高电压技术(PPT课件汇总)
合集下载
8 电气设备绝缘试验(高电压技术).ppt

电气设备绝缘试验
绝缘诊断与绝缘试验主要内容
1 绝缘测试和诊断的基本概念 2 绝缘电阻和泄漏电流的测量 3 介质损耗角正切的测量 4 局部放电的测量 5 耐压试验与预防性试验方法的特点总结 6 绝缘的在线监测
1、绝缘测试和诊断的基本概念
绝缘的测试和诊断技术概念:电力设备绝缘
在运行中受到电、热、机械、不良环境等各种因 素的作用,其性能将逐渐劣化,以致出现缺陷, 造成故障,引起供电中断。通过对绝缘的试验和 各种特性的测量,了解并评估绝缘在运行过程中 的状态,从而能早期发现故障的技术称为绝缘的 监测和诊断技术
1 1 1 1 G xj C x G 4j C 4 j C 0 G 3
解之得:
GxG4 – ω2CxC4 = 0
(1)
G4Cx + GxC4 = G3C0
(2)
由(2)得:
tgδ = IRx/ICx=Gx/ ωCx
= ωC4/G4= ωR4C4 取R4=104/л Ω ω=100 л 则 tgδ = 106C4(F)=C4(μF) 将 Gx=ωCx tgδ ; C4 = G4tgδ/ω 代入(3)得:
(5)绝缘油脏污解、决劣办法化是等将整体绝缘分解后分部测量 (如分别
测量介损不易对变发压器现线的圈和局套管部的性tgδ 进缺行陷测量:)
(1)非穿透性局部损坏(测介损时没有发生局部放电) (2)很小部分绝缘的老化劣化 (3)个别的绝缘弱点
5)测量介损时的注意事项
(1)尽可能地分部测试 (2)与温度的关系:
当检流计正接时测得:tgδ1=ω(C4+△C4)R4
CX1=C0R4/(R3+△R3)
当检流计反接时测得:tgδ2 = ω(C4-△C4)R4
CX2 = C0R4/(R3-△R3)
绝缘诊断与绝缘试验主要内容
1 绝缘测试和诊断的基本概念 2 绝缘电阻和泄漏电流的测量 3 介质损耗角正切的测量 4 局部放电的测量 5 耐压试验与预防性试验方法的特点总结 6 绝缘的在线监测
1、绝缘测试和诊断的基本概念
绝缘的测试和诊断技术概念:电力设备绝缘
在运行中受到电、热、机械、不良环境等各种因 素的作用,其性能将逐渐劣化,以致出现缺陷, 造成故障,引起供电中断。通过对绝缘的试验和 各种特性的测量,了解并评估绝缘在运行过程中 的状态,从而能早期发现故障的技术称为绝缘的 监测和诊断技术
1 1 1 1 G xj C x G 4j C 4 j C 0 G 3
解之得:
GxG4 – ω2CxC4 = 0
(1)
G4Cx + GxC4 = G3C0
(2)
由(2)得:
tgδ = IRx/ICx=Gx/ ωCx
= ωC4/G4= ωR4C4 取R4=104/л Ω ω=100 л 则 tgδ = 106C4(F)=C4(μF) 将 Gx=ωCx tgδ ; C4 = G4tgδ/ω 代入(3)得:
(5)绝缘油脏污解、决劣办法化是等将整体绝缘分解后分部测量 (如分别
测量介损不易对变发压器现线的圈和局套管部的性tgδ 进缺行陷测量:)
(1)非穿透性局部损坏(测介损时没有发生局部放电) (2)很小部分绝缘的老化劣化 (3)个别的绝缘弱点
5)测量介损时的注意事项
(1)尽可能地分部测试 (2)与温度的关系:
当检流计正接时测得:tgδ1=ω(C4+△C4)R4
CX1=C0R4/(R3+△R3)
当检流计反接时测得:tgδ2 = ω(C4-△C4)R4
CX2 = C0R4/(R3-△R3)
