正态分布Z_值查询表教学文稿
正态分布z值表

Z表示随机变量经Levi Lindbergh中心极限定理变形后服从标准正态分布Φ(0,1),Z是标准正态分布下的新变量。
Z表示新变量是标准正态分布下标准偏差σ= 1的倍数。
Z越小,-∞越近,这意味着Φ(0,1)中新变量的累积概率较小,接近0;Z值越接近0,则新变量出现的累积概率越接近50%;Z越大,越接近+∞,表示Φ(0,1)中新变量的累积概率更大,并且也接近1。
法线曲线为钟形,两端低,中间高,两侧对称。
因为曲线是钟形的,所以人们通常将其称为钟形曲线。
如果随机变量x服从具有数学期望μ和方差σ^2的正态分布,则表示为n(μ,σ^ 2)。
概率密度函数是正态分布,期望值μ决定其位置,其标准偏差σ决定分布的幅度。
当μ= 0,σ= 1时,正态分布是标准正态分布。
扩展数据:
对于任何正常总体,其值都小于X的概率。
只要您可以使用它来计算特定间隔内正常总体的概率即可。
为了便于描述和应用,通常将普通变量转换为数据。
一般正态分布将转换为标准正态分布。
如果服从标准正态分布,则可以通过查找标准正态分布表直接计算原始正态分布的概率值。
因此,该转换称为标准化转换。
(标准正态分布表:标准正态分布表列出了标准正态曲线下从-∞到X(当前值)的面积比例。
)
正态分布的一些性质
(1)如果a和B是实数,则。
(2)如果和是统计学上独立的正态随机变量,则:他们的总和也满足正态分布
它们的差异也满足正态分布
U和V彼此独立。
(X和Y的方差必须相等)。
统计学z值表

统计学z值表【原创实用版】目录1.统计学概述2.Z 值表的定义与作用3.Z 值表的构成4.Z 值表的应用实例5.Z 值表的局限性正文1.统计学概述统计学是一门研究数据收集、整理、分析、解释以及推断的科学。
在统计学中,我们通常会通过各种方法对数据进行处理和分析,从而得出有关数据特性的结论。
统计学具有广泛的应用领域,如自然科学、社会科学、医学、生物学等。
2.Z 值表的定义与作用Z 值表,又称为标准正态分布表,是在统计学中经常使用的一种数据表格。
它主要用于查找标准正态分布(也称为 Z 分数、标准化得分)的值。
Z 值表可以帮助我们将原始分数转换为标准正态分布的分数,以便更好地进行数据分析和推断。
3.Z 值表的构成Z 值表主要由两部分组成:左侧列是原始分数,右侧列是对应的 Z 分数。
原始分数通常是基于某种特定的测试或测量方法得到的,而 Z 分数则是将原始分数转换为标准正态分布的分数。
在 Z 值表中,我们可以通过查找原始分数和对应的 Z 分数,了解某个分数在整体数据分布中所处的位置。
4.Z 值表的应用实例Z 值表在实际应用中具有广泛的用途,下面举一个简单的例子来说明:假设某个学生在一次数学考试中得了 80 分,我们可以通过 Z 值表查找 80 分对应的 Z 分数。
假设查到的 Z 分数为 1.0,这意味着该学生的分数高于平均水平 1 个标准差。
通过 Z 值表,我们可以更准确地了解学生的成绩在整体数据分布中的位置。
5.Z 值表的局限性虽然 Z 值表在数据分析和推断中具有很大的作用,但它也存在一定的局限性。
首先,Z 值表仅适用于正态分布或近似正态分布的数据。
对于偏态分布的数据,Z 值表的准确性会受到影响。
其次,Z 值表只能提供数据在整体数据分布中的相对位置,而不能直接反映数据的绝对大小。
正态分布z值表

正态分布z值表——见最下文首先我们得先来了解一下什么是正态分布:1.正态曲线(normal curve)正态曲线是簇曲线,呈对称钟形,均数所在处最高,两侧逐渐下降,两端在无穷处与横轴无限接近。
横坐标常使用观察值组段,纵坐标常使用频数、频率及概率密度(频率与组距之比)。
2.正态分布特征曲线概率密度函数:式中,有4个常数,μ为总体均数,σ为总体标准差,π为圆周率,е为自然对数的底数,其中μ、σ为不确定的常数,称为正态分布的参数。
μ是位置参数,决定着正态曲线在X轴上的位置;σ是形状参数,决定着正态曲线的分布形状由此决定的正态分布记作N(μ,σ2)。
仅X 为随机变量。
