单晶材料制备方法介绍共36页文档
单晶制备方法综述

单晶材料的制备方法综述前言:单晶(single crystal),即结晶体内部的微粒在三维空间呈有规律地、周期性地排列,或者说晶体的整体在三维方向上由同一空间格子构成,整个晶体中质点在空间的排列为长程有序。
单晶整个晶格是连续的,具有重要的工业应用。
因此对于单晶材料的的制备方法的研究已成为材料研究的主要方向之一。
本文主要对单晶材料制备的几种常见的方法进行介绍和总结。
单晶材料的制备也称为晶体的生长,是将物质的非晶态、多晶态或能够形成该物质的反应物通过一定的化学的手段转变为单晶的过程。
单晶的制备方法通常可以分为熔体生长、溶液生长和相生长等[1]。
一、从熔体中生长单晶体从熔体中生长晶体的方法是最早的研究方法,也是广泛应用的合成方法。
从熔体中生长单晶体的最大优点是生长速率大多快于在溶液中的生长速率。
二者速率的差异在10-1000倍。
从熔体中生长晶体的方法主要有焰熔法、提拉法、冷坩埚法和区域熔炼法。
1、焰熔法[2]最早是1885年由弗雷米(E. Fremy)、弗尔(E. Feil)和乌泽(Wyse)一起,利用氢氧火焰熔化天然的红宝石粉末与重铬酸钾而制成了当时轰动一时的“日内瓦红宝石”。
后来于1902年弗雷米的助手法国的化学家维尔纳叶(Verneuil)改进并发展这一技术使之能进行商业化生产。
因此,这种方法又被称为维尔纳也法。
1.1 基本原理焰熔法是从熔体中生长单晶体的方法。
其原料的粉末在通过高温的氢氧火焰后熔化,熔滴在下落过程中冷却并在籽晶上固结逐渐生长形成晶体。
1.2 合成装置和过程:维尔纳叶法合成装置振动器使粉料以一定的速率自上而下通过氢氧焰产生的高温区,粉体熔化后落在籽晶上形成液层,籽晶向下移动而使液层结晶。
此方法主要用于制备宝石等晶体。
2、提拉法[2]提拉法又称丘克拉斯基法,是丘克拉斯基(J.Czochralski)在1917年发明的从熔体中提拉生长高质量单晶的方法。
2O世纪60年代,提拉法进一步发展为一种更为先进的定型晶体生长方法——熔体导模法。
单晶材料的制备

3.在液氮温度附近冷辊轧,然后在640℃退火10s, 并在水中淬火,得到用于再结晶的铝,此时样品 还有2mm大小晶粒和强烈的织构,再通过一温度梯 度退火,然后加热至640℃,可得到约1m长的晶体。
4.采用交替施加应变和退火的方法,可得到宽 2.5cm的高能单晶铝带,使用的应变缺乏以使新晶 粒成核,退火温度为650℃。
晶体生长的目的之一是制备成分准确,尽可能无杂质、无缺陷(包括 晶体缺陷)的单晶体。
晶体生长是一种技艺,也是一门正在迅速开展的科学。
国际上——结晶学 萌芽于17世纪 丹麦学者 晶面角守恒定律
晶体生长大局部工作是从20世纪初期才开始的 1902年 焰熔法 1905年 水热法 1917年 提拉法 1952年 Pfann 开展了区熔技术
四、烧结生长
烧结这个词通常仅用于非金属中晶粒的长大。 烧结就是加热压实的多晶体。
烧结时晶粒长大的推动力主要是由以下因素引 起的:
(1)剩余应变。 (2)取向效应。 (3)晶粒维度效应。〔即利用晶粒大小的差作为
实例:应变退火法制备铝单晶
背景
用应变退火法仔细制备的单晶缺陷较少。由于 铝的堆垛层错能和孪晶晶界能都高,应变退火 法有助于制备无孪生的晶体。取向差小的铝晶 体一般是用应变退火法制备的。
应变退火法制备铝单晶的工艺
1.先在550℃使纯度为99.6%的铝退火,以消 除应变的影响并提供大小符合要求的晶粒, 再使无应变的晶粒较细的铝变形以产生 1%~2%d 的应变,然后将温度从450℃升至 550 ℃ ,按25/d的速度退火。最后在600℃ 退火1h。〔假设初始的晶粒尺寸在0.1mm时, 效果特别好。〕
1、固—固生长方法
单晶硅的制备PPT课件