《高电压技术讲座》PPT课件

x - 从线路末端计算的距离
• 空载线路的电压分布:
末端 x = 0 ,电流 I2 = 0
U(x) = U2 cosαx 始端 x = l , U1 = U2 cosαx
沿线电压分布 Ux U1 cosx
编辑ppct osl
6
编辑ppt
7
• 空载线路末端的电压升高倍数:
k U2 1
U1 cosl LoCo
编辑ppt
2
2 内部过电压及限制措施
2.1 暂时过电压 (工频过电压、工频电压升高)
• 概念:电力系统正常或故障时可能出现
Umax>Uphm(最大工作相电压) f≈50Hz
的电压升高。(工频谐振过电压除外)
• 产生原因:
① 空载线路的电容效应
② 不对称接地故障
③ 突然甩负荷
编辑ppt
3
• 影响:
X0
-∞ -20 -2 3.5 1 +∞
X1
Uph 3 1.9 UB
Un 1.0 1.1
∞ 1.3 1.0 3
∞ 0.75 1
1.0
3
3、6、10 kV中性点绝缘系统 X0/X1= -20∽-∞
35 ∽ 60 kV中性点接消弧线圈系统 X0/X1→±∞
110 kV以上中性点直接接地系统 X0/X1 ≤ 3
UC、UL /E = 5 、 2.5 、 2.0
编辑ppt
17
• 特点:
① 线性回路 0 1 LC为固定数,ω→ω0 时发生
线性谐振。
② ω =ω0 时,谐振过电压受回路电阻 R 限制, 一般 R 较小,过电压很高。
③ 在操作或事故造成谐振过电压的暂态过程中, 过电压暂态峰值还将高于稳态值。
• 空载线路的电压分布:
末端 x = 0 ,电流 I2 = 0
U(x) = U2 cosαx 始端 x = l , U1 = U2 cosαx
沿线电压分布 Ux U1 cosx
编辑ppct osl
6
编辑ppt
7
• 空载线路末端的电压升高倍数:
k U2 1
U1 cosl LoCo
编辑ppt
2
2 内部过电压及限制措施
2.1 暂时过电压 (工频过电压、工频电压升高)
• 概念:电力系统正常或故障时可能出现
Umax>Uphm(最大工作相电压) f≈50Hz
的电压升高。(工频谐振过电压除外)
• 产生原因:
① 空载线路的电容效应
② 不对称接地故障
③ 突然甩负荷
编辑ppt
3
• 影响:
X0
-∞ -20 -2 3.5 1 +∞
X1
Uph 3 1.9 UB
Un 1.0 1.1
∞ 1.3 1.0 3
∞ 0.75 1
1.0
3
3、6、10 kV中性点绝缘系统 X0/X1= -20∽-∞
35 ∽ 60 kV中性点接消弧线圈系统 X0/X1→±∞
110 kV以上中性点直接接地系统 X0/X1 ≤ 3
UC、UL /E = 5 、 2.5 、 2.0
编辑ppt
17
• 特点:
① 线性回路 0 1 LC为固定数,ω→ω0 时发生
线性谐振。
② ω =ω0 时,谐振过电压受回路电阻 R 限制, 一般 R 较小,过电压很高。
③ 在操作或事故造成谐振过电压的暂态过程中, 过电压暂态峰值还将高于稳态值。
高电压技术ppt7.1

U b (S )e
I b (S )e
S x v
(7-7) (7-8) (7-9) (7-10)
返回
I ( x, S ) I f (S )e
S x v
S x v
将以上频域形式解变换到时域形式为
x x i ( x, t ) i f (t ) ib (t ) v v
x x u ( x, t ) u f (t ) u b (t ) v v