曲线位置形状与面积特征:标准差一样规定了曲线的形状相同,而均数不同,会使得曲线在在横轴上的位置不同,并且随着均数增大,曲线逐渐向右移动。
均数不变,标准差改变,标准差小的曲线变异度小,曲线形状就高瘦一点;标准差大的变异度大,曲线形状就矮胖一点。
标准正态分布均数为0,标准差为1的正态分布被称为标准正态分布(standard normal distribution)。
对于任意一个服从正态分布N(μ,σ2)的随机变量,可做标准化转换。
通过标准化转换后,任意一个正态分布曲线下面积求解问题都能转换成标准正态分布曲线下面积求解问题。
如下所示:2.标准正态分布的应用当Z的取值范围为(Z1,Z2)时,概率(面积)计算公式应为:P(Z1<Z<Z2)=φ(Z2)﹣φ(Z1)因为统计表中只有Z值的左侧尾部面积,所以根据上图所示,当Z>0时应有:φ(Z)=1-φ(﹣Z)所以对于一个一般的正态分布问题,我们可以先通过标准化转换求得Z值,然后查表找到所对应的值后代入面积公式即可进行求解。
注意:①曲线下面积总和为1。
②曲线下的面积是从﹣∞积分到当前Z的面积。
③曲线下对称于0的区间,面积相等。
④当μ,σ和X已知时,先求Z值,再用Z值查表,得到所求区间占总面积比例。
当μ,σ未知时,要用样本均数和样本标准差S来估计Z值。
正态分布讲解(含标准表)

2.4正态分布复习引入:总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线. 总体密度曲线b 单位O 频率/组距a它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间(a ,b )内取值的概率等于总体密度曲线,直线x =a ,x =b 及x 轴所围图形的面积.观察总体密度曲线的形状,它具有“两头低,中间高,左右对称”的特征,具有这种特征的总体密度曲线一般可用下面函数的图象来表示或近似表示:22()2,1(),(,)2x x e x μσμσϕπσ--=∈-∞+∞ 式中的实数μ、)0(>σσ是参数,分别表示总体的平均数与标准差,,()x μσϕ的图象为正态分布密度曲线,简称正态曲线.讲解新课:一般地,如果对于任何实数a b <,随机变量X 满足,()()b aP a X B x dx μσϕ<≤=⎰, 则称 X 的分布为正态分布(normal distribution ) .正态分布完全由参数μ和σ确定,因此正态分布常记作),(2σμN .如果随机变量 X 服从正态分布,则记为X ~),(2σμN .经验表明,一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.例如,高尔顿板试验中,小球在下落过程中要与众多小木块发生碰撞,每次碰撞的结果使得小球随机地向左或向右下落,因此小球第1次与高尔顿板底部接触时的坐标 X 是众多随机碰撞的结果,所以它近似服从正态分布.在现实生活中,很多随机变量都服从或近似地服从正态分布.例如长度测量误差;某一地区同年龄人群的身高、体重、肺活量等;一定条件下生长的小麦的株高、穗长、单位面积产量等;正常生产条件下各种产品的质量指标(如零件的尺寸、纤维的纤度、电容器的电容量、电子管的使用寿命等);某地每年七月份的平均气温、平均湿度、降雨量等;一般都服从正态分布.因此,正态分布广泛存在于自然现象、生产和生活实际之中.正态分布在概率和统计中占有重要的地位.说明:1参数μ是反映随机变量取值的平均水平的特征数,可以用样本均值去佑计;σ是衡量随机变量总体波动大小的特征数,可以用样本标准差去估计.2.早在 1733 年,法国数学家棣莫弗就用n !的近似公式得到了正态分布.之后,德国数学家高斯在研究测量误差时从另一个角度导出了它,并研究了它的性质,因此,人们也称正态分布为高斯分布.2.正态分布),(2σμN )是由均值μ和标准差σ唯一决定的分布 通过固定其中一个值,讨论均值与标准差对于正态曲线的影响3.通过对三组正态曲线分析,得出正态曲线具有的基本特征是两头底、中间高、左右对称 正态曲线的作图,书中没有做要求,教师也不必补上 讲课时教师可以应用几何画板,形象、美观地画出三条正态曲线的图形,结合前面均值与标准差对图形的影响,引导学生观察总结正态曲线的性质4.