决回归和分类问题。

它在数学上涉及到多元微积分、线性代数和概率论等方面的知识。

本文将从数学原理和推导过程两个方面进行阐述。

一、数学原理:1. 激活函数(Activation Function):激活函数是神经网络中非线性变换的数学函数,用于引入非线性因素,增加神经网络的表达能力。

常见的激活函数有Sigmoid函数、ReLU函数等。

2. 前向传播(Forward Propagation):神经网络的前向传播是指将输入数据从输入层依次传递到输出层的过程。

在前向传播中,每个神经元接收上一层神经元传递过来的激活值和权重,计算出当前神经元的输出值,并将输出值传递给下一层神经元。

3. 反向传播(Backward Propagation):神经网络的反向传播是指根据损失函数的值,从输出层开始,沿着网络的反方向不断调整神经元的权重,以达到最小化损失函数的目的。

在反向传播中,通过链式法则计算每个神经元对损失函数的导数,进而利用梯度下降算法更新权重。

4. 误差函数(Error Function):误差函数用于衡量神经网络输出结果和真实值之间的差异,常见的误差函数有均方差(Mean Squared Error)函数和交叉熵(Cross Entropy)函数。

5.权重更新规则:反向传播算法中的核心部分就是权重的更新。

权重更新通常采用梯度下降算法,通过计算损失函数对权重的偏导数,按照负梯度方向更新权重值,使得损失函数逐渐减小。

二、推导过程:下面将以一个简单的多层感知机为例,推导BP神经网络的权重更新规则。

假设我们有一个三层的神经网络,第一层为输入层,第二层为隐藏层,第三层为输出层,隐藏层和输出层都使用Sigmoid激活函数。

1.前向传播:首先,我们根据输入层的输入值X和权重W1,计算隐藏层的输入值H1:H1=X*W1然后,将隐藏层的输入值H1带入到Sigmoid函数中,得到隐藏层的输出值A1:A1=σ(H1)接下来,根据隐藏层的输出值A1和权重W2,计算输出层的输入值H2:H2=A1*W2最后,将输出层的输入值H2带入到Sigmoid函数中,得到输出层的输出值A2:A2=σ(H2)2.反向传播:设输出层的输出值为Y,隐藏层的输出值为A1,损失函数为L。

BP神经网络实验详解(MATLAB实现)

BP神经网络实验详解(MATLAB实现)

BP神经网络实验详解(MATLAB实现)BP(Back Propagation)神经网络是一种常用的人工神经网络结构,用于解决分类和回归问题。

在本文中,将详细介绍如何使用MATLAB实现BP神经网络的实验。

首先,需要准备一个数据集来训练和测试BP神经网络。

数据集可以是一个CSV文件,每一行代表一个样本,每一列代表一个特征。

一般来说,数据集应该被分成训练集和测试集,用于训练和测试模型的性能。

在MATLAB中,可以使用`csvread`函数来读取CSV文件,并将数据集划分为输入和输出。

假设数据集的前几列是输入特征,最后一列是输出。

可以使用以下代码来实现:```matlabdata = csvread('dataset.csv');input = data(:, 1:end-1);output = data(:, end);```然后,需要创建一个BP神经网络模型。

可以使用MATLAB的`patternnet`函数来创建一个全连接的神经网络模型。

该函数的输入参数为每个隐藏层的神经元数量。

下面的代码创建了一个具有10个隐藏神经元的单隐藏层BP神经网络:```matlabhidden_neurons = 10;net = patternnet(hidden_neurons);```接下来,需要对BP神经网络进行训练。

可以使用`train`函数来训练模型。

该函数的输入参数包括训练集的输入和输出,以及其他可选参数,如最大训练次数和停止条件。

下面的代码展示了如何使用`train`函数来训练模型:```matlabnet = train(net, input_train, output_train);```训练完成后,可以使用训练好的BP神经网络进行预测。

可以使用`net`模型的`sim`函数来进行预测。

下面的代码展示了如何使用`sim`函数预测测试集的输出:```matlaboutput_pred = sim(net, input_test);```最后,可以使用各种性能指标来评估预测的准确性。

BP神经网络算法

BP神经网络算法
BP神经网络算法
1


一、BP神经网络算法概述
二、BP神经网络算法原理
三、BP神经网络算法特点及改进
2
一.BP神经网络算法概述
BP神经网络(Back-Propagation Neural Network),即误差
后向传播神经网络,是一种按误差逆向传播算法训练的多层前馈网
络,是目前应用最广泛的网络模型之一。
11
二.BP神经网络算法原理
图5 Tan-Sigmoid函数在(-4,4)范围内的函数曲线
12
二.BP神经网络算法原理
激活函数性质:
① 非线性
② 可导性:神经网络的优化是基于梯度的,求解梯度需要确保函
数可导。
③ 单调性:激活函数是单调的,否则不能保证神经网络抽象的优
化问题转化为凸优化问题。
④ 输出范围有限:激活函数的输出值范围有限时,基于梯度的方

= 1 ෍
=1
7
,
= 1,2,3 … , q
二.BP神经网络算法原理
输出层节点的输出为:

j = 2 ෍ ,
= 1,2,3. . . ,
=1
至此,BP网络完成了n维空间向量对m维空间的近似映射。
图2 三层神经网络的拓扑结构
8
二.BP神经网络算法原理
BP神经网络是多层前馈型神经网络中的一种,属于人工神经网
络的一类,理论可以对任何一种非线性输入输出关系进行模仿,因
此 被 广 泛 应 用 在 分 类 识 别 ( classification ) 、 回 归
(regression)、压缩(compression)、逼近(fitting)等领域。
在工程应用中,大约80%的神经网络模型都选择采用BP神经网
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档