高电压技术课件最终版

合集下载

高电压技术课件ppt

高电压技术课件ppt

总结词
高电压技术经历了多个阶段,从最初的直流输 电到现代的特高压交流输电,其技术水平和应用范围 不断得到提升和拓展。未来,随着新能源、智能电网 等领域的快速发展,高电压技术将继续向更高电压等 级、更远距离输电、更高效节能等方向发展。同时, 随着科技的不断进步,高电压技术还将与其他领域的 技术进行交叉融合,产生更多的创新应用。
应急预案制定
制定详细的高电压安全事故应急预案,明确应急组织、救援程序 和救援措施。
应急演练和培训
定期进行应急演练和培训,提高工作人员应对高电压安全事故的能 力和意识。
及时救援和处理
一旦发生高电压安全事故,应迅速启动应急预案,采取有效措施进 行救援和处理,以减少人员伤亡和财产损失。
06 实践案例分析
高电压设备的绝缘测试与维护
绝缘测试
为了确保高电压设备的安全运行,必 须定期进行绝缘测试。常见的绝缘测 试方法包括耐压测试、介质损耗测试 、局部放电测试等。
维护与检修
高电压设备的运行过程中,应定期进 行维护和检修,及时发现和处理设备 存在的隐患和缺陷,保证设备的正常 运行。
高电压的电磁场与电磁屏蔽
高电压技术在电力系统中的作用
总结词
高电压技术在电力系统中的作用
详细描述
高电压技术在电力系统中扮演着至关重要的角色。通过高压输电,可以大幅度提高输电效率,降低线损,减少能 源浪费。同时,高电压也是电力系统稳定运行的重要保障,能够有效地解决电力供需矛盾,保障电力系统的安全 稳定运行。
高电压技术的发展历程与趋势
某地区高电压输电线路的设计与优化
总结词
考虑地理环境、气象条件、线路长度等 因素,采用先进的输电技术,优化设计 高电压输电线路。
VS
详细描述

高电压技术全套ppt课件

高电压技术全套ppt课件
弱电场——电场强度比击穿场强小得多 会出现:极化、电导、介质损耗等。
强电场——电场强度等于或大于放电起始场强或击穿 场强:
会出现:激励、电离导致放电、闪络、击穿等。
原子的激励
激励(激发)——原子在外界因素(电场、高温等) 的作用下,吸收外界能量使其内部能量增加,原子 核外的电子将从离原子核较近的轨道上跳到离原子 核较远的轨道上去的过程。
电离能(Wi)——使稳态原子或分子中结合最松弛 的那个电子电离出来所需要的最小能量。(电子伏
eV)
1eV=1V×1.6×10-19C=1.6×10-19J(焦耳)
1V电压
qe:电子的电荷(库伦)
注意 原子的电离过程产生带电粒子。
原子的激励与电离的关系
➢ 原子发生电离产生带电粒子的两种情况:
带电质点(电子、负离子或正离子)
一、带电质点的产生 二、带电质点的消失
一、带电质点的产生
带电质点的来源:游离 1.定义 游离:中性质点获得外界能量分解出带电质点的过程。 游离能(Wi) :使中性质点发生游离所需的能量。 2.游离的分类 (一)空间游离:碰撞游离、光游离、热游离。 (二)表面游离:热电子发射、二次发射、光发射、
1、电介质的分类
A:按介质形态分: ➢ 气体电介质 ➢ 液体电介质 ➢ 固体电介质
其中气体最常见。气体介质同其它介质相比,具有在 击穿后完全的绝缘自恢复特性(自恢复绝缘),故应用 十分广泛。
输电线路以气体 作为绝缘材料
变压器相间绝缘以 液体(固体)作为
绝缘材料
电缆是用 固体介质 作为绝缘
高压电气设备中的绝缘介质有气体、液体、固体以及其 它复合介质。由于气体绝缘介质不存在老化的问题,在击穿 后也有完全的绝缘自恢复特性,再加上其成本非常廉价,因 此气体成为了在实际应用中最常见的绝缘介质。

高电压技术课件优秀PPT完整PPT

高电压技术课件优秀PPT完整PPT
Z
arctg XS Z
cos K02 cos('l )
电源容量越小,过电压越大,因此在计算工频过电压时, 应计及系统可能出现的最小运行方式,即XS 可能的最大值。
Ø 不对称短路引起的工频电压升高(A相短路为例)
UB
(a2
1)Z0 Z0
(a2 a)Z2 Z1 Z2
EA
UC
(a 1)Z0 (a2 a)Z2 Z0 Z1 Z2
Xs U1
1
l