正态曲线的性质:(1)曲线在x 轴的上方,与x 轴不相交(2)曲线关于直线x=μ对称(3)当x=μ时,曲线位于最高点(4)当x <μ时,曲线上升(增函数);当x >μ时,曲线下降(减函数) 并且当曲线向左、右两边无限延伸时,以x 轴为渐近线,向它无限靠近(5)μ一定时,曲线的形状由σ确定σ越大,曲线越“矮胖”,总体分布越分散;σ越小.曲线越“瘦高”.总体分布越集中:五条性质中前三条学生较易掌握,后两条较难理解,因此在讲授时应运用数形结合的原则,采用对比教学5.标准正态曲线:当μ=0、σ=l 时,正态总体称为标准正态总体,其相应的函数表示式是2221)(x e x f -=π,(-∞<x <+∞)其相应的曲线称为标准正态曲线标准正态总体N (0,1)在正态总体的研究中占有重要的地位 任何正态分布的概率问题均可转化成标准正态分布的概率问题讲解范例:例1.给出下列三个正态总体的函数表达式,请找出其均值μ和标准差σ (1)),(,21)(22+∞-∞∈=-x e x f x π(2)),(,221)(8)1(2+∞-∞∈=--x e x f x π (3)22(1)2(),(,)2x f x e x π-+=∈-∞+∞ 答案:(1)0,1;(2)1,2;(3)-1,0.5例2求标准正态总体在(-1,2)内取值的概率.解:利用等式)()(12x x p Φ-Φ=有)([]}{11)2()1()2(--Φ--Φ=-Φ-Φ=p=1)1()2(-Φ+Φ=0.9772+0.8413-1=0.8151.1.标准正态总体的概率问题: xy对于标准正态总体N (0,1),)(0x Φ是总体取值小于0x 的概率,即 )()(00x x P x <=Φ, 其中00>x ,图中阴影部分的面积表示为概率0()P x x < 只要有标准正态分布表即可查表解决.从图中不难发现:当00<x 时,)(1)(00x x -Φ-=Φ;而当00=x 时,Φ(0)=0.5 2.标准正态分布表标准正态总体)1,0(N 在正态总体的研究中有非常重要的地位,为此专门制作了“标准正态分布表”.在这个表中,对应于0x 的值)(0x Φ是指总体取值小于0x 的概率,即)()(00x x P x <=Φ,)0(0≥x .若00<x ,则)(1)(00x x -Φ-=Φ.利用标准正态分布表,可以求出标准正态总体在任意区间),(21x x 内取值的概率,即直线1x x =,2x x =与正态曲线、x 轴所围成的曲边梯形的面积1221()()()P x x x x x <<=Φ-Φ. 3.非标准正态总体在某区间内取值的概率:可以通过)()(σμ-Φ=x x F 转化成标准正态总体,然后查标准正态分布表即可 在这里重点掌握如何转化 首先要掌握正态总体的均值和标准差,然后进行相应的转化4.小概率事件的含义发生概率一般不超过5%的事件,即事件在一次试验中几乎不可能发生假设检验方法的基本思想:首先,假设总体应是或近似为正态总体,然后,依照小概率事件几乎不可能在一次试验中发生的原理对试验结果进行分析假设检验方法的操作程序,即“三步曲”一是提出统计假设,教科书中的统计假设总体是正态总体;二是确定一次试验中的a 值是否落入(μ-3σ,μ+3σ);三是作出判断讲解范例:例1. 若x ~N (0,1),求(l)P (-2.32<x <1.2);(2)P (x >2).解:(1)P (-2.32<x <1.2)=Φ(1.2)-Φ(-2.32)=Φ(1.2)-[1-Φ(2.32)]=0.8849-(1-0.9898)=0.8747.(2)P (x >2)=1-P (x <2)=1-Φ(2)=l-0.9772=0.0228.例2.