非线性代数方程组的数值解法讲解25页PPT
合集下载
6.4非线性方程组的数值解法(共29张PPT)

y1 ( x2
y2 )(x2
y2 )
1 10
(3.25
x1
y1
4.5 x2
y2
)
0.45
x
y
1
(x) ( y) 1 1 (x) 2 ( y) 2 (x) 2 ( y) 0.75 x y
可见,函数 在上 D0是压缩的。因此,由定理6.8得知 结论成立。
以上讨论了迭代法在 D0的收敛性,下面讨论局部收敛性。
y2 )(x2
y2 )
3 10
(
x1
y1
x2
y2 ) 0.3 x y 1
第九页,共二十九页。
第六章非线性方程组的迭代解法
2 (x) 2 ( y)
1 10
x1
y1
x1 x22
y
2
y
2 2
1 10
x1
y1
x1
x
2 2
y1
x
2 2
y1
x
2 2
y1
y
2 2
从而
1 10
(1
x
2 2
)(
x1
y1 )
第十页,共二十九页。
第六章非线性方程组的迭代解法
定义6.4 设 x*为 的不动点,若存在 x*的一个领域 S ,D 对一切
x(0) S , 由(6.4.3)式产生的序列 x(k) S
且 lim x(k) x* ,则称 x(k)具有局部收敛性。 k
定义6.5
设 x(k)收敛于 x,* 存在常数 p 2及常数c>0,使
10 1
0 10
x
(
0)
88
第十六页,共二十九页。
第六章非线性方程组的迭代解法
非线性代数方程组的数值解法

a (a
2u ) (2 ) 0
i m i 1 m i m i 1 m
i 1 i 1 i 1 i i 1 i i 1 i 1 am am 2am um 2m m m m 0 a
1 2 1i 1 1i 1 (im ) 2 1i 1 i 1 2 1i 1 um im 2 i 1 2
a
i 1 m
i 1 1 i 1 m
i 1 2
i 1 i i2 ( K T ) P m m
1 2 1 a(im ) 2bim c 0
4
增量弧长法
a(
i 1 2 m
) 2b
i 1 m
c 0
式中系数为
a 1 ( 1i 1 ) T ( 1i 1 )
3 增量方法
混合法:在增量法每一增量步进行自修正的迭 代计算。其m增量步n次迭代的计算公式为 自修正 n n 1 n 不平衡力 am ( K Tm ) ( R m Pm ) n n n 1 n n Pm (a m , m ) am a a 1 m m 在实际计算中,对于 m<M-1的各增量步的 计算,可以只进行少许几次(例如3次)迭代, 而对于m=M-1,即最后的一个荷载增量,需耍 使用较多次迭代,以使近似解更接近于真解。 用混合法求解时,所选取的荷载增量的步长 可以比普通增量算法的步长大一些。
3
增量方法
求解非线性方程组的另一类方法是增量方法。 使用这种方法需要知道“荷载”项(R)为零时问 题的解(a)0。在实际问题中,(R)经常代表真实 荷载,(a)0 代表结构位移。在问题的初始状态, 它们均为零。这种从问题的初值开始,随着荷 载列阵(R)按增量形式逐渐增大,研究(a)i的变 化规律的方法,称为增量方法。
非线性方程数值解法详解课件