单晶工艺流程简介
(3)引晶生长:当硅 熔体的温度稳定之后, 将籽晶慢慢浸入硅熔体 中引晶生长是将籽晶快 速向上提升,使长出的 籽晶的直径缩小到一定 大小(4-6mm)由 于位错线与生长轴成一 个交角,只要缩颈够长 ,位错便能排出晶体表 面,产生低位错的晶体 。
第14页/共54页
单晶工艺流程简介
第26页/共54页
熔体中的对流
相互相反旋转的晶体(顺时针)和坩埚所产生的强制对 流是由离心力和向心力、最终由熔体表面张力梯度所驱动的。 所生长的晶体的直径越大(坩锅越大),对流就越强烈,会 造成熔体中温度波动和晶体局部回熔,从而导致晶体中的杂 质分布不均匀等。
实际生产中,晶体的转动速度一般比坩锅快1-3倍,晶体 和坩锅彼此的相互反向运动导致熔体中心区与外围区发生相 对运动,有利于在固液界面下方形成一个相对稳定的区域, 有利于晶体稳定生长。
冶金级硅(反应后蒸馏纯 化三氯硅烷) Si + 3Hcl → SiHcl3 +H2 ↑
MGS 98℅
三氯硅烷还原成硅 2SiHcl3 +2H2 →2 Si + 6Hcl
第6页/共54页
直拉法(cz法)制备单晶硅
直拉法即切克劳斯基 法(Czochralski简称 Cz法)
它是通过电阻加热, 将装在石英坩埚中的多 晶硅熔化,并保持略高 于硅熔点的温度,将籽 晶浸入熔体,然后以一 定速度向上提拉籽晶并 同时旋转引出晶体。
用太 空 中 单 晶 硅 的 应
单 晶 硅 太 阳 能 电 池 板
第2页/共54页
AMD 处 理 器
其主要用途是用作半导体材料和利用太阳能光伏发电、供热等。 由于太阳能具有清洁、环保、方便等诸多优势,近三十年来,太阳能 利用技术在研究开发、商业化生产、市场开拓方面都获得了长足发展, 成为世界快速、稳定发展的新兴产业之一。
第四章 单晶材料制备

Si气相外延
为获得平整的表面,衬底必须严格 抛光并防止表面有颗粒或化学物质 的沾污;在外延生长前,反应管内 在高温下用干燥氯化氢进行原位抛 光,以减少缺陷。
HgI2晶体的气相外延生长
将纯化后的HgI2原料放在真空度为10-3Pa的 玻璃生长安瓿两端的源区, 在生长安瓿中间长晶区的平台上放上籽晶。
3.蒸发法
蒸发法生长晶体的基本原理是将溶剂不断蒸发减少,从 而使溶液保持在过饱和状态,晶体便不断生长。这种方法 比较适合于溶解度较大而溶解度温度系数很小或为负值的 物质。蒸发法生长晶体是在恒温下进行的。
图4.5所示是蒸发法生长晶体的一种比较简单的装置。 在晶体生长过程中还应注意以下几点:
(1)晶体态溶液中最好能做到既能自转也能公转,以避免 晶体发育不良。
W+3Cl2=WCl6
许多硫属化物(例如氧化物、硫化物和碲化物)以及某 些磷属化物(例如氮化物、磷化物、砷化物和锑化物)可以 用卤素输运剂从热端输运到冷端从而生长出适合单晶研 究用的小晶体。在上述蒸气输运中,所用的反应通式为:
需要指出的是,蒸气输运并不局限于二元化合物, 碘输运法也能小长出ZnIn2S4、HgGa2S4和ZnSiP2等化合 物小晶体。
在超高真空条件下,由装有各种所需组分的 炉子加热而产生的蒸气,经小孔准直后形成的 分子束或原子束,直接喷射到适当温度的单晶 基片上,同时控制分子束对衬底扫描,就可使 分子或原子按晶体排列一层层地“长”在基片 上形成薄膜。
4.1.3 气相生长晶体的质量
对于气相生长,如果系统的温场设计比较合理,生 长条件掌握比较好,仪器控制比较灵敏精确的话,长出 的晶体质量是很好的,外形比较完美,内部缺陷也比较 少,是制作器件的好材料。但是如果生长条件选择不合 适,温场设计不理想等,生长出的晶体就不完美,内部 缺陷如位错、枝晶、裂纹等就会增多,甚至长不成单晶 而是多晶。因此,严格选择和控制生长条件是气相生长 晶体的关键。
单晶制备方法综述概要