利用标准正态分布表,求标准正态总体在下面区间取值的概率:(1)在N(1,4)下,求)3(F(2)在N (μ,σ2)下,求F(μ-σ,μ+σ);F(μ-1.84σ,μ+1.84σ);F(μ-2σ,μ+2σ);F(μ-3σ,μ+3σ) 解:(1))3(F =)213(-Φ=Φ(1)=0.8413 (2)F(μ+σ)=)(σμσμ-+Φ=Φ(1)=0.8413 F(μ-σ)=)(σμσμ--Φ=Φ(-1)=1-Φ(1)=1-0.8413=0.1587 F(μ-σ,μ+σ)=F(μ+σ)-F(μ-σ)=0.8413-0.1587=0.6826F(μ-1.84σ,μ+1.84σ)=F(μ+1.84σ)-F(μ-1.84σ)=0.9342F(μ-2σ,μ+2σ)=F(μ+2σ)-F(μ-2σ)=0.954F(μ-3σ,μ+3σ)=F(μ+3σ)-F(μ-3σ)=0.997对于正态总体),(2σμN 取值的概率:68.3%2σx 95.4%4σx 99.7%6σx在区间(μ-σ,μ+σ)、(μ-2σ,μ+2σ)、(μ-3σ,μ+3σ)内取值的概率分别为68.3%、95.4%、99.7% 因此我们时常只在区间(μ-3σ,μ+3σ)内研究正态总体分布情况,而忽略其中很小的一部分 例3.某正态总体函数的概率密度函数是偶函数,而且该函数的最大值为π21,求总体落入区间(-1.2,0.2)之间的概率解:正态分布的概率密度函数是),(,21)(222)(+∞-∞∈=--x e x f x σμσπ,它是偶函数,说明μ=0,)(x f 的最大值为)(μf =σπ21,所以σ=1,这个正态分布就是标准正态分布( 1.20.2)(0.2)( 1.2)(0.2)[1(1.2)](0.2)(1.2)1P x -<<=Φ-Φ-=Φ--Φ=Φ+Φ- 教学反思:1.在实际遇到的许多随机现象都服从或近似服从正态分布 在上一节课我们研究了当样本容量无限增大时,频率分布直方图就无限接近于一条总体密度曲线,总体密度曲线较科学地反映了总体分布 但总体密度曲线的相关知识较为抽象,学生不易理解,因此在总体分布研究中我们选择正态分布作为研究的突破口 正态分布在统计学中是最基本、最重要的一种分布 2.正态分布是可以用函数形式来表述的 其密度函数可写成:22()21(),(,)2x f x e x μσπσ--=∈-∞+∞, (σ>0)由此可见,正态分布是由它的平均数μ和标准差σ唯一决定的 常把它记为),(2σμN 3.从形态上看,正态分布是一条单峰、对称呈钟形的曲线,其对称轴为x=μ,并在x=μ时取最大值 从x=μ点开始,曲线向正负两个方向递减延伸,不断逼近x 轴,但永不与x 轴相交,因此说曲线在正负两个方向都是以x 轴为渐近线的4.通过三组正态分布的曲线,可知正态曲线具有两头低、中间高、左右对称的基本特征。
正态分布z值表

正态分布z值表
检查正态分布表时,请注意中间的数字是所有区域,最左边的列和第一行都是Z 值。
当给出检验的显着性水平a = 0.05时,如果要检验该检验是否相等,则它是一种双面检验,允许左侧和右侧出现误差,即a / 2 = 0.025。
此时,当尾部区域为0.025时,请检查Z值。
但是我们的参考书指出,表格中间的数字表示从最左侧开始具有特定点的区域,Z值表示从中间平均值到右侧的位置计算出的长度。
因此,当Z = 0时,中间区域= 0.50是原因。
现在,我们要检查的是右侧尾部的Z值。
当右侧的尾巴面积为0.025时,左侧的面积应为1-0.025 = 0.975。
因此,当我们查询表格时,我们必须在表格中间找到0.975。
从这排级别中,向左转到1.9,向上转到0.06,然后将两个数字加起来得到1.96。
正态分布表查Z值

正态分布表查Z值
查正态分布表时要注意中间的数字都是面积,最左边一列和最上面一行都是Z值。
</p><p>当给定了检验的显著性水平a=0.05时,如果检验时要检验是否相等,就是双侧检验,允许左右各有误差,即a/2=0.025。
此时要查尾部面积是0.025时的Z值。
但是我们参考书中说明表示表中间的数字是指从最左面一直带某一点的面积,而Z值是指从中间均值所在的位置往右计算的长度。
所以当Z=0时,中间的面积=0.50就是这个道理。
现在我们要的是从右边尾部面积查Z值。
当右边尾部面积是0.025时,左边的面积应是1-0.025=0.975。
所以我们查表时要在表中间找到0.975。
从这一行水平往左得到1.9,往上对得到0.06,把两个数加起来就是1.96。
正态分布的概念及表和查表方法

