流体流动7-流量与流速测量
流体流动基本规律

ρ
We
=ρ
gZ2+
ρ u22 2
+
p2
+
ρ
∑h
f
( Pa )
1.3 流体流动旳基本方程
1牛顿流体所具有旳能量称为压头head,单位为m。 Z-----位压头Potential head; u2/2g----动压头dynamic head; p/ρg-----静压头hydrostatic head。 He = We /g -----由泵对单位重量流体提供旳能量, 外加压头或泵旳扬程 Hf=∑hf / g——损失旳能量或称损失压头Hf
1.3 流体流动旳基本方程
∵ Vs = u A=
π 4
d2u
√ ∴ d= 4 Vs =0.0997m=99.7mm πu
查表选择:外径=108 mm,壁厚=4 mm旳管子 d=108-4×2=100 mm
将内径d=100 mm代入上式得到实际流速u=1.49 m/s。
1.3 流体流动旳基本方程
1.3.2 稳定流动与非稳定流动 steady flow and unsteady flow
1.3 流体流动旳基本方程
√ u2 =
2Rg ( ρ -ρ ) 0
ρ[1(- dd21 )4 ]
则体积流量
Vs =
π d22 4
u2 =
π 4
2
d2
质量流量ws =ρ Vs
2R g
(
ρ
0
-
ρ)
ρ [1-
(
d2 d1
)4
]
=
π 4
ρ
2
d2
2R g (ρ - ρ )
0
ρ
[1 -
(
流体流动-第七次课

常见局部阻力系数的求法: 常见局部阻力系数的求法:
1). 突扩管和突缩管 突扩管
ζ = f (
A小 A大
) = (1 −
A小 A大
)2
2). 进口和出口 进口:容器进入管道,突缩。 进口:容器进入管道,突缩。A小/A大≈0,λ=0.5 出口:管道进入容器,突扩。 出口:管道进入容器,突扩。A小/A大≈0,λ=1.0
2
简单管路流体的能量损失具有加和性。 简单管路流体的能量损失具有加和性。
2、简单管路计算 、
流量q 已知管径d、管长l、流量qV,求管路系统的能量损 失和输送功率。 失和输送功率。
已知管径d、管长l、管路系统的能量损失Σhf,求 流量q 或流速u 流量qV或流速u。 流量q 已知管长l、流量qV、管路系统的能量损失Σhf,求 管径d。
4.2 当量长度法
hf = λ ⋅
le d
⋅
u2 2
le为当量长度。 将流体流经管件时,所产生的局部阻力折 为当量长度。 将流体流经管件时,
的直管所产生的阻力。 合成相当于流经长度为le的直管所产生的阻力。
le由实验确定,可查表。 由实验确定,可查表。
五、 管道总阻力
∑h
f
= ∑ h f直 + ∑ h f局
并联和分支管路称为复杂管路。 并联和分支管路称为复杂管路。
A A B C B
并联管路
分支管路
1、 并联管路 、
V
A
1 B 2
qV=qV1+qV2
∑hfAB= ∑hf1 =∑hf2 (各支管单位质量流体阻 力损失相等) 力损失相等) 证明
zA +
zA +
pA ρg
流体力学中的流体流量与流速计算

流体力学中的流体流量与流速计算流体力学是研究流体在运动过程中的性质和行为的学科。
其中,流体流量和流速是流体力学中的重要概念,用于描述流体运动的特征和量度。
本文将介绍流体流量与流速的概念及计算方法。
一、流体流量的概念及计算方法流体流量是指单位时间内通过某一截面的流体体积。
按照定义,流体流量的计算公式为:Q = A * v其中,Q表示流体流量,A表示截面面积,v表示流速。
二、流速的概念及计算方法流速是指单位时间内流体通过一个截面的体积。
流速的计算公式可以根据具体情况而定,以下是常见的几种计算方法:1. 定常流的流速计算在定常流动情况下,流体的质量流率和体积流率保持不变。