随着线路的充放电将有电流流过导线的电 感,即在导线周围空间建立起磁场,因此和电 压波相对应,还有电流波以同样的速度沿,方 向流动。综上所述,电压波和电流波沿线路的 传播过程实质上就是电磁波沿线路传播的过程, 电压波和电流波是在线路中传播的伴随而行的 统一体。
返回
7.1。线路每一单元 长度dx具有电感L0dx和电容C0dx,如图7-2所示,线路上 的电压和电流都是距离和时间的函数。 根据 可知
(7-9)、 (7-10)就是均匀无损单导线波动方程的解。
7.1.3 波速和波阻抗
在波动方程中定义v为波传播的速度 对于架空线路
v 1 L0 C0
v
1
0 0
沿架空线传播的电磁波波速等于空气中的光速v为 8 8 v 1 . 5 10 m/ s , 3×10 m/s ,而一般对于电缆,波速 低于架空线,因此减小电缆介质的介电常数可提高 电磁波在电缆中传播速度。 定义波阻抗
Z uf if ub ib L0 C0
波阻抗Z表示了线路中同方向传播的电流波与电压波的 数值关系,但不同极性的行波向不同的方向传播,需要规定
一定的正方向。根据习惯规定:沿x正方向运动的正电荷相
应的电流波为正方向。在规定行波电流正方向的前提下,前 行波与反行波总是同号,而反行电压波与电流波总是异号, 即
高电压与绝缘技术概述PPT课件

在 日 常 生 活 中,随 处都可 以看到 浪费粮 食的现 象。也 许你并 未意识 到自己 在浪费 ,也许 你认为 浪费这 一点点 算不了 什么
高压电气设备
变压器
电容性设备
电力电缆
发电机
GIS ···
在 日 常 生 活 中,随 处都可 以看到 浪费粮 食的现 象。也 许你并 未意识 到自己 在浪费 ,也许 你认为 浪费这 一点点 算不了 什么
三相线损 △P = 3I2R
其中I =
P 3U cos
;
R=
l S
△P =
P2 l U 2 S cos2
P2l U2S
R:导线电阻
:导线电阻率
l:导线长度
S:导线截面积
P:传输功率
U:线路电压
在 日 常 生 活 中,随 处都可 以看到 浪费粮 食的现 象。也 许你并 未意识 到自己 在浪费 ,也许 你认为 浪费这 一点点 算不了 什么
高压电网向特高压电网发展的历程
中国, 1949年新中国成立后,按电网发展统一电压等级, 逐渐形成经济合理的电压等级系列:
1952年,用自主技术建设了110kV输电线路,逐渐形成 京津唐110kV输电网; 1954年,建成丰满至李石寨220kV输电线路,随后继续 建设辽宁电厂至李石寨,阜新电厂至青堆子等220kV线 路,迅速形成东北电网220kV骨干网架; 1972 年建成330kV 刘家峡— 关中输电线路,全长534km, 随后逐渐形成西北电网330kV骨干网架; 1981年建成500kV姚孟—武昌输电线路,全长595km。
在 日 常 生 活 中,随 处都可 以看到 浪费粮 食的现 象。也 许你并 未意识 到自己 在浪费 ,也许 你认为 浪费这 一点点 算不了 什么
电力系统绝缘配合—绝缘配合的方法(高电压技术课件)

U phm
三、统计法的特点与应用
统计法的特点 •对 统 计 规 律 的 认 识 有 待 资 料 累 积 和 完 善 , 试 验 工 作 量 大 。 •当 降 低 绝 缘 水 平 具 有 显 著 的 经 济 效 益 时 , 统 计 法 才 特 别 有 价 值 。 •应 用 •非 自 恢 复 绝 缘 配 合 仍 采 用 惯 用 法 。 •主 要 用 于 3 3 0 k V 及 以 上 系 统 中 自 恢 复 绝 缘 的 配 合 , 主 要 是 输 变 电 设 备 的 外 绝 缘
