STM32串口中断接收方式详细比较
关于STM32串口空闲中断IDEL的问题

关于STM32串口空闲中断IDEL的问题1.空闲中断是接受数据后出现一个byte 的高电平(空闲)状态,就会触发空闲中断.并不是空闲就会一直中断,准确的说应该是上升沿(停止位)后一个byte,如果一直是低电平是不会触发空闲中断的(会触发break 中断)。
2.关于第二点有要铺垫的三个情况,datasheet 中”当一空闲帧被检测到时,其处理步骤和接收到普通数据帧一样,但如果IDLEIE 位被设置将产生一个中断”“空闲符号被视为完全由'1'组成的一个完整的数据帧,后面跟着包含了数据的下一帧的开始位'1'的位数也包括了停止位的位数”空闲符号的配图后面跟这一个低电平.有人理解为只有收到下一个数据的起始位才会触发中断,这样理解是不对的,应该是数据后有空闲了一帧就会触发.3.清中断的方式感觉奇怪,使用函数USART_ClearITPendingBit( USART1,USART_IT_IDLE )清除不了中断的.我用的是3.5 的库,查看函数说明,里面的@param 参数并没有IDLE,后面的@note 中,这样说:”PE(Parity error),FE(Framingerror),NE(Noise error),ORE(OverRun error) and IDLE(Idle line detected) pendingbits are cleared by software sequence: a read operation to USART_SR register(USART_GetITStatus()) followed by a read operation to USART_DR register(USART_ReceiveData()).”我是通过语句”USART1->DR;”来清除IDLE 中断的.现在有很多数据处理都要用到不定长数据,而单片机串口的RXNE 中断一次只能接收一个字节的数据,没有缓冲区,无法接收一帧多个数据,现提供两种利用串口IDLE 空闲中断的方式接收一帧数据,方法如下:方法1:实现思路:采用STM32F103 的串口1,并配置成空闲中断IDLE 模式且使能DMA 接收,并同时设置接收缓冲区和初始化DMA。
STM32串口教程(DMA方式)

在使用STM32的串口接收数据的时候,我们常常会使用接收中断的方式来接收数据,常用的是RXNE。
这里分享另一种接收数据的方式——IDLE中断(PS:本文的例子运行在STM32F103ZET6上)。
一、IDLE中断什么时候发生?
IDLE就是串口收到一帧数据后,发生的中断。
什么是一帧数据呢?比如说给单片机一次发来1个字节,或者一次发来8个字节,这些一次发来的数据,就称为一帧数据,也可以叫做一包数据。
二、RXNE中断和IDLE中断的区别?
当接收到1个字节,就会产生RXNE中断,当接收到一帧数据,就会产生IDLE中断。
比如给单片机一次性发送了8个字节,就会产生8次RXNE中断,1次IDLE中断。
三、IDLE中断如何配置?
IDLE中断由USART_CR1 寄存器进行配置:
对于STM32F103ZET6来说,配置USART_CR1寄存器bit5为1则打开RXNE 中断,配置USART_CR1寄存器bit4为1则打开IDLE中断。
这是状态寄存器,当串口接收到一个字节数据时,bit5就会自动变成1,当接收完一帧数据后,bit4就会变成1.需要注意的是,在中断函数里面,需要把对应的位清0,否则会影响下一次数据的接收。
对于RXNE中断,对USART_DR的读操作可以将该位清零:
对于IDLE中断,由软件序列清除该位(先读USART_SR,然后读USART_DR):
四、USART+DMA+IDLE接收不定长数据例程
1、USART初始化
2、中断服务函数
3、主函数
4、运行结果。
stm32串口通信死在接收中断中的解决方法

stm32串⼝通信死在接收中断中的解决⽅法现象: 使⽤stm32f0xx系列的芯⽚,串⼝1使⽤接收中断时,当接收到⼀个数据时死在串⼝中断中,发⽣了串⼝中断溢出。
原因解释:在使⽤⼀个串⼝发数据的传感器过程中,发现程序第⼀次进⼊串⼝中断之后不再执⾏主函数的内容,中断中的内容也不执⾏。
查询⼤量资料后发现:串⼝在接收数据过多时,会出现串⼝溢出错误,并进⼊溢出中断(ORE中断)。
接下来是错误产⽣原因以及解决⽅法。
(1)什么是ORE中断?为什么会产⽣?产⽣原因如上所述。
ORE标志位在USART_SR寄存器,但值得注意的是,当我们打开串⼝接收中断时,同时也就打开了ORE中断。
(2)如何解决?看了上⾯的资料之后,我知道程序是死在了串⼝溢出中断。
处理中断时,我⾸先想到的是清除这个中断标志位,但是遇到了很多⿇烦。