流速的计算公式为:v = Q / A其中,v表示流速,Q表示流体流量,A表示截面面积。
2. 非定常流的流速计算在非定常流动情况下,流体的流速可能随时间和空间的变化而变化。
针对不同的情况,可以采用不同的方法计算流速,如通过流速图、针对特定位置的流速计算等。
三、流体流量与流速的应用流体流量和流速是流体力学中的基本概念,广泛应用于各个领域,包括但不限于以下几个方面:1. 水泵和液压系统的设计在水泵和液压系统的设计中,流体流量和流速是重要的设计参数。
通过合理计算流体流量和流速,可以确定水泵和液压系统的工作参数,确保其正常运行。
2. 水流和气流的测量与控制在环境监测、水利工程、能源利用等领域,对水流和气流的测量与控制是常见需求。
通过准确计算流体流量和流速,可以帮助实现对水流和气流的精确测量和控制。
3. 管道流量的计算与优化对于管道流动问题,合理计算流体流量和流速有助于分析和优化管道系统的性能。
通过调整管道直径、流速等参数,可以实现管道系统的节能、减压等目标。
四、总结流体流量和流速是流体力学中的重要概念,用于描述流体运动的特征和量度。
在实际应用中,合理计算流体流量和流速,可以帮助我们设计、控制和优化各类流体系统。
因此,对于流体力学中的流体流量与流速的计算方法和应用有深入的了解,对于工程实践具有重要意义。
流体力学中的流体流动实验

流体力学中的流体流动实验流体力学是研究流体力学基本规律和流动现象的一门学科,而流体流动实验则是流体力学研究的重要手段之一。
通过实验,可以观察和记录流体在不同条件下的流动行为,验证流动方程和理论模型的可靠性,从而深入理解流体的运动规律。
本文将介绍流体力学中的流体流动实验的基本原理、实验装置以及实验方法。
一、流体流动实验的基本原理在流体力学中,流体流动实验的基本原理是根据质量守恒定律和动量守恒定律进行实验设计和数据分析。
根据质量守恒定律,流经给定截面的质量流率与入口和出口流速之积相等。
动量守恒定律则建立了流体运动方程,描述了流体在不同流动条件下的运动状态。
二、流体流动实验的实验装置为了研究流体力学中的各种流动现象,需要准备相应的实验装置。
常见的流体流动实验装置包括流体管道、流动模型、雷诺管道等。
流体管道是最常见的流体流动实验装置之一,其基本结构包括进口、出口和流体流通的管道。
通过改变流体的进口条件、管道的形状和尺寸等,可以研究流体在不同流动条件下的流动特性。
流动模型是模拟真实流动情况的物理模型,常用于研究复杂的流动现象和流体力学中的问题。
流动模型可以通过缩小尺寸或者使用可替代材料来简化实验过程,从而提高实验的可行性和可观察性。
雷诺管道是一种用于测量流体流速和观察流动形态的实验装置。
雷诺管道一般由一段直管和一个扩张段构成,通过在流体流动过程中增加扩张段,可以减小流速并形成湍流,方便观察和研究流体的流动特性。
三、流体流动实验的实验方法1. 流量测量方法:流量是流体流动实验中最基本的参数之一。
常用的流量测量方法有容积法、质量法、速度法等。
容积法通过测量流体通过给定截面的体积来计算流量;质量法通过测量单位时间内流体通过给定截面的质量来计算流量;速度法通过测量流体流速和截面积来计算流量。
2. 流速测量方法:流速是流体流动实验中另一个重要的参数。
常用的流速测量方法有直接法、间接法和动态法等。
直接法通过直接测量流体流速来得到流速值;间接法通过测量与流速相关的物理量,如压力和涡旋等来计算流速;动态法是一种通过观察流体流动状态的方法来判断流速的快慢。
流体的流速与流体的流速计算方法

流体的流速与流体的流速计算方法流体的流速是指在单位时间内流体通过某一截面的体积。
流体的流速计算方法会因不同的流体以及实际应用中的条件而有所不同。
下面将介绍一些常见流体的流速计算方法。
液体的流速计算方法:1. 壶口流速计算方法:壶口流速指的是液体从容器口部流出时的速度。