9.2.2 绝缘配合的方法
9.2.2.3绝缘配合的简化统计法
一、简化统计法的概述
统计法存在的问题: 一些随机因素的概率分布有 时未知,非自恢复绝缘放电 概率测量成本太大,虽然合 理,不实用。
简化统计法:
对过电压和绝缘特性两条概率 曲线的形状,作出一些通常认 为合理的假定,并已知其标准 偏差。在此基础上可以计算绝 缘的故障率。
配合 系数取值具有一定的随意性和故障未知性 。
统计法:
02
在已知过电压幅值和绝缘放电电压的概率分布后,用 计算方法求出绝缘放电的概率和线路故障率,在技术
经济比较的基础上,正确的确定绝缘水平。
统计法的优点:
03 不仅定量地给出设计的安全程度,并能按照使每年
设备折旧费、运行费及事故损失费最小的原则进行 优化设计
二、简化统计法
假设过电压与绝缘放电概率均符合正态分布,并已知它们的标准偏差,这样就可以用与某一参考概 率相对应的点来表示它们的分布曲线。
分别称为统计过电压US和统计绝缘耐压UW。
KS
UW US
KS:统计安全因数
电工委员会绝缘配合标准推荐采用概率为2%的过电压值为“统计过电压US”,推荐放电概率为10%、即 耐受概率为90%的耐受电压值为绝缘的统计耐受电压UW”。 绝缘故障率与这两个值有关,通过计算可以得出故障率R;再根据经济技术比较,确定能接受的R值,选择 相应的绝缘水平。
三、统计法的特点与应用
统计法的特点 •对 统 计 规 律 的 认 识 有 待 资 料 累 积 和 完 善 , 试 验 工 作 量 大 。 •当 降 低 绝 缘 水 平 具 有 显 著 的 经 济 效 益 时 , 统 计 法 才 特 别 有 价 值 。 •应 用 •非 自 恢 复 绝 缘 配 合 仍 采 用 惯 用 法 。 •主 要 用 于 3 3 0 k V 及 以 上 系 统 中 自 恢 复 绝 缘 的 配 合 , 主 要 是 输 变 电 设 备 的 外 绝 缘
9.2.2 绝缘配合的方法
9.2.2.3绝缘配合的简化统计法
一、简化统计法的概述
统计法存在的问题: 一些随机因素的概率分布有 时未知,非自恢复绝缘放电 概率测量成本太大,虽然合 理,不实用。
简化统计法:
对过电压和绝缘特性两条概率 曲线的形状,作出一些通常认 为合理的假定,并已知其标准 偏差。在此基础上可以计算绝 缘的故障率。
配合 系数取值具有一定的随意性和故障未知性 。
统计法:
02
在已知过电压幅值和绝缘放电电压的概率分布后,用 计算方法求出绝缘放电的概率和线路故障率,在技术
经济比较的基础上,正确的确定绝缘水平。
统计法的优点:
03 不仅定量地给出设计的安全程度,并能按照使每年
设备折旧费、运行费及事故损失费最小的原则进行 优化设计
二、简化统计法
假设过电压与绝缘放电概率均符合正态分布,并已知它们的标准偏差,这样就可以用与某一参考概 率相对应的点来表示它们的分布曲线。
分别称为统计过电压US和统计绝缘耐压UW。
KS
UW US
KS:统计安全因数
电工委员会绝缘配合标准推荐采用概率为2%的过电压值为“统计过电压US”,推荐放电概率为10%、即 耐受概率为90%的耐受电压值为绝缘的统计耐受电压UW”。 绝缘故障率与这两个值有关,通过计算可以得出故障率R;再根据经济技术比较,确定能接受的R值,选择 相应的绝缘水平。
电力系统的绝缘配合 高电压技术 教学PPT课件

Uω1.5/40=