解决⽅法: void USART1_IRQHandler(void){ /* 加⼊清除标志位,否则会卡死在串⼝中断服务函数中 */ uint8_t ucTemp; if(USART_GetITStatus(DEBUG_USARTx,USART_IT_RXNE)!=RESET) //检查 USART 是否发⽣中断 { USART_ClearITPendingBit(DEBUG_USARTx,USART_IT_RXNE); // 清中断标志 ucTemp=USART_ReceiveData(DEBUG_USARTx); } if(USART_GetFlagStatus(DEBUG_USARTx,USART_FLAG_ORE) == SET) // 检查 ORE 标志 { USART_ClearFlag(DEBUG_USARTx,USART_FLAG_ORE); USART_ReceiveData(DEBUG_USARTx); }}。
stm32多任务多数据串口接收及处理方法

stm32多任务多数据串口接收及处理方法STM32多任务多数据串口接收及处理方法通常涉及到使用中断服务程序(ISR)或轮询方法来接收串口数据,并在多个任务之间分配和同步处理这些数据。
以下是一个基本的步骤和策略,用于实现这一功能:1. 初始化串口:首先,你需要初始化串口以进行通信。
这包括设置波特率、数据位、停止位、奇偶校验等。
2. 配置中断:STM32的串口通常具有一个接收中断。
你可以配置这个中断,以便每当一个新的字节被接收时,它就会触发一个中断。
3. 中断服务程序(ISR):在中断服务程序中,你可以读取接收缓冲区中的数据,并将其放入一个全局变量或数据结构中,以便其他任务或函数可以访问它。
4. 多任务处理:你可以使用一个任务或一组任务来处理这些串口数据。
这可能涉及到解析数据、执行某些操作或将数据发送到其他设备。
5. 数据同步:在多任务环境中,你需要确保数据的同步。
这意味着,当一个任务正在处理数据时,其他任务不能同时访问或修改这些数据。
这通常通过使用互斥锁、条件变量或其他同步机制来实现。
6. 轮询:除了使用中断,你还可以使用轮询方法来检查串口是否有数据可供读取。
这种方法可能在某些应用中更简单,但可能不如中断方法效率高。
7. 错误处理:不要忘记在代码中包含错误处理逻辑。
这可能包括检查读取的数据是否完整、是否有任何传输错误等。
8. 优化:对于高性能应用,你可能还需要考虑其他优化策略,如非阻塞读取、缓冲区管理、流量控制等。
以上只是一个基本的框架,具体的实现细节将取决于你的具体需求和STM32的具体型号。
建议查阅STM32的参考手册和相关文档以获取更详细的信息和示例代码。
stm32 hal库 串口中断接收函数

stm32 hal库串口中断接收函数在STM32开发中,使用串口通信是很常见的一种方式。
而在使用STM32 HAL库进行开发时,我们可以方便地使用HAL库提供的接口来进行串口通信。
其中,使用串口中断接收数据可以提高数据的实时性和稳定性,因此本文将介绍STM32 HAL库中串口中断接收函数的使用方法。
1. 串口中断接收函数的定义首先,我们需要了解一下STM32 HAL库中串口中断接收函数的定义。
在HAL库中,串口中断接收函数的定义如下:void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) 该函数是由HAL库提供的一个回调函数,即当串口接收到数据后,会自动调用该函数。
其中,参数huart是串口句柄,用于标识当前是哪个串口接收到了数据。
2. 串口中断接收函数的使用方法在使用串口中断接收函数时,我们需要按照以下步骤进行操作:(1)使能串口中断在使用串口中断接收函数之前,我们需要先使能串口中断。
具体地,可以使用HAL库提供的函数HAL_UART_Receive_IT()来使能串口中断,代码如下:HAL_UART_Receive_IT(&huart1, uart1_rx_data, 1);其中,第一个参数是串口句柄,第二个参数是接收缓存区,第三个参数是接收数据的长度。
(2)编写串口中断接收函数接下来,我们需要编写串口中断接收函数。
在该函数中,我们可以对接收到的数据进行处理。
例如,将接收到的数据存储到一个全局变量中,代码如下:void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) {if(huart == &huart1){uart1_rx_buf[uart1_rx_len++] = uart1_rx_data[0];}}在该函数中,我们首先通过判断huart参数来确定是哪个串口接收到了数据,然后将接收到的数据存储到全局变量uart1_rx_buf中,并将接收数据的长度uart1_rx_len自增1。
stm32f407串口的中断接收函数