U2
2
若线路末端开路,即:I2 0
可得线路首末端电压关系为
U 2U 1/cosl
Z:线路波阻抗,约300
相位系数 L0C0
0.060/km
1 4 波长谐振:线路末端电压将趋于无穷大
'l 2 l2w15k0m 0
f3160/5 060k0m 0
电源的容量的影响: 1、无限大容量(Xs=0) 2、有限大容量(Xs>0)加剧电容效应
中性点经消弧线圈接地的35 ~ 60kV系统:在过补偿状态运行时,X0 为很大的正值,单相接地时健全相电压接近线电压。
中性点经消弧线圈接地的35 ~ 60kV系统:在过补偿状态运行时,X0 为很大的正值,单相接地时健全相电压接近线电压。
12.
线性谐振条件是等值回路中的自振频率等于或接近电源频率。
采用良导体地线降低输电线路的零序阻抗
Ø 操作过电压与工频电压升高是同时发生的,因此工频电 压的升高直接影响操作过电压的幅值。
Ø 工频电压升高持续时间长,对设备绝缘及其运行性能有 重大影响。例如,可导致油纸绝缘内部游离,污秽绝缘子的 闪络、铁芯的过热、电晕等。
12.1.2 工频电压升高的原因
Ø 空载长线的电容效应

高电压技术(全套)PPT课件

高电压技术(全套)PPT课件
17电介质极化种类及比较极化类型产生场合所需时间能量损耗产生原因电子式极化任何电介质10141015束缚电子运行轨道偏移离子式极化离子式结构电介质10121013几乎没有离子的相对偏移偶极子极化极性电介质1010102夹层极化多层介质的交界面101自由电荷的移动1812电介质的介电常数在真空中有关系式式子中e场强矢量d与e同向比例常数为真空的介电常数10854109880在介质中d与e同向为介质的相对介电常数它是没有量纲和单位的纯数
9
§1.0 电力系统的绝缘材料
绝缘的作用:
绝缘的作用是将电位不等的导体分隔开,使其没有电 气的联系并能保持不同的电位。
分类:
气体绝缘材料:空气,SF6气体等 固体绝缘材料:陶瓷,橡胶,玻璃,绝缘纸等 液体绝缘材料:变压器油 混合绝缘:电缆,变压器等设备
10
§1.1 电介质的极化
定义:电介质在电场作用下产生的束缚电荷的弹 性位移和偶极子的转向位移现象,称为电 介质的极化。
上述的三种极化是带电质
点的弹性位移或转向形成的, 而空间电荷极化的机理则与上 述三种完全不同,它是由带电 质点(电子或正、负离子)的移 动形成的。
最明显的空间电荷极化是 夹层极化。在实际的电气设备 中,如电缆、电容器、旋转电 机、变压器、互感器、电抗器 等的绝缘体,都是由多层电介
质组成的。
如图l-4所示,各层介质的电容分别为C1和C2;各层介质的电导分别为G1 和G2;直流电源电压为U。
26
(2)计算用等效电路(或简化等效电路)(从工程实际测量出发)
GeqR11k
2CP 2RP 1(CPRP)2
CeqCg
CP
1(CPRP)2
27
(3) 相量图
——介质损耗角 ——功率因数角

高电压技术第一章课件.ppt

高电压技术第一章课件.ppt
• 这些电离强度和发 展速度远大于初始
电子崩的二次电子
崩不断汇入初崩通
道的过程称为流注。
流注条件
• 流注的特点是电离强度很大和传播速度很快, 出现流注后,放电便获得独立继续发展的能 力,而不再依赖外界电离因子的作用,可见 这时出现流注的条件也就是自持放电的条件。
• 流注时初崩头部的空间电荷必须达到某一个临界 值。对均匀电场来说,自持放电条件为:
n
n0
e
dx
0
n n0ed
• 途中新增加的电子数或正离子数应为:
n na n0 n0 (ed 1)
• 将等号两侧乘以电子的电荷qe ,即得 电流关系式::
I I0ed I0 n0qe
一旦除去外界电离因子?
(三)自持放电与非自持放电
在I-U曲线的BC段 一旦去除外电离因素,
气隙中电流将消失。 外施电压小于U0时 的放电是 非自持放 电。
• 复合可能发生在电子和正离子之间,称 为电子复合,其结果是产生一个中性分 子;
• 复合也可能发生在正离子和负离子之间, 称为离子复合,其结果是产生两个中性 分子。
气体放电的基本理论
• 汤逊理论 • 流注理论 • 巴申定律
一 汤逊气体放电理论
1. 电子崩
• 电子崩的形成过程 • 碰撞电离和电子崩引起的电流 • 碰撞电离系数
一、带电粒子在气体中的运动
(一)自由行程长度
气体中存在电场时, 粒子进行 热运动和 沿电场定向运动
• 各种粒子在气体中运动时 不断地互相碰撞,任一粒 子在1cm的行程中所遭遇 的碰撞次数与气体分子的 半径和密度有关。
• 单位行程中的碰撞次数Z 的倒数λ
–即为该粒子的平均自由行 程长度。
二、带电粒子的产生