1.1Uc.5 15 0.84
= 1.1 670+15 895.3kV
0.84
5.外绝缘的截波冲击试验电压
Uω1.5/2=
1.25(1.1Uc.5 0.84
15)
=
1.25 (1.1 670+15) 1119kV 0.84
例题:已知系统额定电压UN =220kV,FZ-220避雷 器5kA下的残压为U=664~670kV,内过电压计算 倍数K0 =3,试计算各种试验电压。 6.内绝缘的工频试验电压
空气间隙的确定起决定作用的是雷电过电压。
第三节 电气设备试验电压的确定
确定电气设备的绝缘水平即是确定其耐受电压 试验值,包括额定短时工频耐受电压、额定雷电冲击 耐受电压和额定操作冲击耐受电压等。
➢额定短时工频耐受电压,即1min工频试验电压; ➢额定雷电冲击耐受电压,用全波雷电冲击电压进行试 验,称为基本冲击绝缘水平(BIL); ➢额定操作冲击耐受电压,用规定波形操作冲击电压进 行,称为操作冲击绝缘水平(SIL)。
在实际运行中,还要考虑零值绝缘子存在 的可能性,因此每串绝缘子片数应为:
n2 n2' n0 (8-4)
式中n0为预留的零值绝缘子片数,见表8-2
(三)按雷电过电压确定每串绝缘子的片数
要求具有一定的雷电冲击绝缘水平,保证 线路的耐雷水平和雷击跳闸率满足规定要求。 一般情况下,按雷电过电压要求的片数通常不 一定就大于和,雷电过电压不一定成为确定值 的决定性因素。但在特殊高杆塔或高海拨地区, 则会大于和。表8-3 为各级电压线路直线杆每 串绝缘子片数。
二、 内、外绝缘的工频试验电压
(1) 内绝缘1min工频试验电压。内绝缘工频试验电 压为
高电压技术(全套课件)

◆电子崩的形成(BC段电流剧增原因)
图1-5 均匀电场中的电子崩计算
电子碰撞电离系数α:代表一个电子沿电场方 向运动1cm的行程中所完成的碰撞电离次数 平均值。
dn ndx
dn dx
n
x
n n0e0 dx
n n0e x
n n0ed
n n n0 n0 (ed 1)
◆影响碰撞电离的因素
● 除了电力工业、电工制造业外,高电压技术 目前还广泛应用于大功率脉冲技术、激光 技术、核物理、等离子体物理、生态与环 境保护、生物学、医学、高压静电工业应 用等领域。
第一篇 电介质的电气强度
第一章 气体放电的基本物理过程
第一节 带电粒子的产生和消失 第二节电子崩 第三节 自持放电条件 第四节 起始电压与气压的关系 第五节 气体放电的流注理论 第六节 不均匀电场中的放电过程 第七节 放电时间和冲击电压下的气隙击穿 第八节 沿面放电和污闪事故
《高电压技术》
绪论
● 高电压技术主要研讨高电压(强电场)下的各种电气物理问题。 ● 高电压技术的发展始终与大功率远距离输电的需求密切相关。 ● 对于电力类专业的学生来说,学习本课程的主要目的是学会正确处理电力系统中过电压与绝 缘这一对矛盾。 ● 为了说明电力系统与高电压技术的密切关系, 以高压架空输电线路的设计为例,在图 0-1中 列出了种种与高电压技术直接相关的工程问题。
在大气压和常温下,电子在空气中的平均自由行程长度的数 量级为10-5cm 。
◆ 带电粒子的运动
● 带电粒子的迁移率:该粒子在单位场强(1V/m) 下沿电场方向的漂移速度。
k v E
电子的迁移率远大于离子的迁移率
● 扩散:在热运动的过程中,粒子会从浓度较大的 区域向浓度较小的区域运动,从而使其浓度分布均 匀化的物理过程。
电力系统绝缘配合—绝缘配合的发展(高电压技术课件)

1