例如,对于求解非线性方程$f(x)=0$的 应用实例中需要注意选择合适的初始近
根,可以先选择一个初始近似解$x_0$, 似解和设置合适的精度要求,以确保算
然后按照弦截法的迭代过程逐步逼近方
法能够快速收敛到真实解。
程的真实解。
05 共轭梯度法
共轭梯度法的原理
它利用共轭方向的概念,通过迭代过程中不断更新搜 索方向,使得函数值逐渐减小,最终找到方程的解。
牛顿法的实现步骤
确定初始点x0,计算f(x0)和f'(x0),如果f(x0)不等于0,则按照牛顿法的迭代公式 进行迭代,直到满足精度要求。
1. 选取初始点x0;2. 计算函数值f(x0)和导数值f'(x0);3. 如果f(x0)不等于0,则 按照牛顿法的迭代公式x1=x0-f(x0)/f'(x0)进行迭代;4. 重复步骤2和3,直到满 足精度要求。
以求解非线性方程为例,通过选择合 适的迭代法和初值,可以有效地求解 非线性方程的近似解。
03 牛顿法
牛顿法的原理
01
基于函数f(x)的泰勒级数的前两项, 通过迭代的方式逼近方程f(x)=0 的解。
02
牛顿法的基本思想是通过泰勒级 数的近似,将非线性方程f(x)=0 转化为线性方程,然后利用线性 方程的解来逼近非线性方程的解。
当达到预设的迭代次数或满足一定的收敛 条件时,停止迭代,输出结果。
共轭梯度法的收敛性分析
共轭梯度法具有全局收敛性和局部收敛性,即只要初始点 选择得当,算法能够找到方程的解,且在局部范围内具有 快速收敛的特点。
收敛性分析主要涉及算法的迭代矩阵和函数的性质,如连 续性和可微性等。
共轭梯度法的应用实例
牛顿法的收敛性分析
在一定的条件下,牛顿法是收敛的, 且具有二阶收敛速度。
非线性求解学习.pptx

2000年10月16日
2-5
第6页/共93页
收敛
Newton-Raphson 法需要一个收敛的度量以决定何时结束迭代。给 定外部载荷(Fa),内部载荷( Fnr )(由单元应力产生并作用于 节点),在一个体中,外部载荷必须与内力相平衡。
Fa - Fnr = 0
收敛是平衡的度量。
2000年10月16日
样将易于绘制载荷-位移曲线。
2000年10月16日
2-18
第19页/共93页
自动时间步
• 子步中的载荷增量大小 (F) 由时间 步的大小t决定。
• 时间步大小可由用户设定或由 ANSYS自动预测与控制。
载荷
F2 F
• 自动时间步 算法可在载荷步内为所有
子步预测与控制时间步长的大小(载 荷增量)。
F1
CRITERION= 2.113
DISP CONVERGENCE VALUE = 0.1024E-01 CRITERION= 0.9406
<<< CONVERGED
EQUIL ITER 3 COMPLETED. NEW TRIANG MATRIX. MAX DOF INC= 0.3165E-02
FORCE CONVERGENCE VALUE = 2.179
CRITERION= 2.108
<<< CONVERGED
>>> SOLUTION CONVERGED AFTER EQUILIBRIUM ITERATION 4
*** LOAD STEP
1 SUBSTEP 15 COMPLETED. CUM ITER =
31
*** TIME = 59.1250
非线性方程组数值解法课件

