高电压技术-第二章

合集下载

第二章习题和解答_高电压技术

第二章习题和解答_高电压技术

第二章习题和解答_高电压技术第二章气体介质的电气强度一、选择题1)SF6气体具有较高绝缘强度的主要原因之一是______。

A.无色无味性B.不燃性C.无腐蚀性D.电负性2)冲击系数是______放电电压与静态放电电压之比。

A.25%B.50%C.75%D.100%3)在高气压下,气隙的击穿电压和电极表面______有很大关系A.粗糙度B.面积C.电场分布D.形状4)雷电流具有冲击波形的特点:______。

A.缓慢上升,平缓下降B.缓慢上升,快速下降C.迅速上升,平缓下降D.迅速上升,快速下降5)在极不均匀电场中,正极性击穿电压比负极性击穿电压______。

A..小B.大C.相等D.不确定二、填空题6)我国国家标准规定的标准操作冲击波形成______s 。

7)极不均匀电场中,屏障的作用是由于其对______的阻挡作用,造成电场分布的改变。

8)下行的负极性雷通常可分为3个主要阶段:、、。

9)调整电场的方法:______电极曲率半径、改善电极边缘、使电极具有最佳外形三、计算问答题10)保护设备与被保护设备的伏秒特性应如何配合?为什么?11)某1000kV工频试验变压器,套管顶部为球形电极,球心距离四周墙壁均约5m,问球电极直径至少要多大才能保证在标准参考大气条件下,当变压器升压到1000kV额定电压时,球电极不发生电晕放电?12)一些卤族元素化合物(如SF6)具有高电气强度的原因是什么?第二章气体介质的电气强度一、选择题1、D2、B3、A4、C5、A二、填空题6、250/25007、空间电荷8、先导、主放电、余光9、增大三、计算问答题10、保护设备的伏秒特性应始终低于被保护设备的伏秒特性。

这样,当有一过电压作用于两设备时,总是保护设备先击穿,进而限制了过电压幅值,保护了被保护设备11、此球形电极与四周墙壁大致等距离,可按照上述的同心球电极结构来考虑。

变压器的球电极为同心球的内电极,四周墙壁为同心球的外电极。

高电压技术第二章(1)

高电压技术第二章(1)
出气体; 3. 溶解于油中的外来气体; 4. 由电场加速的电子碰撞液体分子,使液体分子解离产生气
体; 5. 电极上尖的或不规则的凸起物上的电晕放电引起液体气化
24
气体电介质
电介质 液体电介质
固体电介质 2
1 电介质的极化、电导和损耗 一.电介质的极化(dielectric polarization)
和介电常数 1. 极化:在外加电场的作用下,电介质中的正、负 电荷沿电场方向作有限位移或转向,形成电矩(偶 极矩)
3
2. 电介质的极化种类
电子式极化
E 0Βιβλιοθήκη E0电击穿:认为在电场作用下,阴极上由于强场发射或热发 射出来的电子产生碰撞电离形成电子崩,最后导致液体击 穿
23
气泡击穿:认为液体分子由电子碰撞而产生气泡,或在电 场作用下因其它原因产生气泡,由气泡内的气体放 电, 产生电和热而引起液体击穿。
液体中气泡产生的原因: 1. 油中易挥发的成分; 2. 阴极的强场发射或热发射的电子电流加热液体介质,分解
每个极性分子都是偶极子,具有一定的电矩,但当不存在 外电场时,这些偶极子因热运动而杂乱无序地排列着,宏观电 矩等于零,整个介质对外并不表现出极性
电极
电介质
U
出现外电场后偶极子沿
E
电场方向转动,作较有
规则的排列, 因而显出
极性,这种极化称为偶
U
极子极化或转向极化。
6
偶极子极化
E 0
E0
7
特点:存在于极性电介质中,极化所需时间较长,
i3
R3
16
3. 电介质在直流电压作用下的吸收现象
i
i i1 i2 i3
|| |
充吸 泄
电收 漏