由于冲击闪络和击穿电压的分散性,为了使上一级伏秒特性的下限高于下一级伏秒特性,并保持一定的裕度, 采用多级配合的方法会把设备的内绝缘水平抬得很高。
9.1.3绝缘配合的发展 9.1.3.2两级配合
1940年后,避雷器保护特性和质量稳定性不断改善
9.1.3绝缘配合的对于超高压、特高压远距离输电,降低绝缘水平的经济效益日益重要
容许冒一定的风险(闪络、击穿概率),有效地减小绝缘裕度,获得优化的经济指标。
应用
发展
适用于具有自恢复能力的绝缘和无自恢复能力的绝缘
9.1.3绝缘配合的发展 9.1.3.1多级配合
当时所用的避雷器保护性能不够稳定和完善,因而不能把它的保护特性作为绝缘配合的基础。
多级配合的原则是:价格越昂贵、修复越困难、损坏后果越严重的绝缘结构,其绝缘水平应越高。
1940年以前
变电所绝缘高于线路,设备内绝缘高于外绝缘
TODAY
时间
原则
由来
应用
图例 以50%伏秒特性表示的变电所绝缘的多级配合
变电所中的绝缘水平分为四级,(1)避雷器;(2)并联在套管上的放电间隙;(3)套管;(4)内绝缘
图 在套管上跨接放电间隙
2
由于避雷器的保护性能不够稳定和完善,因而把被保护绝缘的绝缘水平再分成若干档次,以减轻绝缘故障后果、减少施工损失。
按作用在绝缘上的最大过电压和最小的绝缘强度的概念进行绝缘配合的。即首先确定设备上可能出现的最危险的过电压,然后根据运行经验乘上一个考虑各种因素的影响和一定裕度的系数,以补偿在估计最大过电压和最低耐压强度时的误差,从而决定绝缘应耐受的电压水平。
两级配合的方法
两级配合的特点
以两级配合为基本原则的惯用法至今仍在广泛应用。除了在330kV及以上的超高压线路绝缘的设计中采用统计法以外,其他情况下主要采用的仍为惯用法。
由于冲击闪络和击穿电压的分散性,为了使上一级伏秒特性的下限高于下一级伏秒特性,并保持一定的裕度, 采用多级配合的方法会把设备的内绝缘水平抬得很高。
9.1.3绝缘配合的发展 9.1.3.2两级配合
1940年后,避雷器保护特性和质量稳定性不断改善
9.1.3绝缘配合的对于超高压、特高压远距离输电,降低绝缘水平的经济效益日益重要
容许冒一定的风险(闪络、击穿概率),有效地减小绝缘裕度,获得优化的经济指标。
应用
发展
适用于具有自恢复能力的绝缘和无自恢复能力的绝缘
9.1.3绝缘配合的发展 9.1.3.1多级配合
当时所用的避雷器保护性能不够稳定和完善,因而不能把它的保护特性作为绝缘配合的基础。
多级配合的原则是:价格越昂贵、修复越困难、损坏后果越严重的绝缘结构,其绝缘水平应越高。
1940年以前
变电所绝缘高于线路,设备内绝缘高于外绝缘
TODAY
时间
原则
由来
应用
图例 以50%伏秒特性表示的变电所绝缘的多级配合
变电所中的绝缘水平分为四级,(1)避雷器;(2)并联在套管上的放电间隙;(3)套管;(4)内绝缘
图 在套管上跨接放电间隙
2
由于避雷器的保护性能不够稳定和完善,因而把被保护绝缘的绝缘水平再分成若干档次,以减轻绝缘故障后果、减少施工损失。
按作用在绝缘上的最大过电压和最小的绝缘强度的概念进行绝缘配合的。即首先确定设备上可能出现的最危险的过电压,然后根据运行经验乘上一个考虑各种因素的影响和一定裕度的系数,以补偿在估计最大过电压和最低耐压强度时的误差,从而决定绝缘应耐受的电压水平。
两级配合的方法
两级配合的特点
以两级配合为基本原则的惯用法至今仍在广泛应用。除了在330kV及以上的超高压线路绝缘的设计中采用统计法以外,其他情况下主要采用的仍为惯用法。