高电压技术(详细版)

高电压技术(详细版)

1. 气体中带点质点的产生,激发与游离2. 游。

离的方式有:碰撞游离、光游离、热游离和表面游离。

3. 由碰撞银翼的游离称为碰撞游离。

气体在热状态下引起的游离过程称为热游离。

电子从金属电极表面逸出来的过程称为表面游离4。

. 导致带点质点从游离区域消失或者削弱的过程称为去游离。

去游离的方式:带点质点的扩散,带点质点的复合以及电子的附着效应5。

. 汤逊放电理论认为放电起始于有效电子通过碰撞形成电子崩,通过正离子撞击阴极,不断从阴极金属表面溢出自由电子来弥补引起电子碰撞游离所需的有效电子。

适用于低气压、短间隙均匀电场中的气体放电过程和现象6。

. 气体间隙的击穿电压 UF 是气体压力 P 和间隙距离S 乘积的函数 ,这一规律称为巴申定律7. 流注理论认为放电起始于有效电子通过碰撞形成电子崩,形成电子崩后,由于正负空间电荷对电场的畸变作用导致正负空间电荷的复合,复合过程中所释放的光能又引起光游离,光游离结果所得到的自由电子又引起新的碰撞游离,形成新的电子崩且汇合到最初电子崩中构成流注通道。

适用于大气压下,非短间隙均匀电场中的气体放电过程和现. 电子崩一个电子在电场作用下由阴极向阳极运动时,将与气体原子(或分子)碰撞,如果电场很强、电子的能量足够大时 ,会发生碰撞电离,使原子分解为正离子和电子 ,此时空间出现两个电子。

这两个电子又分别与两个原子发生碰撞电离,出 4 个自由子。

如此进行下去 ,空间中的自由电子将迅速增加类似于电子雪崩,故名,电子崩9。

. 非自持放电:当外加电压较低时,只有由外界电离因素所造成的带电粒子在电场中运动而形成气体放电电流,一旦外界电离作用停止,气体放电现象即随之中断,这种放电称为非自持放1电0. U50%就是在该冲击电压作用下,放电的概率为50%。

其可用来反应绝缘耐受冲击电压的能力11. 。

同一波形。

不同幅值的冲击电压作用下,间隙上出现的电压最大值和放电时间的关系曲线称为间隙的伏秒特性曲线。

高电压技术14过电压概论课件.ppt

高电压技术14过电压概论课件.ppt
一、内部过电压的分类
内部过电压的定义
电力系统中由于断路器操作、故障发生及消失或 其他原因,使系统参数发生变化,引起电网内部 电磁能量转化或传递所造成的电压升高
导线的折断
通过电容的静电耦合和
非线性电感(磁饱和 现象)满足谐振的条 件
互感的电磁耦合,在相 邻送电线路之间或变压 器绕组之间
高电压技术14过电压概论课件
采取必要措施将操作过电压限制在规定水平以下
➢ 线路上装设并联电抗器,限制工频电升高 ➢ 改进断路器性能,采用带有并联电阻的断路器 ➢ 采用金属氧化物避雷器限制操作过电压
高电压技术14过电压概论课件
五、内部过电压案例 -----切空线操作过电压
原因是分闸过程中触头间电弧重燃现象所引起的
过电压产生原理
工频过电压的分类
空载长线路的电容效应
当首端的输入阻抗为容性,计及 电源内阻抗的影响(感性)时,不仅 使线路末端电压高于首端,而且 使线路首、末端电压高于电源电 动势
不对称接地故障
以单相接地故障最为常见,且引起 的工频电压升高也最严重
负荷突变
断路器跳闸前输送负荷的大小、 空载长线路的电容效应、 发电机励磁系统及电压调整器的 特性、原动机调速器及制动设备 的惰性
断线后非全相运行,可能组成多种串联谐振回路 ,回路中的电感可以是电网中空载或轻载运行的 负载变压器的励磁电感以及消弧线圈的电感,回 路中的电容可以是导线对地和相间的部分电容, 电感线圈对地杂散电容
高电压技术14过电压概论课件
➢ 电磁式电压互感器引起的铁磁谐振过电压
电网出现某些扰动,如电压互感器的突然合闸 、瞬间单相弧光接地使健全相电压突升至线电 压、故障相接地消失时可能有电压的突然上升 ,在这些暂态中的涌流使电压互感器三相电感 饱和,且饱和程度不同,电网三相对地阻抗明 显不同,此时与设备电容或对地电容构成谐振 回路,可能激发起各种谐波谐振