根据伯努利定律,可得壶口流速的计算公式为:v = (2gh)^0.5,其中v是流速,g是重力加速度,h是液体从容器口部到液面的高度差。
2. 管道流速计算方法:液体在管道中的流速可以通过流量公式来计算。
流量公式为:Q = Av,其中Q是单位时间内通过截面的液体体积,A是截面的面积,v是流速。
根据流量公式,可以通过测量截面的面积以及流体通过截面的体积来计算流速。
气体的流速计算方法:1. 喷嘴流速计算方法:气体从喷嘴中流出时的速度可通过流量公式来计算。
喷嘴流速的计算公式为:v = (2(P1-P2)/ρ)^0.5,其中v是流速,P1和P2分别表示喷嘴前后的压力,ρ表示气体的密度。
2. 管道流速计算方法:气体在管道中的流速可以通过流量公式来计算,公式与液体相同。
流体流速计算的实际应用:1. 工业流体控制:在工业生产中,流体的流速计算是非常重要的。
例如,在管道输送中,需要通过计算液体或气体的流速来确定管道的尺寸和流量,以保证工艺的正常运行。
2. 水力学研究:水力学研究需要通过流速计算来分析河流、水库等水体的流动情况,以及水力机械的设计与性能评估。
综上所述,流体的流速计算方法是通过不同的公式来计算液体或气体在不同条件下的流速。
在实际应用中,根据具体的需要选择合适的计算方法,并进行准确的测量和计算,以满足工程设计和科研研究的需求。
流量测量的测量方法

流量测量的测量方法流量测量是指测量液体、气体或固体通过管道、通道或其他设备的流动速度和量的过程。
在工程和科学领域中,流量测量是非常重要的,它能够帮助我们了解和控制流体的流动。
以下是一些常用的流量测量方法。
1.浮子流量计浮子流量计是一种机械式的流量计,通过测量浮子在流体中的位置来确定流量。
当流体通过管道时,浮子会随着流动而上下浮动,浮子的位置可以通过透明管道上的刻度来读取。
根据浮子的位置,我们可以推断出流体的流量。
浮子流量计适用于低流速和低粘度的流体。
2.涡轮流量计涡轮流量计是一种机械和电子相结合的流量计,适用于中等到高流速的流体测量。
涡轮流量计利用装在管道内部的旋转涡轮来测量流体的流速。
每当流体通过时,涡轮就会旋转,旋转速度与流体的速度成正比。
通过测量涡轮的旋转速度,我们可以计算出流体的流量。
3.电磁流量计电磁流量计是一种非侵入式的流量计,适用于液体和导电性较好的流体的测量。
电磁流量计利用在管道外部产生的磁场和流体内部导电材料的运动来测量流体的流速。
当流体通过导电管时,电磁流量计会在管道外部产生一个磁场,并测量磁场的变化来计算流体的流速。
4.超声波流量计超声波流量计是一种无损的流量计,适用于多种流体的测量。
超声波流量计利用超声波的传播速度差来测量流体的流速。
它通过发射超声波脉冲并测量来回传播的时间来计算流体的流速。
由于超声波流量计不需要与流体接触,因此适用于腐蚀性和高温流体的测量。
5.差压流量计差压流量计是一种基于流体流动导致的压力差来测量流速的流量计。
差压流量计通常由一个流量测量装置和一个压力传感器组成。
流量测量装置可以是孔板、喷嘴或流体动力学计。
当流体通过流量测量装置时,它会产生一个压力差,通过测量压力差,我们可以计算出流体的流速。
这些是常用的流量测量方法,每种方法都有其适用范围和优缺点。
在选择流量测量方法时,需要考虑流体的性质、流程条件、精度要求、可靠性和经济性等因素。
流量测量的准确性对于工业自动化、流程控制和效能改善至关重要。
流体管道压力流速流量测定实验

流体管道压力流速流量测定实验流量测量方法名词与术语瞬时流量:单位时间内流过管道横截面的流体量(m3/h、t/h)。
累计流量:在一段时间内流过管道横截面的流体总量(m3、t)。
流量计:用于测量管道中流量的计量器具称为流量计。
主要的质量指标流量范围:最大与最小可测范围,该范围内误差不超过容许值。