stm32f407串口的中断接收函数在stm32f407单片机中,串口通信是一种常见且重要的通信方式。
通过串口通信,可以方便地与外部设备进行数据交互。
而中断是一种常用的编程技术,可以有效提高系统的响应速度和效率。
因此,使用中断来接收串口数据可以更好地利用系统资源,提高数据接收的实时性和可靠性。
我们需要在stm32f407单片机上配置串口模块。
在配置串口模块时,需要设置波特率、数据位、停止位、校验位等参数。
具体的配置方法可以参考stm32f407单片机的相关文档或开发工具的使用手册。
在配置完串口模块后,我们需要编写中断服务函数来处理串口接收中断。
中断服务函数是一种特殊的函数,它会在中断事件发生时被自动调用。
在stm32f407单片机中,串口接收中断对应的中断向量是USARTx_IRQHandler,其中x表示串口模块的编号。
例如,如果我们使用的是USART1串口模块,那么对应的中断向量就是USART1_IRQHandler。
在中断服务函数中,我们首先需要判断中断事件的来源。
对于串口接收中断,我们可以通过检查状态寄存器的接收标志位来判断是否有数据接收到。
如果接收标志位被置位,说明有数据接收到,我们可以通过读取数据寄存器来获取接收到的数据。
接下来,我们可以根据接收到的数据进行相应的处理。
例如,我们可以将接收到的数据存储到缓冲区中,或者根据接收到的数据进行一些特定的操作。
在处理完数据后,我们可以清除接收标志位,以便下一次接收。
除了处理接收数据外,我们还可以在中断服务函数中进行其他一些操作。
例如,我们可以检查数据的完整性和正确性,对接收到的数据进行校验。
如果数据不符合要求,我们可以进行相应的处理,例如丢弃数据或者发送错误信息。
需要注意的是,在中断服务函数中,我们需要尽量减少耗时操作。
因为中断服务函数需要尽快地完成,以便系统能够尽快地响应其他中断事件。
如果中断服务函数执行的时间过长,可能会导致系统的响应速度下降,甚至影响系统的正常运行。
STM32 HAL库USART中断接收不定长数据——空闲中断法

STM32 HAL库USART中断接收不定长数据——空闲中断法STM32cubeMX软件配置好串口中断,导出工程并打开,定义串口接收缓冲区和接收长度的全局变量:uint8_t RX_data[1000];uint16_t RX_len;在main函数的初始化中开启IDLE中断并首次打开中断接收函数://开启IDLE中断__HAL_UART_ENABLE_IT(&huart1, UART_IT_IDLE);//中断接收函数,这里设置最大接收长度为1000HAL_UART_Receive_IT(&huart1, (uint8_t*)RX_data, 1000);添加IDLE中断处理函数:void UsartReceive_IDLE(UART_HandleTypeDef *huart){__HAL_UART_CLEAR_IT(&huart1,UART_CLEAR_IDLEF); //清除中断RX_len = 1000 - huart1.RxXferCount; //计算接收数据长度HAL_UART_AbortReceive_IT(huart); //终止接收// 用户数据处理,如将接收到的内容重新发送// HAL_UART_Transmit_IT(&huart1, (uint8_t*)RX_data, RX_len);HAL_UART_Receive_IT(&huart1, (uint8_t*)RX_data, 1000); //接收完数据后再次打开中断接收函数}打开stm32fXxx_it.c文件(X视具体芯片系列),在USART1_IRQHandler()函数中添加IDLE中断服务:if(__HAL_UART_GET_IT(&huart1,UART_IT_IDLE) != RESET) //判断是否为IDLE中断{UsartReceive_IDLE(&huart1); //调用IDLE中断处理函数}。
stm32hal库串口中断接收函数

stm32hal库串口中断接收函数STM32 HAL库提供了一种简单可靠的方式实现串口通信,其中使用中断接收函数自动接收字节流数据。
串口接收中断函数需要在初始化时开启,同时设置串口中断接收缓冲区大小,并在主程序中调用相关的中断处理函数。
中断接收函数的基本原理是:每当收到一个字节时,串口硬件会触发一个中断,并将接收到的字节存入中断接收缓冲区。
当有数据到达时,中断接收处理器会检测是否有可用的数据,并将数据读取到应用程序中。