高电压技术(全套课件)

高电压技术(全套课件)

◆电子崩的形成(BC段电流剧增原因)
图1-5 均匀电场中的电子崩计算
电子碰撞电离系数α:代表一个电子沿电场方 向运动1cm的行程中所完成的碰撞电离次数 平均值。
dn ndx
dn dx
n
x
n n0e0 dx
n n0e x
n n0ed
n n n0 n0 (ed 1)
◆影响碰撞电离的因素
● 除了电力工业、电工制造业外,高电压技术 目前还广泛应用于大功率脉冲技术、激光 技术、核物理、等离子体物理、生态与环 境保护、生物学、医学、高压静电工业应 用等领域。
第一篇 电介质的电气强度
第一章 气体放电的基本物理过程
第一节 带电粒子的产生和消失 第二节电子崩 第三节 自持放电条件 第四节 起始电压与气压的关系 第五节 气体放电的流注理论 第六节 不均匀电场中的放电过程 第七节 放电时间和冲击电压下的气隙击穿 第八节 沿面放电和污闪事故
《高电压技术》
绪论
● 高电压技术主要研讨高电压(强电场)下的各种电气物理问题。 ● 高电压技术的发展始终与大功率远距离输电的需求密切相关。 ● 对于电力类专业的学生来说,学习本课程的主要目的是学会正确处理电力系统中过电压与绝 缘这一对矛盾。 ● 为了说明电力系统与高电压技术的密切关系, 以高压架空输电线路的设计为例,在图 0-1中 列出了种种与高电压技术直接相关的工程问题。
在大气压和常温下,电子在空气中的平均自由行程长度的数 量级为10-5cm 。
◆ 带电粒子的运动
● 带电粒子的迁移率:该粒子在单位场强(1V/m) 下沿电场方向的漂移速度。
k v E
电子的迁移率远大于离子的迁移率
● 扩散:在热运动的过程中,粒子会从浓度较大的 区域向浓度较小的区域运动,从而使其浓度分布均 匀化的物理过程。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二.气隙击穿电压的理论计算
均匀电场小气隙击穿电压的计算公式为:
——气体的相对密度; ——电子所在点的气体的电场强度。 S ——极板之间的距离(cm)。 ——汤申德第三游离系数 A、B——均为与气体性质有关的常数,对空气: A=109.61/kPa,B=2738.40kV/kPa;
由此看出,气隙的击穿电压不仅与气 隙的大小有关,还与气隙的中性质点的 密度有关,且是二者乘积的函数,这个 规律称为巴申定律。 因 为 它 的 曲 线 与 在 此 公 式 推 导 出 (1890年)的前一年(1889年)由巴申 通过实验得出,所以此规律被命名为巴 申定律。同时气隙的击穿电压还与阴极 材料有关。
b~c段 带电质点在外界电场的作用下,获得很大的加速度, 以致在与中性质点碰撞时,具有很高的速度,使电子的动 能较大,可以使部分中性质点产生碰撞游离,使气隙中移 动的带电质点增多,所以电流随外加电压的增高而急剧增 大。
C~ 外电场使移动的电荷(主要是指电子)具有很大的 动能,是所撞击的中性质点产生剧烈的碰撞游离,气隙电 荷急剧增多,导致其失去绝缘性能而击穿。
雷电过电压的特点
作用时间短 峰值高 是电力系统特别是110kV及以下系统
的最危险的过电压。
短时过电压
这是由单相接地、突然甩负荷及由 谐振引起的电力系统内部过电压。 其特点是过电压的数值一般不太高, 由于110kV及以下的电力系统绝缘裕 度高,一般不会造成电气设备的损 坏,这种过电压却是过电压保护装 置动作条件的重要依据,在系统设 计时应对这种过电压加以限制。
操作过电压
由系统操作或故障引起的过渡性质 的过电压。过电压时间短,衰减快, 过电压辐值一般不超过电气设备额 定电压的3.5倍。这种过电压一般不 会对电气设备的绝缘造成危害,但 对绝缘较弱的电气设备及直配电机 的绝缘威胁较大,必须予以重视。
电介质
一、导体和绝缘体 二、电介质的概念 三、电介质的物质形态 四、电介质的电导
2. 光游离
短波射线的光子具有很大的能量,它以光 的速度运动,当它射到中性介质的分子或 原子上时,所产生的游离称为光游离。