课程论文题目单晶材料的制备方法综述学院材料科学与工程学院专业材料学姓名刘聪学号S150********日期2015.11.01成绩单晶材料的制备方法综述前言:单晶(single crystal),即结晶体内部的微粒在三维空间呈有规律地、周期性地排列,或者说晶体的整体在三维方向上由同一空间格子构成,整个晶体中质点在空间的排列为长程有序。
单晶整个晶格是连续的,具有重要的工业应用。
因此对于单晶材料的的制备方法的研究已成为材料研究的主要方向之一。
本文主要对单晶材料制备的几种常见的方法进行介绍和总结。
单晶材料的制备也称为晶体的生长,是将物质的非晶态、多晶态或能够形成该物质的反应物通过一定的化学的手段转变为单晶的过程。
单晶的制备方法通常可以分为熔体生长、溶液生长和相生长等[1]。
一、从熔体中生长单晶体从熔体中生长晶体的方法是最早的研究方法,也是广泛应用的合成方法。
从熔体中生长单晶体的最大优点是生长速率大多快于在溶液中的生长速率。
二者速率的差异在10-1000倍。
从熔体中生长晶体的方法主要有焰熔法、提拉法、冷坩埚法和区域熔炼法。
1、焰熔法[2]最早是1885年由弗雷米(E. Fremy)、弗尔(E. Feil)和乌泽(Wyse)一起,利用氢氧火焰熔化天然的红宝石粉末与重铬酸钾而制成了当时轰动一时的“日内瓦红宝石”。
后来于1902年弗雷米的助手法国的化学家维尔纳叶(Verneuil)改进并发展这一技术使之能进行商业化生产。
因此,这种方法又被称为维尔纳也法。
1.1 基本原理焰熔法是从熔体中生长单晶体的方法。
其原料的粉末在通过高温的氢氧火焰后熔化,熔滴在下落过程中冷却并在籽晶上固结逐渐生长形成晶体。
1.2 合成装置和过程:维尔纳叶法合成装置振动器使粉料以一定的速率自上而下通过氢氧焰产生的高温区,粉体熔化后落在籽晶上形成液层,籽晶向下移动而使液层结晶。
此方法主要用于制备宝石等晶体。
2、提拉法[2]提拉法又称丘克拉斯基法,是丘克拉斯基(J.Czochralski)在1917年发明的从熔体中提拉生长高质量单晶的方法。
单晶材料制备.

现代材料制备技术
应变退火法制备铝单晶的几种工艺
(4)采用交替施加应变和退火的方法,很容易 制取宽25cm的高纯单晶铝带,使用的应变不足 以使新晶粒成核,而退火温度为640℃。
现代材料制备技术
液相-固相平衡之定向凝固法
通过控制过冷度实现定向凝固以获得单晶的方法 是由布里奇曼(Bridgman)首先使用并为斯托克 巴杰(Stockbarger)所发展的,通常也称BS法 或定向凝固法。
现代材料制备技术
定向凝固法原理
本质上,定向凝固法是 借助在一个温度梯度内 进行结晶,从而在单一 的固-液界面上成核。
现代材料制备技术
应变退火法制备铝单晶的几种工艺
(1)先在550℃使纯度为99.6%的铝退火,以 消除原有应变的影响和提供要求的晶粒大小,再 使无应变的晶粒较细的铝变形以产生1~2%的应 变,然后将温度从450℃升至550℃,按25℃/天 的速度退火。在一些场合,最后再要在600℃退 火1h。
现代材料制备技术
1.2 单晶制备方法
(3)气相-固相平衡的晶体生长。 主要包括:
a.升华法 b.溅射法
现代材料制备技术
固相-固平衡-应变退火生长
应变退火法常用来制备铝单晶,也就是先产生临 界应变量,然后再进行退火,使晶粒长大以产生 单晶。若初始的晶粒尺寸在0.1mm时,效果特别 好。退火期间,有时在试样表面优先成核,这就 影响了单晶的生长,通常认为铝晶核是在靠着表 面氧化膜的位错堆积处开始的,在产生临界应变 后腐蚀掉约100um厚的表面层,有助于阻止表面 成核。
单晶制备方法-文档(最新整理)