以下是STM32 HAL库串口中断接收函数的代码示例:```c/* 串口中断接收处理函数 */void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) {/* 判断是否发生串口中断 */if (huart->Instance == USARTx) {/* 读取缓冲区中的字节 */rx_buffer[rx_index] = (uint8_t)(huart->Instance->RDR &0xFF);/* 增加接收缓存区的索引 */rx_index++;/* 如果接收数据超过了缓存区大小,则清除缓存区 */if (rx_index == BUFFER_SIZE) {rx_index = 0;}/* 开始下一次中断接收 */HAL_UART_Receive_IT(huart, &rx_buffer[rx_index], 1);}}```在主程序中,我们需要开启串口中断接收并设置接收缓冲区大小:```c/* 开启串口中断接收 */HAL_UART_Receive_IT(&huart1, &rx_buffer[rx_index], 1);/* 设置接收缓冲区大小 */#define BUFFER_SIZE 1024uint8_t rx_buffer[BUFFER_SIZE];uint16_t rx_index = 0;```这样,在主程序中循环读取缓冲区的数据即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本例程通过PC机的串口调试助手将数据发送至STM32,接收数据后将所接收的数据又发送至PC机,具体下面详谈。
实例一:
void USART1_IRQHandler(u8 GetData)
{
u8 BackData;
if(USART_GetITStatus(USART1, USART_IT_RXNE) != RESET) //中断产生
{
USART_ClearITPendingBit(USART1,USART_IT_RXNE); //清除中断标志.
GetData = UART1_GetByte(BackData); //也行GetData=USART1->DR;
USART1_SendByte(GetData); //发送数据
GPIO_SetBits(GPIOE, GPIO_Pin_8 ); //LED闪烁,接收成功发送完成
delay(1000);
GPIO_ResetBits(GPIOE, GPIO_Pin_8 );
}
}
这是最基本的,将数据接收完成后又发送出去,接收和发送在中断函数里执行,main函数里无其他要处理的。
优点:简单,适合很少量数据传输。
缺点:无缓存区,并且对数据的正确性没有判断,数据量稍大可能导致数据丢失。
实例二:
void USART2_IRQHandler()
{
if(USART_GetITStatus(USART2,USART_IT_RXNE) != RESET) //中断产生
{
USART_ClearITPendingBit(USART2,USART_IT_RXNE); //清除中断标志
Uart2_Buffer[Uart2_Rx_Num] = USART_ReceiveData(USART2);
Uart2_Rx_Num++;
}
if((Uart2_Buffer[0] == 0x5A)&&(Uart2_Buffer[Uart2_Rx_Num-1] == 0xA5)) //判断最后接收的数据是否为设定值,确定数据正确性
Uart2_Sta=1;
if(USART_GetFlagStatus(USART2,USART_FLAG_ORE) == SET) //溢出
{
USART_ClearFlag(USART2,USART_FLAG_ORE); //读SR
USART_ReceiveData(USART2); //读DR
}
}
if( Uart2_Sta )
{
for(Uart2_Tx_Num=0;Uart2_Tx_Num < Uart2_Rx_Num;Uart2_Tx_Num++)
USART2_SendByte(Uart2_Buffer[Uart2_Tx_Num]); //发送数据
Uart2_Rx_Num = 0; //初始化
Uart2_Tx_Num = 0;
Uart2_Sta = 0;
}
这是加了数据头和数据尾的接收方式,数据头和尾的个数可增加,此处只用于调试之用。
中断函数用于接收数据以及判断数据的头尾,第二个函数在main函数里按照查询方式执行。
优点:较简单,采用缓存区接收,对提高数据的正确行有一定的改善。
缺点:要是第一次数据接收错误,回不到初始化状态,必须复位操作。
实例三:
vvoid USART2_IRQHandler()
{
if(USART_GetITStatus(USART2,USART_IT_RXNE) != RESET) //中断产生
{
USART_ClearITPendingBit(USART2,USART_IT_RXNE); //清除中断标志.