光子的能量:
式中
W h
h 普朗克常数,等于6.6260755 1034 J.s
-光的频率(Hz)
紫外,X射线,是引起光游离的主要因素。
3. 热游离
在高温下,气体的质点热运动加 剧,相互碰撞而产生的游离称为 热游离。
带电质点的消失的形式:
1、带电质点的扩散:由于不同区域种的带 电质点的浓度不同,电荷从浓度高的区 域向浓度低的区域运动的现象称为带电 质点的扩散。
2、电质点的复合:正离子与负离子相遇发 生电荷的传递,而相互综合还原成中性 质点的现象称为带电质点的复合。
第二节 均匀电场小气隙的放电
一.气隙放电的伏安特性曲线 二.气隙击穿电压的理论计算 三.巴申曲线
一.气隙放电的伏安特性曲线:
十九世纪九十年代,英国物理学家汤深 德(Townsend)采用图1 的实验装置测 出了气体小间隙的伏安特性曲线如图2所 示。
汤深德放电理论
o~a段 外加电压上升,导致气隙的电场强度上升,在自由 行程内,电子的加速度增加,使移动电子的速度加快,所 以电流增大。
a~b段 虽然外加电压上升,但由于电子在运动中与其它中 性质点相碰撞,使电子损失能量,导致电子的移动速度趋 于饱和,所以电流几乎不随电压的变化而变化。
1 碰撞游离
运动的质点(可以是带电的,也可以是 中性质点)撞击另一个质点,且使其分 解成为 两个带电质点的现象称为碰撞 游离。
发生碰撞游离的条件:撞击质点的总能 量(动能+位能)大于被撞击质点的游 离能;有一定的相互作用时间。
特点:可以一次完成,也可以分级完成。
1.游离能:质点游离所需的最小能量称为游 离能。 2.激励:当撞击质点的能量小于被撞质点的 游离能时,使电子跃迁到更高的能级的现象 称为质点的激励。处于激励状态的质点易游 离。 3.反激励:处于激励状态的质点如果没有其 它质点撞击时,恢复到原来的运行状态的现 象称为质点的反激励。反激励将把激励时所 吸收的能量以光的状态释放出来。
本课程的主要内容
➢ 高电压绝缘理论:研究如何利用电介质 的电气性能为电力系统服务,预防事故 的发生;
➢ 高电压试验技术:研究如何应用通过给 设备绝缘施加较高电压的方法来检查设 备是否有安全隐患的技术;
➢ 过电压及其防护技术:讨论电力系统过 电压的产生,发展机理,及其如何限制 其发展和限制其产生的措施。
前言
设备在运行中可能承受的过电压 电介质 本课程的主要内容 本课程的主要任务
设备在运行中可能承受的过电压
雷电过电压 短时过电压 操作过电压
雷电过电压的产生
雷电过电压也称大气过电压,是由 雷电直击电气设备或输电线路,雷 电流流过设备或线路 引起的过电压, 这个过电压称为直击雷过电压;也 可能雷落在输电线路附近,由于电 磁场的突然变化,在设备或线路上 产生的感应电压,这个过电压称为 感应雷过电压。
只有在5000~10000K的高温下 才能产生热游离。
4.表面游离
金属表面的电子受外界能量的作用后逸 出金属表面而成为自由电子的现象称为 表面游离。
表面游离的条件:外界能量大于金属的 逸出功。
二.带电质点的消失
去游离:带电质点从游离区消失或 游离的作用被削弱的现象称为带电
去游离。
带电质点的消失是由于游离作用小 于去游离的作用。
2.1 气体中带电质点的产生和消失 2.2 均匀电场小气隙的放电 2.3 均匀电场大气隙的放电 2.4 不均匀电场气隙的击穿 2.5 冲击电压下空气的击穿特性 2.6 提高气隙抗电强度的措施 2.7 沿面放电
第一节 气体中带电质点的产生与消失
一.带电质点的产生 碰撞游离 光游离 热游离 表面游离 二. 带电质点的消失 质点的扩散 质点的复合
本课程的主要任务
使学习者通过本课程的学习,基本掌握 各种绝缘介质的基本特性,如何正确的 利用它的基本方法;基本掌握应用高电 压试验技术对电气设备的绝缘进行预防 性试验的基本方法;能在通过工程设计, 预防和保护电气设备免受过电压的危害。 为从事有关方面的工作奠定必要的理论 基础。
第一章 气体电介质的电气性能
相关文档
最新文档