高电压技术第二章-气体放电

高电压技术第二章-气体放电
当电子与气体分子碰撞时,不但有可能引起碰撞电离产生出 正离子和新电子,而且也可能会发生电子与中性分子相结合形成负 离子的情况(又称为:吸附效应[attachment])。 容易吸附电子形成负离子的 气体称为电负性气体,如氧、氯、 氟、水蒸气和六氟化硫气体等。 负离子的形成并未使气体 中带电粒子的数目改变,但却能 使自由电子数减少,因而对气体 放电的发展起抑制作用。
各种粒子在气体中运动时不断地互相碰撞,任一粒子在1cm的 行程中所遭遇的碰撞次数与气体分子的半径和密度有关。 单位行程中的碰撞次数n的倒数 长度。 即为该粒子的平均自由行程
处于电场中的带电质点,在电场E的作用下,沿电场方向不断得到加速并积 累动能。当具有的动能积累到一定数值后,在与其气体原子或分子发生碰撞时, 可以使后者产生游离。由碰撞而引起的游离称为碰撞游离。 电子在场强为E的电场中移过x距离时获得的动能为:
第二章 气体放电的基本物理过程
一、碰撞电离[ionization by collision] :
4 火花放电[spark discharge ] 定义:放电间隙反复击穿时,在气体间隙中形成贯通两极的断断续续的不稳
定的明亮细线状火花,这种放电形式称为火花放电。
在通常气压下,当在曲率不太大的冷电极间加高电压时,若电源供给的功率不太 大,就会出现火花放电,火花放电时,碰撞电离并不发生在电极间的整个区域内, 只是沿着狭窄曲折的发光通道进行,并伴随爆裂声。由于气体击穿后突然由绝缘 体变为良导体,电流猛增,而电源功率不够,因此电压下降,放电暂时熄灭,待 电压恢复再次放电。所以火花放电具有间隙性。雷电就是自然界中大规模的火花 放电。
第二章 气体放电的基本物理过程
B. 放电[discharge] 定义:放电指的是电气设备绝缘有电流流过的现象,从带电到不带电的过程。

高电压技术课件 第二章 气体放电的物理过程

高电压技术课件 第二章 气体放电的物理过程
有时电子和气体分子碰撞非但没有电离出新电子,反 而是碰撞电子附着分子,形成了负离子
有些气体形成负离子时可释放出能量。这类气体容易 形成负离子,称为电负性气体(如氧、氟、SF6等)
负离子的形成起着阻碍放电的作用
15
5、金属(阴极)的表面电离
阴极发射电子的过程 逸出功 :金属的微观结构 、金属表面状态
41
4、击穿电压、巴申定律
根据自持放电条件推导击穿电压 ,先推导 的计算式
设电子在均匀电场中行经距离x而未发生碰撞,则此时电子 从电场获得的能量为eEx,电子如要能够引起碰撞电离, 必须满足条件
eEx Wi 或 Ex Ui
只有那些自由行程超过xi=Ui/E的电子,才能与分子发生
碰撞电离
若电子的平均自由行程为,自由行程大于xi的概率为
正、负离子间的复合概率要比离子和电子间的复合概 率大得多。通常放电过程中离子间的复合更为重要
一定空间内带电质点由于复合而减少的速度决定于其 浓度
21
§2.2 气体放电机理
气体放电的概述 汤逊放电理论 流注放电理论
22
一、气体放电的概述
(一)气体放电的主要形式
根据气体压强、电源功率、电极形状等因素的不同 ,击穿后气体放电可具有多种不同形式。利用放电 管可以观察放电现象的变化
Ub
f
2
pS T
电子的质量远小于离子,所以电子的热运动速度很高 ,它在热运动中受到的碰撞也较少,因此,电子的扩 散过程比离子的要强得多
20
3、带电质点的复合
正离子和负离子或电子相遇,发生电荷的传递而互相 中和、还原为分子的过程
在带电质点的复合过程中会发生光辐射,这种光辐射 在一定条件下又可能成为导致电离的因素

高电压技术复习总结

高电压技术复习总结

第2章气体放点的基本物理过程(这章比较重要,要记得知识点很多,要认真看)在第二章标题下面有一句话“与固体和液体相比·········”(1.电离是指电子脱离原子的束缚而形成自由电子、正离子的过程.电离是需要能量的,所需能量称为电离能Wi(用电子伏eV表示,也可用电离电位Ui=Wi/e表示)2。