Uart2_Buffer[Uart2_Rx] = USART_ReceiveData(USART2);
Uart2_Rx++;
Uart2_Rx &= 0x3F; //判断是否计数到最大
}
if(USART_GetFlagStatus(USART2,USART_FLAG_ORE) == SET) //溢出
{
USART_ClearFlag(USART2,USART_FLAG_ORE); //读SR
USART_ReceiveData(USART2); //读DR
}
}
if( Uart2_Tx != Uart2_Rx )
{
USART2_SendByte(Uart2_Buffer[Uart2_Tx]); //发送数据
Uart2_Tx++;
Uart2_Tx &= 0x3F; //判断是否计数到最大
}
采用FIFO方式接收数据,由0x3F可知此处最大接收量为64个,可变,中断函数只负责收,另一函数在main函数里执行,FIFO方式发送。
优点:发送和接收都很自由,中断占用时间少,有利于MCU处理其它。
缺点:对数据的正确性没有判断,一概全部接收。
实例四:
void USART2_IRQHandler()
{
if(USART_GetITStatus(USART2,USART_IT_RXNE) != RESET) //中断产生
{
USART_ClearITPendingBit(USART2,USART_IT_RXNE); //清除中断标志
Uart2_Buffer[Uart2_Rx] = USART_ReceiveData(USART2);
Uart2_Rx++;
Uart2_Rx &= 0xFF;
}
if(Uart2_Buffer[Uart2_Rx-1] == 0x5A) //头
Uart2_Tx = Uart2_Rx-1;
if((Uart2_Buffer[Uart2_Tx] == 0x5A)&&(Uart2_Buffer[Uart2_Rx-1] == 0xA5)) //检测到头的情况下检测到尾
{
Uart2_Len = Uart2_Rx-1- Uart2_Tx; //长度
Uart2_Sta=1; //标志位
}
if(USART_GetFlagStatus(USART2,USART_FLAG_ORE) == SET) //溢出
{
USART_ClearFlag(USART2,USART_FLAG_ORE); //读SR
USART_ReceiveData(USART2); //读DR
}
}
if( Uart2_Sta )
{
for(tx2=0;tx2 <= Uart2_Len;tx2++,Uart2_Tx++)
USART2_SendByte(Uart2_Buffer[Uart2_Tx]); //发送数据
Uart2_Rx = 0; //初始化
Uart2_Tx = 0;
Uart2_Sta = 0;
}
数据采用数据包的形式接收,接收后存放于缓存区,通过判断数据头和数据尾(可变)来判断数据的“包”及有效性,中断函数用于接收数据和判断头尾以及数据包长度,另一函数在main函数里执行,负责发送该段数据。
优点:适合打包传输,稳定性和可靠性很有保证,可随意发送,自动挑选有效数据。
缺点:缓存区数据长度要根据“包裹”长度设定,要是多次接收后无头无尾,到有头有尾的那一段数据恰好跨越缓存区最前和最后位置时,可能导致本次数据丢失,不过这种情况几乎没有可能。