非线性方程组数值 解法课件
目 录
• 非线性方程组概述 • 迭代法求解非线性方程组 • 牛顿法求解非线性方程组 • 拟牛顿法求解非线性方程组 • 非线性方程组数值解法的应用
01
非线性方程组概述
非线性方程组的定义与分类
定义
非线性方程组是由多个非线性方 程组成的数学模型,描述了多个 变量之间的关系。
在工程问题中的应用
航空航天工程
土木工程
非线性方程组数值解法用于设计和优 化飞行器、卫星和火箭的结构和性能。
在建筑设计、桥梁和高层建筑的结构 分析中,非线性方程组数值解法用于 模拟结构的承载能力和稳定性。
机械工程
在机械设计中,非线性方程组数值解 法用于分析复杂机械系统的动力学特 性和稳定性。
在金融问题中的应用
拟牛顿法的收敛性分析主要基于Hessian 矩阵的条件数和近似矩阵的误差界。在适 当的条件下,拟牛顿法能够保证全局收敛 性和局部超线性收敛性。
拟牛顿法的实现
总结词
拟牛顿法的具体实现可以通过不同的算法实 现,如DFP算法和BFGS算法等。
详细描述
DFP算法(Davidon-Fletcher-Powell)和 BFGS算法(Broyden-Fletcher-GoldfarbShanno)是两种常见的拟牛顿算法。它们 的主要区别在于近似矩阵的更新方式。DFP 算法采用三对角化方法更新近似矩阵,而 BFGS算法采用迭代更新的方式。在实际应 用中,BFGS算法通常比DFP算法更受欢迎, 因为它在大多数情况下都能提供更好的收敛 效果。
05
非线性方程组数值解法的 应用
在物理问题中的应用
量子力学方程
非线性方程组数值解法在 量子力学中用于描述微观 粒子的行为和相互作用。
目 录
• 非线性方程组概述 • 迭代法求解非线性方程组 • 牛顿法求解非线性方程组 • 拟牛顿法求解非线性方程组 • 非线性方程组数值解法的应用
01
非线性方程组概述
非线性方程组的定义与分类
定义
非线性方程组是由多个非线性方 程组成的数学模型,描述了多个 变量之间的关系。
在工程问题中的应用
航空航天工程
土木工程
非线性方程组数值解法用于设计和优 化飞行器、卫星和火箭的结构和性能。
在建筑设计、桥梁和高层建筑的结构 分析中,非线性方程组数值解法用于 模拟结构的承载能力和稳定性。
机械工程
在机械设计中,非线性方程组数值解 法用于分析复杂机械系统的动力学特 性和稳定性。
在金融问题中的应用
拟牛顿法的收敛性分析主要基于Hessian 矩阵的条件数和近似矩阵的误差界。在适 当的条件下,拟牛顿法能够保证全局收敛 性和局部超线性收敛性。
拟牛顿法的实现
总结词
拟牛顿法的具体实现可以通过不同的算法实 现,如DFP算法和BFGS算法等。
详细描述
DFP算法(Davidon-Fletcher-Powell)和 BFGS算法(Broyden-Fletcher-GoldfarbShanno)是两种常见的拟牛顿算法。它们 的主要区别在于近似矩阵的更新方式。DFP 算法采用三对角化方法更新近似矩阵,而 BFGS算法采用迭代更新的方式。在实际应 用中,BFGS算法通常比DFP算法更受欢迎, 因为它在大多数情况下都能提供更好的收敛 效果。
05
非线性方程组数值解法的 应用
在物理问题中的应用
量子力学方程
非线性方程组数值解法在 量子力学中用于描述微观 粒子的行为和相互作用。
非线性方程求根方法分解PPT课件

度,用二分法需进行
n ln(b a) ln 10.96... ln 2
即最多需要11次二分。
x
xn
1 2
(b11
a11 )
0.000488281
1 10 3 2
12
第12页/共48页
计算结果
k
ak , bk
1
[1.0 , 2.0]
xk
1.5
f (xk )
2.375
1
第1页/共48页
根的概念
• 给定方程 f (x)=0,如果有a使得f(a)=0,则称a为 f(x) =0的根 或f(x)的零点.
• 设有正整数m使得f(x)=(x-a)mg(x)且g(a) 0 , 则当m=2时,称a为f(x)=0的m重根; 当m=1时,称为f(x)=0的单根.
• 本章只讨论实根的求法.
从而
f (x )f (x ) (x ) [f (x )]2
由此知若 x 是f (x ) 0 的一个单根,则在x 附近 x * =0 Newton法是局部收敛的,并且收
敛速度至少是平方收敛的.
但如果x 是f (x ) 0 的m>1重根,0则
x*
11 1 m
此时Newton法仅有线性收敛速度.
30
第30页/共48页
{xk }
x 2 12.39
21
第21页/共48页
几何示意图
第22页/共48页
例 讨论以下计算 a (a 0) 的算法的收敛阶。
xn 1
1 2
xn
a xn
23
第23页/共48页
解:(1)
(x ) 1 (x a ) 2x
a 1aa
a
2
a
n ln(b a) ln 10.96... ln 2
即最多需要11次二分。
x
xn
1 2
(b11
a11 )
0.000488281
1 10 3 2
12
第12页/共48页
计算结果
k
ak , bk
1
[1.0 , 2.0]
xk
1.5
f (xk )
2.375
1
第1页/共48页
根的概念
• 给定方程 f (x)=0,如果有a使得f(a)=0,则称a为 f(x) =0的根 或f(x)的零点.
• 设有正整数m使得f(x)=(x-a)mg(x)且g(a) 0 , 则当m=2时,称a为f(x)=0的m重根; 当m=1时,称为f(x)=0的单根.
• 本章只讨论实根的求法.
从而
f (x )f (x ) (x ) [f (x )]2
由此知若 x 是f (x ) 0 的一个单根,则在x 附近 x * =0 Newton法是局部收敛的,并且收
敛速度至少是平方收敛的.
但如果x 是f (x ) 0 的m>1重根,0则
x*
11 1 m
此时Newton法仅有线性收敛速度.
30
第30页/共48页
{xk }
x 2 12.39
21
第21页/共48页
几何示意图
第22页/共48页
例 讨论以下计算 a (a 0) 的算法的收敛阶。
xn 1
1 2
xn
a xn
23
第23页/共48页
解:(1)
(x ) 1 (x a ) 2x
a 1aa
a
2
a
第2章-非线性方程与方程组的数值解法市公开课获奖课件省名师示范课获奖课件