量程和量程比:量程是最大流量与最小流量之差;量程比是最大流量与最小流量之比,又称范围度。
测量误差基本误差:准确度:流量计示值接近被测流量真值的能力,称为流量计的准确度。
准确度等级有:0.1、0.2、0.5、1.0、1.5、2.5、4.0级。
重复性:流量计在同一工作条件下,多次重复测量,其示值一致性的程度,反映仪表随机性误差的大小。
按测量对象划分就有封闭管道和明渠两大类;按测量目的又可分为总量测量和流量测量,其仪表分别称作总量表和流量计。
按测量原理分有力学原理、热学原理、声学原理、电学原理、光学原理、原子物理学原理等。
流量计简介流量测量方法和仪表的种类繁多。
工业用的流量仪表种类达100多种。
品种如此之多的原因就在于至今还没找到一种对任何流体、任何量程、任何流动状态以及任何使用条件都适用的流量仪表。
本文按照目前最流行、最广泛的分类法,分别介绍各种流量计的原理、特点、应用概况及国内外的发展情况。
序号流量计种类全球产量百分比1差压式流量计(孔板、文丘里)45~55%2浮子流量计(又称玻璃转子流量计)13~16%3容积式流量计(椭圆、腰轮、螺旋)12~14%4涡轮流量计9~11%5电磁流量计5~6%6流体振荡流量计(涡街、旋进)2.2~3%7超声流量计(时差式、多普勒)1.6~2.2%8热式流量计2~2.5%9科里奥利质量流量计0.9~1.2%10其他流量计(插入式流量计1.6~2.2%1.1差压式流量计差压式流量计是根据安装于管道中流量检测件产生的差压,已知的流体条件和检测件与管道的几何尺寸来计算流量的仪表。
差压式流量计由一次装置(检测件)和二次装置(差压转换和流量显示仪表)组成。
化工原理 第一章 流速和流量的测量

2Rg (0 )
0.648 0.785 0.0752 2 0.08 9.81 (13600 880) 880
0.0136(m3/s) 48.96(m3/h)
2020/7/10
校核Re: 管内的平均流速为:
u qV 0.0136 1.1(m/s)
4
d12
0.1252
4
管道的Re:
2020/7/10
0′ 1′
4、流量的测定 【原理】由于流量(qv)与环隙面积(AR)有关,在 圆锥形筒与浮子的尺寸固定时,环隙面积AR决定于 浮子在筒内的位置,因此,转子流量一般都以转子 的停留位置来指示流量。 【读数】转子流量计玻璃管外表面上刻有流量值, 根据转子平衡时其上端平面(最大截面)所处的位 置,即可读取相应的流量。
2020/7/10
渐缩管
喉管
渐扩管
测压口
测பைடு நூலகம்口
文氏流量计的结构示意图
2020/7/10
2020/7/10
文氏流量计实物图
2、文丘里流量计的测量原理
2020/7/10
【说明】文丘里流量计的测量 原理与孔板流量计相同,也属 于差压式流量计。
根据所连接的U型管压差计确 定R,然后使用公式计算体积流 量。
2020/7/10
3、转子流量计的流量方程
转子共受到三个力:重力(向下)、
压力(向上)、浮力(向上)。
当转子静止不动时,三个力平衡,即:
( p1 p0 ) Af V f g f V f g
0
由此可推得转子流量计的体积流量为:
1
qV CR AR
2( f )V f g Af
AR——转子上端面处环隙面积 CR——转子流量系数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
涡轮流量计(常用)
2、容积式流量测量方法:
► 通过测量单位时间内经过流量仪表排出的流
体的固定容积V的数目来实现的 ► qv=nV
► 容积式流量计: ► 椭圆齿轮流量计、腰轮流量计、刮板式流量
计、湿式流量计等
►3、通过直接或间接的方法测量单位
时间内流过管道截面的流体质量数
► 叶轮式质量流量计,温度、压力自动补偿流
1.7
流速和流量的测定
——柏努利方程的某种应用举例