根据外界给予原子或分子的能量形式的不同,电离方式可分为热电离、光电离、碰撞电离(最重要)和分级电离。

3.阴极表面的电子溢出:(1)正离子撞击阴极:正离子位能大于2倍金属表面逸出功。

(2)光电子发射:用能量大于金属逸出功的光照射阴极板。

光子的能量大于金属逸出功. (3)强场发射:阴极表面场强达到106V/cm(高真空中决定性)(4)热电子发射:阴极高温4。

气体中负离子的形成:电子与气体分子或原子碰撞时,也有可能发生电子附着过程而形成负离子,并释放出能量(电子亲合能)。

电子亲合能的大小可用来衡量原子捕获一个电子的难易,越大则越易形成负离子。

负离子的形成使自由电子数减少,因而对放电发展起抑制作用。

SF6气体含F,其分子俘获电子的能力很强,属强电负性气体,因而具有很高的电气强度。

5.带点质点的消失:(1)带电质点的扩散:带电质点从浓度较大的区域向浓度较小的区域的移动,使带电质点浓度变得均匀.电子的热运动速度高、自由行程大,所以其扩散比离子的扩散快得多。

(2)带电质点的复合:带异号电荷的质点相遇,发生电荷的传递和中和而还原为中性质点的过程,称为复合。

带电质点复合时会以光辐射的形式将电离时获得的能量释放出来,这种光辐射在一定条件下能导致间隙中其他中性原子或分子的电离。

6。

气体间隙中电流与外施电压的关系:第一阶段:电流随外施电压的提高而增大,因为带电质点向电极运动的速度加快复合率减小第二阶段:电流饱和,带电质点全部进入电极,电流仅取决于外电离因素的强弱(良好的绝缘状态)第三阶段:电流开始增大,由于电子碰撞电离引起的电子崩第四阶段自持放电:电流急剧上升放电过程进入了一个新的阶段(击穿)外施电压小于U0时的放电是非自持放电.电压到达U0后,电流剧增,间隙中电离过程只靠外施电压已能维持,不再需要外电离因素.自持放电7.电子碰撞电离系数α:代表一个电子沿电力线方向行经1cm时平均发生的碰撞电离次数。

2高电压技术第二章

2高电压技术第二章

23
电子雪崩的示意图
d
-
-
-
+
24
电子崩的电荷分布
+ + + + + + + + + + +
+
+
+ + +
+
+ + + + + + +
-
-
-------- +
d
25
汤森德理论分析:
新产生的电子参加电离过程
1
e s
If s=10 Then es=2.2×104
26
汤森德理论分析:
碰撞电离系数
初 始 电 子 崩 的 方 向 流 注 发 展 的 方 向 41
流注理论
形成流注的条件:
初崩头部的电荷达到一定的数量,使电场得到足 够的畸变和加强并造成足够的空间光电离。一般认为 当S=20时便可以满足上述条件。
42
不均匀电场中气隙的放电特性
在大多数的电力工程绝缘结构中,电场都是不均匀的。
研究不均匀电场中气体放电的规律
这些光子在附近的气体中导致光电离,在空间产生 二次电子。它们在正空间电荷所畸变和加强了的电场的 作用下,又形成新的电子崩叫二次崩。
初 始 电 子 崩 的 方 向
流 注 发 展 的 方 向 40
流注理论
二次崩头部的电子跑向初崩的正空间负荷,与之汇 合成为充满正负带电粒子的混合通道。这个电离通道称 为流注。 流注导电性能良好,其端部又有二次崩留下的正电 荷,因此大大加强了前方的电场,促使更多的新电子崩 相继产生并与之汇合,从而使流注向前发展(阳到阴)。 到流注通道把两极接通时将导致间隙的完全击穿。

2.高电压技术第二章讲稿

2.高电压技术第二章讲稿

通过标准油杯中变 压器油的工频击穿 电压来衡量油的品 质
42
(2)温度
43
(3)电压作用时间
加压后短至几个微秒时,表现为电击穿,击穿电 压很高 当电压作用时间大于毫秒级时,表现为热击穿,击 穿电压随作用时间增加而降低
44
(4)电场均匀程度 电场愈均匀,杂质对击穿电压的影响愈大分散性 也愈大,击穿电压也愈高
49
热击穿的机制
Q
Q1(U3)
Q1(U2) Q2 Q1(U1)
1)
当电压为较低值U1时,Q1与 Q2相交于A点,对应的温度为 tA。一旦温度上升 t > tA,则 Q2 > Q1,温度将下降到tA。一 旦温度 t < tA,则 Q1 > Q2,温 度将回升到 tA 当电压为U2,Q1与Q2相交于 K点,只有在 t=tk时, Q1=Q2; 当 t > tk, Q1>Q2, 温度上升直 到热击穿。 当电压大于U2, 在任何温度 Q1 > Q2
35
3.影响tgδ的因素 (1)温度的影响
36(2)频率的影响源自37(3)电压的影响
在电场强度不很高时,tgδ不变; 在电场强度较高时, tgδ随电场强度升高而迅速增 大。
38
第四节.液体电介质的击穿特性
液体介质的三大作用