正态分布概念及图表正态分布(Normal distribution),也称“常态分布”,又名高斯分布(Gaussian distribution),最早由A·棣莫弗在求二项分布的渐近公式中得到。
C.F.高斯在研究测量误差时从另一个角度导出了它。
P·S·拉普拉斯和高斯研究了它的性质。
是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。
正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。
若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。
其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。
当μ = 0,σ = 1时的正态分布是标准正态分布。
目录1历史发展2定理3定义▪一维正态分布▪标准正态分布4性质5分布曲线▪图形特征▪参数含义6研究过程7曲线应用▪综述▪频数分布▪综合素质研究▪医学参考值历史发展正态分布概念是由德国的数学家和天文学家Moivre于1733年首次提出的,但由于德国数学家Gauss率先将其应用于天文学家研究,故正态分布又叫高斯分布,高斯这项工作对后世的影响极大,他使正态分布同时有了“高斯分布”的名称,后世之所以多将最小二乘法的发明权归之于他,也是出于这一工作。
但现今德国10马克的印有高斯头像的钞票,其上还印有正态分布的密度曲线。
这传达了一种想法:在高斯的一切科学贡献中,其对人类文明影响最大者,就是这一项。
在高斯刚作出这个发现之初,也许人们还只能从其理论的简化上来评价其优越性,其全部影响还不能充分看出来。
这要到20世纪正态小样本理论充分发展起来以后。
拉普拉斯很快得知高斯的工作,并马上将其与他发现的中心极限定理联系起来,为此,他在即将发表的一篇文章(发表于1810年)上加上了一点补充,指出如若误差可看成许多量的叠加,根据他的中心极限定理,误差理应有高斯分布。
正态分布的概念及表和查表方法

正态分布概念及图表正态分布(Normal distribution),也称“常态分布”,又名高斯分布(Gaussian distribution),最早由A·棣莫弗在求二项分布的渐近公式中得到。
C.F.高斯在研究测量误差时从另一个角度导出了它。
P·S·拉普拉斯和高斯研究了它的性质。
是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。
正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。
若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。
其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。
当μ = 0,σ = 1时的正态分布是标准正态分布。
目录1历史发展2定理3定义▪一维正态分布▪标准正态分布4性质5分布曲线▪图形特征▪参数含义6研究过程7曲线应用▪综述▪频数分布▪综合素质研究▪医学参考值历史发展正态分布概念是由德国的数学家和天文学家Moivre于1733年首次提出的,但由于德国数学家Gauss率先将其应用于天文学家研究,故正态分布又叫高斯分布,高斯这项工作对后世的影响极大,他使正态分布同时有了“高斯分布”的名称,后世之所以多将最小二乘法的发明权归之于他,也是出于这一工作。
但现今德国10马克的印有高斯头像的钞票,其上还印有正态分布的密度曲线。
这传达了一种想法:在高斯的一切科学贡献中,其对人类文明影响最大者,就是这一项。
在高斯刚作出这个发现之初,也许人们还只能从其理论的简化上来评价其优越性,其全部影响还不能充分看出来。
这要到20世纪正态小样本理论充分发展起来以后。
拉普拉斯很快得知高斯的工作,并马上将其与他发现的中心极限定理联系起来,为此,他在即将发表的一篇文章(发表于1810年)上加上了一点补充,指出如若误差可看成许多量的叠加,根据他的中心极限定理,误差理应有高斯分布。