►流体的流量:重要的参数之一
工业流量测量的方法
►1、速度式流量测量方法:
► 直接测出管道内流体的流速(平均流速),
一次作为流量测量的依据 ► 差压式(节流式):孔板、喷嘴、文丘里、 转子、毕托、动压平均管等 ► 叶轮式:水表、涡轮流量计 ► 电磁式: ► 超声波式; ► 旋涡或涡街式
三、转子流量计
1、结构
► 锥管 ► 转子(浮子、float)
► 密度大于被测流体的
密度 ► 环隙
2、测量原理
►qv=0,转子沉底部
►一定qv:转子将“浮起”
►转子悬浮 ►转子的悬浮高度(平衡
位置)随流量而变
转子流量计的计算式
► 形成转子上、下两端压差(p1-p2)的原因
► (1)两截面的位差
A B
2)测量范围
qv max A0 max qv min A0 min
► A0max和A0min分别为玻璃管上、下端的环隙面积
四、总结:
前三种流量计→ 变压强流量计 ► 其流量计算通式为:
►
qv CA0
CA0
2 R( i ) g
► C:流量系数:毕托管与文丘里流量计:C
压口引出位置、孔口形状、加工精度(加工光 洁度、孔板厚度)、收缩与阻力等 ► C0的数值只能通过实验求得 ► 标准孔板,C0=f(Red,m) ► Red是以管径计算的雷诺数
Red
d1u1
► 实验所得的C0 ► 当 Red 增大到一定
值 后 , C0 不 再 随 Red 而变,成为一 个仅决定于m的 常数
核算C0是否在常数区应以最小流量为准 ► (6)优点:结构简单,制造、安装、使用 较为方便,工程上应用广泛
4、孔板流量计的安装与测量范围
► (1)安装: ► 上游:(15~40)d
► 下游:5d
► 标准孔板厚度≤0.05d,d0≤0.08d,约为
6~12mm
(2)测量范围
► 当C0为常数时,qv2与R呈正比
► 毕托管制造精度影响测量的准确度
► 则需乘上一个校正系数C
uA C
2 R i g
► 对于标准测速管:C=1 ► 通常取C=0.98~1
3、毕托管的特点
…轴向线速度 ► 可测得沿截面的速度分布 ► 测流量的步骤 ► 由截面的速度分布或测量管中心的最大流速 ► 根据最大速度与平均速度的关系,求出截面 的平均流速 ► 求出流量 ► 图1-51
► 以孔口速度u0代替上式中的u2
u u C
2 0 2 1
21 2
► 由连续性方程
►令
A0 m A1
u1A1=u0A0 u1=mu0
2 2 u0 u1 u0 1 m 2
► U型压差计:
P1-P2=Rg(i-)
2 gR i
2
u0
C 1 m
► 恒流速、恒压差、变截面 ► 转子上、下两端面的压差(p1-p2)为一常数 ► 由压差引起的浮力恒定不变 ► 不同的平衡高度形成不同的环隙面积 ► 转子流量计的永久阻力损失不随流量而变
►优点:
► 读取流量方便、直观
► 能量损失小 ► 可用于腐蚀性流体的测量
►缺点:
► 不能用于高温高压的场合
► 转子流量计必须垂直安装 ► 且应安装支路以便于检修
孔板 orifice plate
孔板流量计 orifice flow meter
► 一体化孔板流
量计 ► 现场数显、信 号远传兼容
5、文丘里流量计
采用渐缩渐扩管,避免了突然缩小和突然扩大,可 大大减少阻力损失
收缩角:15º ~25º 扩大角: 5º ~ 7º
streamline
► 孔流系数Cv约为0.98~0.99
► 锐孔板 ► U型压差计
2、测量原理
► 缩脉处流速最大,而压强最小 ► 当流体以一定的流量通过小孔时,就产生一定的压
强差,流量愈大,所产生的压强差也愈大 ► 分析: 2 2
p1 u1 p2 u2 gz1 gz 2 2 2
u u
2 2 2 1
21 2
► 1974年在美国纽约Thiels附近发
生的波音727坠毁事故
► 皮托管和静压口的结冰,经常会形成固态的阻