绝缘媒质 冷却媒质(如在变压器中) 灭弧媒质(如在断路器中) 电击穿 热击穿(气泡或其他悬浮杂质导致) 电化学击穿
10
离子式极化 + + + + + + + + + + + + + + + + + + + + 离子式极化 + + + + + -+ -+ -+ -+ -+ -+ -+ -+ -+ -+

高电压技术第二章

高电压技术第二章

1.带电质点电场作用下流入电极并中 和电量

带电质点产生以后,在外电场作用下将作 定向运动,形成电流: 带电质点在一定的电场强度下运动达到某 种稳定状态,保持平均速度,即上述的带 电质点的驱引速度
电子迁移率比离子迁移率大两个数量级


2、带电质点的扩散
带电质点的扩散是由于热运动造成,带电质点 的扩散规律和气体的扩散规律相似 气体中带电质点的扩散和气体状态有关,气体 压力越高或者温度越低,扩散过程也就越弱 电子的质量远小于离子,所以电子的热运动速 度很高,它在热运动中受到的碰撞也较少,因 此,电子的扩散过程比离子的要强得多

刷状放电
电极间距较大、电场极不均匀情况下,如电压 继续升高,从电晕电极伸展出许多较明亮的细 线状光束,称为刷状放电 电压再升高,根据电源功率而转入火花放电或 电弧放电,最后整个间隙被击穿 电场稍不均匀则可能不出现刷状放电,而由电 晕放电直接转入击穿

2、汤森德气体放电理论
������ 汤森德(Townsend)放电理论 ������ 流注(Streamer)放电理论 这两种理论互相补充,可以说明广阔的δ⋅S (δ为气体的相对密度,以标准大气条件下 的大气密度为基准;S为气隙距离)范围内 气体放电的现象

4、负离子的形成
有时电子和气体分子碰撞非但没有电离出新电 子,反而是碰撞电子附着分子,形成了负离子 形成负离子时可释放出能量 有些气体容易形成负离子,称为电负性气体 (如氧、氟、氯等),SF6在工业上有典型应用 负离子的形成起着阻碍放电的作用

5、金属(阴极)的表面电离



金属阴极表面发射电子 逸出功:与金属的微观结构、表面状态有 关 金属的逸出功一般比气体的电离能小得多, 在气体放电中起重要作用 金属表面电离所需能量获得的方式 正离子碰撞阴极(二次发射)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