直拉法制单晶硅和区熔法晶体生长第一节概述多晶硅是单质硅的一种形态。
熔融的单质硅在过冷条件下凝固时,硅原子以金刚石晶格形态排列成许多晶核,如这些晶核长成晶面取向不同的晶粒,则这些晶粒结合起来,就结晶成多晶硅。
多晶硅可作拉制单晶硅的原料,多晶硅与单晶硅的差异主要表现在物理性质方面。
例如,在力学性质、光学性质和热学性质的各向异性方面,远不如单晶硅明显;在电学性质方面,多晶硅晶体的导电性也远不如单晶硅显著,甚至于几乎没有导电性。
在化学活性方面,两者的差异极小。
多晶硅和单晶硅可从外观上加以区别,但真正的鉴别须通过分析测定晶体的晶面方向、导电类型和电阻率等。
多晶硅由很多单晶组成的,杂乱无章的。
单晶硅原子的排列都是有规律的,周期性的,有方向性。
当前生长单晶主要有两种技术:其中采用直拉法生长硅单晶的约占80%,其他由区溶法生长硅单晶。
采用直拉法生长的硅单晶主要用于生产低功率的集成电路元件。
例如:DRAM,SRAM,ASIC电路。
采用区熔法生长的硅单晶,因具有电阻率均匀、氧含量低、金属污染低的特性,故主要用于生产高反压、大功率电子元件。
例如:电力整流器,晶闸管、可关断门极晶闸管(GTO)、功率场效应管、绝缘门极型晶体管(IGBT)、功率集成电路(PIC)等电子元件。
在超高压大功率送变电设备、交通运输用的大功率电力牵引、UPS电源、高频开关电源、高频感应加热及节能灯用高频逆变式电子镇流器等方面具有广泛的应用。
直拉法比用区溶法更容易生长获得较高氧含量(12`14mg/kg)和大直径的硅单晶棒。
根据现有工艺水平,采用直拉法已可生产6`18in(150`450mm)的大直径硅单晶棒。
而采用区溶法虽说已能生长出最大直径是200mm的硅单晶棒,但其主流产品却仍然还是直径100`200mm的硅单晶。
区熔法生长硅单晶能够得到最佳质量的硅单晶,但成本较高。
若要得到最高效率的太阳能电池就要用此类硅片,制作高效率的聚光太阳能电池业常用此种硅片。
单晶制备方法综述

单晶制备方法综述单晶材料的制备方法综述前言:单晶(single crystal),即结晶体内部的微粒在三维空间呈有规律地、周期性地排列,或者说晶体的整体在三维方向上由同一空间格子构成,整个晶体中质点在空间的排列为长程有序。
单晶整个晶格是连续的,具有重要的工业应用。
因此对于单晶材料的的制备方法的研究已成为材料研究的主要方向之一。
本文主要对单晶材料制备的几种常见的方法进行介绍和总结。
单晶材料的制备也称为晶体的生长,是将物质的非晶态、多晶态或能够形成该物质的反应物通过一定的化学的手段转变为单晶的过程。
单晶的制备方法通常可以分为熔体生长、溶液生长和相生长等[1]。
一、从熔体中生长单晶体从熔体中生长晶体的方法是最早的研究方法,也是广泛应用的合成方法。
从熔体中生长单晶体的最大优点是生长速率大多快于在溶液中的生长速率。
二者速率的差异在10-1000倍。
从熔体中生长晶体的方法主要有焰熔法、提拉法、冷坩埚法和区域熔炼法。
1、焰熔法[2]最早是1885年由弗雷米(E. Fremy)、弗尔(E. Feil)和乌泽(Wyse)一起,利用氢氧火焰熔化天然的红宝石粉末与重铬酸钾而制成了当时轰动一时的“日内瓦红宝石”。
后来于1902年弗雷米的助手法国的化学家维尔纳叶(V erneuil)改进并发展这一技术使之能进行商业化生产。
因此,这种方法又被称为维尔纳也法。
1.1 基本原理焰熔法是从熔体中生长单晶体的方法。
其原料的粉末在通过高温的氢氧火焰后熔化,熔滴在下落过程中冷却并在籽晶上固结逐渐生长形成晶体。
1.2 合成装置和过程:维尔纳叶法合成装置振动器使粉料以一定的速率自上而下通过氢氧焰产生的高温区,粉体熔化后落在籽晶上形成液层,籽晶向下移动而使液层结晶。
此方法主要用于制备宝石等晶体。
2、提拉法[2]提拉法又称丘克拉斯基法,是丘克拉斯基(J.Czochralski)在1917年发明的从熔体中提拉生长高质量单晶的方法。
2O世纪60年代,提拉法进一步发展为一种更为先进的定型晶体生长方法——熔体导模法。