xn
(yn xn )2 zn 2yn xn
Steffensen迭代格式
也能够改写成
xn1 (xn )
其中迭代函数
(n 0,1,......)
(x) x [(x) x]2 ((x)) 2(x) x
Steffensen迭代法收敛旳充要条件
定理2.2.3 设函数(x) C1, [x* , x* ], 为足够小的正数,且(x*) 1,则
不满足压缩映像原理,故不能肯定 xn1 (xn ) n 0,1,.... 收敛到方程旳根。
简朴迭代收敛情况旳几何解释
2.2.2 Steffensen加速收敛法
迭代法收敛旳阶
设序列
收敛到 { x,n}0若有实数x*
零常p 数 1C,使得 lim
n
en1 enp
C
和非
其中,en xn x*,则称该序列是p 阶收敛旳, C 称为渐进误差常数。
故{xn }0 收敛到x*。
敛速是线性旳
因为lim n
en1 en
lim
n
(
xn ) xn
(
x*
x*
)
(x*)
0
所以{xn }0
x*
线性收敛到 。
Steffensen迭代格式
由线性收敛知
lim en2 lim en1 C 0
e e n
n
n1
n
当n充分大时有
en2 en1 en1 en
x (a,b)
压缩映像原理
再证根旳唯一性
设有 x1 , x2 [a, b]均为方程旳根
则
|
x1
x2
|| (x1 )
(
x
2
)
非线性方程的数值解法课件

弦截法
弦截法是一种改进的迭代方法 ,通过将非线性方程转化为线 性方程来求解根。
弦截法的迭代公式为 $x_{n+1}=x_nfrac{f(x_n)}{f(x_n)-f(x_{n-1})}$ ,其中$f(x)$为非线性方程。
弦截法的优点是无需计算函数 的导数,但收敛速度较慢,且 需要选择合适的迭代初值。
04
迭代法的优点是简单易 行,但收敛速度较慢, 且需要选择合适的迭代 初值。
牛顿法
牛顿法是一种基于泰勒级数的迭代方 法,通过线性化非线性方程来求解根 。
牛顿法的收敛速度较快,但需要计算 函数的导数,且在接近根时可能会产 生震荡。
牛顿法的迭代公式为$x_{n+1}=x_nfrac{f(x_n)}{f'(x_n)}$,其中$f(x)$为 非线性方程。
步长与收敛性的关系
深入研究步长与算法收敛性的关系,以找到最佳的步长调整策略。
THANKS FOR WATCHING
感谢您的观看
这类方程在某些区间上具 有不同的非线性性质,例 如 $|x| = y$。
非线性方程的特性
不存在通用解法
与线性方程不同,非线性 方程没有统一的解法,需 要根据具体方程的特点选 择合适的解法。
解的复杂性
非线性方程的解通常比线 性方程复杂,可能存在多 个解或不存在解,也可能 存在混沌解。
对初值和参数敏感
线性方程
如果一个方程中未知数的最高次 幂为一次,并且没有未知数的幂 ,那么这个方程就是线性方程。
非线性方程的分类
01
02
03
代数非线性方程
这类方程中包含未知数的 幂,例如 $x^2 + y^3 = 1$。
超越非线性方程