碍物,将会使高度、空速、垂直速度及各种仪 表发出错误的数据指示,而直接威胁飞行安全 ► 当飞行员看到飞机的任何部位出现结冰现象时, 就应假设飞机的静压口已经出现结冰累积
二、孔板流量计
► 1、结构:
► 点速度(局部速度)
4、毕托管的安装
► (1)测量点位于均匀流段,即测量位置
应放在充分发展的流动中 ► 测量点的上、下游各有50d以上长度(d 为管径)的直管距离
►(2)毕托管口截面严格垂直于流动方向
►(3)do<d/50 ►(4)采用微压差计:如气体
5、毕托管的应用和注意事项:
广泛用于船舶和飞行体的测速
► 适用于低压气体的输送管道中的流量测量 ► 优点是能耗少 ► 缺点是:加工较难,精度要求高,造价高,
安装时需占去一定管长的位置
Largest Venturi Flow Meter in the world 180-in.-dia by 51.75-ft-long
improve the potable water supply and delivery to Las Vegas and the surrounding region, using Lake Mead as the source of raw water
floats
4、转子流量计的刻度校算与测量范围
► (1)刻度校算
► 标定:出厂前,用20℃水或20℃、101.3 kPa空气 ► 刻度换算:当被测流体与上述条件不符时,
应作
►
qv , b qv , A
A( f B ) B ( f A )
► 对于气体:
qv ,b qv , A
量计等
其他手段:
►热线测速仪 ►激光多普勒测速仪
►摄像机等
一、毕托管(皮托管、测速管) Pitot tube
► 1732年:Henri
Pitot发明了毕托管 ► 1856年:Henri Darcy完善了毕托管
1、结构
2、测速原理
► B点:驻点,速度为零 ► B点的总势能应等于A点
的势能与动能之和 ► 利用驻点B与A点的势能 差可以测得管中的流速
► 流量的少量变化将导致读数R的较大变化,表
示测量时灵敏度较大、准确度较好 ► 同时流量计所允许的测量范围较窄 ► 取决于视差和U型压差计的长度,存在着Rmax 和Rmin
qv max qv min Rmax Rmin
(3)测压口引出
► ► ► ►
角接法:取压口开在法兰前后,法兰和 孔板可配套供应 eccentric orifice 径接法:上游取压口距孔板1d处 下游取压口距孔板1/2d处
(4)阻力损失大…缺点
► 缩脉后流道突然扩大:形成大量旋涡值
► 孔板流量计的阻力损失hf,hf正比于R,即说
明R是以机械能损失为代价取得的 ► 缩口愈小,孔口速度u0愈大,读数R愈大, 阻力损失也随之增大 ► 选择适当的面积比m以期兼顾适宜的读数和 阻力损失
► (5)确定孔径do按要求的最大流量设计,
1
孔板流量计:C = 0.6~0.7 ► A0:流体流通面积:孔板流量计:孔口; ► 文丘里流量计:喉径 ► 毕托管:管截面积 Vf ► 转子流量计: R
►
Af
作业: 37、38、39
► (2)两端面的动能差
1 1 A0 / A1
2
u0
2V f ( f ) g Af
CR
2V f ( f ) g Af
qv C R A0
2V f ( f ) g Af
3、转子流量计的特点 Variable Area Flow Meter:
C0
2 gR i
► C0称为孔板的流量系数(孔流系数)
►则 ►
qv C0 A0
2 gR i
…孔板的流量计算式
3、孔板流量计的特点
► (1)只能用于测量流量,不能用以测定速度
分布 ► (2)特点:恒截面、变压差
► (3)流量系数C0 : ► 引入:形式与实质 ► C0 的影响因素:面积比 m 、流动情况 Red 、测