δd 过大时,气压高,或距离大,这时气体击穿
的很多实验现象无法全部在汤逊理论范围内给以解 释:放电外形;放电时间;击穿电压;阴极材料。 因此,通常认为,δd >0.26 cm(pd>200 cm •
mmHg)时,击穿过程将发生变化,汤逊理论的计算结
果不再适用,但其碰撞电离的基本原理仍是普遍有 效的。
电负性:一个无量纲的数,其值越大表明原子 在分子中吸引电子的能力越大 。
1.1.2 带电质点的消失
带电质点的消失可能有以下几种情况: 带电质点受电场力的作用流入电极 ;
带电质点因扩散而逸出气体放电空间;
带电质点的复合。
带电质点的复合 复合:当气体中带异号电荷的粒子相遇时,有可 能发生电荷的传递与中和,这种现象称为复合。 复合可能发生在电子和正离子之间,称为电子 复合,其结果是产生一个中性分子; 复合也可能发生在正离子和负离子之间,称为 离子复合,其结果是产生两个中性分子。
回正常态时,所产生的光子到达阴极表面都将引起
为此引入系数。 阴极表面电离,统称为 过程。
设外界光电离因素在阴极表面产生了一个自由电 子,此电子到达阳极表面时由于 α 过程,电子总数 增至 eαd 个。因在对α 系数进行讨论时已假设每次电 离撞出一个正离子,故电极空间共有 ( eαd-1)个 正离子。由系数 γ 的定义,此( eαd-1)个正离子 在到达阴极表面时可撞出 γ(eαd-1) 个新电子,这
(2)汤逊放电理论的适用范围
汤逊理论是在低气压、 δd 较小的条件下在放电
实验的基础上建立的。 δd 过小或过大,放电机理将
出现变化,汤逊理论就不再适用了。
δd 过小时,气压极低( 过小在实际上是不可能
γ 远大于 d,碰撞电离来不及发生, 的), d / λ 过小,
击穿电压似乎应不断上升,但实际上电压U上升到一 定程度后,场致发射将导致击穿,汤逊的碰撞电离 理论不再适用,击穿电压将不再增加。
3、气体中负离子的形成
附着:电子与气体分子碰撞时,不但有可
能引起碰撞电离而产生出正离子和新电子,也 可能发生电子附着过程而形成负离子。 负离子的形成并未使气体中带电粒子的数
目改变,但却能使自由电子数减少,因而对气
体放电的发展起抑制作用。
电子亲合能:使基态的气体原子获得一个电子 形成负离子时所放出的能量,其值越大则越易 形成负离子。 电子亲合能未考虑原子在分子中的成键作 用,为了说明原子在分子中吸引电子的能力, 在化学中引入电负性概念。
图1-5 计算间隙中电子数增长的示意图
根据碰撞电离系数α的定义,可得:
d n n d x
分离变量并积分之,可得:
dx 0 n n0 e
x
(1-7)
(1-8)
对于均匀电场来说,气隙中各点的电场强度相 同,α值不随x而变化,所以上式可写成:
n n0 e
ax
(1-9)
抵达阳极的电子数应为:
1.1.3 电子崩与汤逊理论
气体放电现象与规律因气体的种类、气压和 间隙中电场的均匀度而异。
但气体放电都有从电子碰撞电离开始发展到
电子崩的阶段。
1、放电的电子崩阶段 (1)非自持放电和自持放电的不同特点
宇宙射线和放射性物质的射线会使气体发生 微弱的电离而产生少量带电质点;另一方面、负 带电质点又在不断复合,使气体空间存在一定浓 度的带电质点。因此,在气隙的电极间施加电压
持,因为一旦除去外界电离因子(令 I0 0),即 I
变为零。
(3)影响碰撞电离系数的因素
若电子的平均自由行程为 λ ,则在1cm长度内一个 电子的平均碰撞次数为1/λ。 设在处有个电子沿电力线方向运动,行经距离时还 剩下个电子未发生过碰撞,则在到这一距离中发生 碰撞的电子数应为 dx dn n
高气压时, e很小,单位长度上的碰撞次数很多, 但能引起电离的概率很小;
低气压和真空时, e 很大,总的碰撞次数少,所 以α也比较小。
所以,在高气压和高真空下,气隙不易发生放 电现象,具有较高的电气强度。
2、汤逊理论
前述已知,只有电子崩过程是不会发生自持放 电的。要达到自持放电的条件,必须在气隙内初始 电子崩消失前产生新的电子(二次电子)来取代外 电离因素产生的初始电子。
1.1 气体放电的基本物理过程
高压电气设备中的绝缘介质有气体、液体、 固体以及其它复合介质。由于气体绝缘介质不存 在老化的问题,在击穿后也有完全的绝缘自恢复 特性,再加上其成本非常廉价,因此气体成为了 在实际应用中最常见的绝缘介质。 气体击穿过程的理论研究虽然还不完善,但 是相对于其他几种绝缘材料来说最为完整。因 此,高电压绝缘的论述一般都由气体绝缘开始。
Wi Ui xi qe E E
(1-4)
式中Ui为气体的电离电位,在数值上与以eV为 单位的Wi相等
xi的大小取决于场强E,增大气体中的场
强将使 xi值减少。可见提高外加电压将使碰撞 电离的概率和强lt;<电离能时,阴极表面电离可在 下列情况下发生: 正离子撞击阴极表面 光电子发射 强场发射 热电子发射
电子或离子在电场作用下加速所获得的动能
1 mv 2 eEx 2
(1-3)
高速运动的质点与中性的原子或分子碰 撞时,如原子或分子获得的能量等于或大于 其电离能,则会发生电离。 因此,电离条件为
eEx Wi
式中: e:电子的电荷量;
E:外电场强度; x :电子移动的距离
(1-4)
为使碰撞能导致电离,质点在碰撞前必须 经过的距离为:

由上式积分得:
n n0 e
x /
(1-13)
由第一节公式,实际自由行程长度等于或大于 xi 的 x 概率为e ,所以也就是碰撞电离的概率。 根据碰撞电离系数α的定义,即可得出:
i e

1
e
e
e
xi

1
e
e

ui e E
(1-14)
kT 由第一节公式 e 2 r p
图1-3 气体间隙中电流与外施电 压的关系
(3)在I-U曲线的BC段: 虽然电流增长很快,但电 流值仍很小,一般在微安 级,且此时气体中的电流 仍要靠外电离因素来维 持,一旦去除外电离因 素,气隙电流将消失。
U0
图1-3 气体间隙中电流与外施电 压的关系
因此,外施电压小于U0 时的放电是非自 持放电。电压达到 U0后,电流剧增,且此时 间隙中电离过程只靠外施电压已能维持,不再 需要外电离因素了。外施电压达到U0后的放电 称为自持放电,U0称为放电的起始电压。
时,可检测到微小的电流。
由图1-3可见, (1)在I-U曲线的OA段: 气隙电流随外施电压的提高而 增大,这是因为带电质点向电 极运动的速度加快导致复合率 减小。当电压接近U A 时,电流 趋于饱和,因为此时由外电离 因素产生的带电质点全部进入 电极,所以电流值仅取决于外 电离因素的强弱而与电压无关
实验现象表明,二次电子的产生机制与气压和
气隙长度的乘积(pd )有关。 pd 值较小时自持放电 的条件可用汤逊理论来说明; pd 值较大时则要用流 注理论来解释。
(1) 过程与自持放电条件
由于阴极材料的表面逸出功比气体分子的电离能 小很多,因而正离子碰撞阴极较易使阴极释放出电 子。此外正负离子复合时,以及分子由激励态跃迁
图1-3 气体间隙中电流与外施电 压的关系
(2)在I-U曲线的B、C点: 电压升高至UB 时,电流又开始 增大,这是由于电子碰撞电离 引起的,因为此时电子在电场 作用下已积累起足以引起碰撞 电离的动能。电压继续升高至 U0 时,电流急剧上升,说明放 电过程又进入了一个新的阶 段。此时气隙转入良好的导电 状态,即气体发生了击穿。
(2)电子崩的形成
视频连接
外界电离因子在阴极附 近产生了一个初始电子,如 果空间电场强度足够大,该 电子在向阳极运动时就会引 起碰撞电离,产生一个新的 电子,初始电子和新电子继 续向阳极运动,又会引起新 的碰撞电离,产生更多电 子。
电子崩的演示
图1-4 电子崩的示意图
依此,电子将按照几何级数不断增多,类似雪 崩似地发展,这种急剧增大的空间电子流被称为电 子崩。
为了分析碰撞电离和电子崩引起的电流,引入:
电子碰撞电离系数 α 。
α:
表示一个电子沿电场方向运动1cm的行程所完 成的碰撞电离次数平均值。
如图1-5为平板电极气 隙,板内电场均匀,设外 界电离因子每秒钟使阴极 表面发射出来的初始电子 数为n0。 由于碰撞电离和电子 崩的结果,在它们到达x处 时,电子数已增加为n,这 n个电子在dx的距离中又会 产生dn个新电子。
1.1.4 巴申定律与适用范围
1、巴申定律
早在汤逊理论出现之前,巴申(Paschen)就于
1889年从大量的实验中总结出了击穿电压ub 与pd 的关系曲线,称为巴申定律,即
Ub f (pd)
(1-23)
图1-7给出了空气间隙的ub 与 pd 的关系曲线。从图 中可见,首先, ub并不仅 仅由d 决定,而是 pd 的 函数;其次ub不是 pd的 单调函数,而是U型曲 线,有极小值。
图1-1 不同温度下空气和气体的热电离程度
(2)光电离
当满足以下条件时,产生光电离
hc Wi
(1-2)
式中:
:光的波长; c :光速;
光子来源
{
Wi:气体的电离能
外界高能辐射线
气体放电本身
(3)碰撞电离
1 2 ( mv )与质点电荷量(e)、电场强度(E)以 2 及碰撞前的行程(x)有关.即
些电子在电极空间的碰撞电离同样又能产生更多的
正离子,如此循环下去。
自持放电条件为
γ (eαd −1) =1
(1-21)
γ :一个正离子撞击到阴极表面时产生出来的
相关文档
最新文档