风力发电机组的控制系统

合集下载

风力发电机组的控制系统

风力发电机组的控制系统

04
风力发电机组控制系统 的优化与改进
控制策略优化
优化控制策略是提高风力发电机组 效率的关键。
控制策略的优化主要涉及对风电机组 的启动、运行和停机阶段的控制逻辑 进行改进,以更好地适应风速的变化 ,提高发电效率和稳定性。
传感器优化
优化传感器是提高风力发电机组控制精度的必要步骤。
通过改进传感器的设计、提高其精度和可靠性,可以更准确地检测风速、风向、 温度、压力等参数,为控制系统提供更准确的数据,从而提高发电效率。
能源设备进行互联互通,实现能源的优化利用和节能减排。
谢谢观看
偏航控制
01
偏航控制是风力发电机组控制系统中的另一项关键技术, 其目的是在风向变化时,自动调整机组的朝向,以保持最 佳的捕风角度。
02
偏航控制通过实时监测风向和发电机组的朝向,采用适当 的控制算法,自动调节机组的偏航机构,以实现最佳的捕 风效果。
03
常用的偏航控制算法包括:基于风向标的偏航控制、基于 扭矩传感器的偏航控制和基于GPS的偏航控制等。这些算 法能够根据风向的变化情况,自动调整机组的朝向,使其 始终保持在最佳的捕风角度。
是整个控制系统的核心,负责接收传 感器数据、执行控制算法并驱动执行 机构。
I/O模块
用于接收和发送信号,实现与传感器 和执行机构之间的通信。
人机界面
提供操作员与控制系统之间的交互界 面,显示机组状态和参数。
数据存储器
用于存储运行数据,便于故障分析和 优化运行。
控制算法
最大功率跟踪算法
载荷限制算法
根据风速传感器数据,自动调整发电机转 速和桨距角,使机组始终在最佳效率下运 行。
03
02
桨距调节机构
根据控制系统的指令,调整风轮桨 距角。

风力发电机组的控制系统设计与仿真

风力发电机组的控制系统设计与仿真

风力发电机组的控制系统设计与仿真一、引言风力发电作为可再生能源的一种重要形式,受到越来越多国家和地区的广泛关注和重视。

风力发电机组的控制系统对于提高发电效率和确保机组安全稳定运行具有至关重要的作用。

本文旨在介绍风力发电机组的控制系统设计和仿真,并探讨其在风力发电行业中的重要性和应用前景。

二、控制系统设计1. 控制系统架构风力发电机组的控制系统通常包括主控制器、传感器、执行器和通信模块等组成部分。

其中,主控制器负责整个系统的运行控制和监测;传感器用于采集风速、转矩、温度等参数;执行器控制叶片角度、转速等;通信模块用于与外部网络进行数据交互。

2. 控制策略风力发电机组的控制策略包括风轮转速控制、叶片角度控制和电网连接控制等。

其中,风轮转速控制可以通过调整叶片角度和变桨控制实现,以优化风轮在不同风速下的转速;叶片角度控制可以根据风速和转速等参数进行自适应调整,以达到最佳发电性能;电网连接控制包括对电力系统的稳定性和功率因数等进行监测和调整。

3. 仿真模型设计为了对风力发电机组的控制系统进行仿真验证,需要建立相应的仿真模型。

仿真模型应包括风速、转速、叶片角度和发电功率等参数,并结合风场条件和机组特性进行模拟。

在仿真过程中,可以通过改变参数和策略,评估不同控制系统设计对机组性能的影响,并找出最优解。

三、仿真应用与优化1. 性能评估通过仿真模型,可以对不同控制系统设计的风力发电机组进行性能评估。

包括发电效率、稳定性和可靠性等方面的指标。

根据评估结果,可以对控制系统进行优化设计,提高发电机组的整体性能。

2. 变桨控制优化变桨控制是风力发电机组中的重要环节,直接影响着叶片的角度和风轮的转速。

通过仿真模型,可以对不同变桨控制策略进行比较和优化。

例如,调整叶片角度的时机和角度范围,以提高风力发电机组的发电效率和稳定性。

3. 智能优化算法应用利用智能优化算法,可以对风力发电机组的控制系统进行优化设计。

例如,遗传算法、模糊控制和人工神经网络等算法可以结合仿真模型,寻求最佳的控制策略和参数配置,以提高机组的发电效率和适应性。

风力发电机组的控制与监测系统

风力发电机组的控制与监测系统

风力发电机组的控制与监测系统引言:风力发电作为一种可再生能源的重要形式,正逐渐成为全球能源结构转型的重要组成部分。

风力发电机组的控制与监测系统在保证发电机组安全运行和优化发电性能方面起着至关重要的作用。

本文将从控制系统和监测系统两个方面,探讨风力发电机组的控制与监测技术的发展和应用。

一、控制系统的发展与应用1.1 控制系统的基本原理风力发电机组的控制系统主要包括风机控制系统和发电机控制系统。

风机控制系统通过调节叶片角度和转速,使风机在不同风速下保持最佳运行状态;发电机控制系统则负责调节发电机的输出功率和频率,以适应电网的要求。

1.2 控制系统的发展趋势随着风力发电技术的不断发展,控制系统也在不断升级。

目前,自适应控制、模型预测控制和智能控制等技术被广泛应用于风力发电机组的控制系统中。

这些技术能够根据实时的风速和发电机组状态,实现自动调节和优化控制,提高发电效率和可靠性。

1.3 控制系统的应用案例以某风力发电场为例,其控制系统采用了自适应控制技术。

该系统通过实时监测风速、风向和发电机组状态等参数,自动调节叶片角度和转速,以实现最佳的风力利用和发电效率。

通过该控制系统的应用,该风力发电场的发电效率提高了10%,并且减少了停机维护次数,降低了运维成本。

二、监测系统的发展与应用2.1 监测系统的基本原理风力发电机组的监测系统主要用于实时监测发电机组的运行状态和故障诊断。

该系统通过传感器实时采集风速、叶片转速、温度、振动等参数,并通过数据分析和算法判断发电机组的运行状态和故障情况。

2.2 监测系统的发展趋势随着物联网和大数据技术的发展,风力发电机组的监测系统也在不断升级。

目前,无线传感器网络、云计算和机器学习等技术被广泛应用于监测系统中。

这些技术能够实现远程监测和数据分析,提高故障诊断的准确性和效率。

2.3 监测系统的应用案例以某风力发电场为例,其监测系统采用了无线传感器网络和云计算技术。

该系统通过无线传感器实时采集发电机组的运行数据,并将数据上传至云端进行存储和分析。

风力发电机组控制系统

风力发电机组控制系统

昝润鹏双馈机运行原理图•控制系统利用DSP或单片机,在正常运行状态下,主要通过对运行过程中对输入信号的采集、传输、分析,来控制风电机组的转速和功率;如发生故障或其它异常情况能自动地检测并分析确定原因,自动调整排除故障或进入保护状态•DSP(digital signal processor)是一种独特的微处理器,是以数字信号来处理大量信息的器件。

其工作原理是接收模拟信号,转换为0或1的数字信号。

再对数字信号进行修改、删除、强化,并在其他系统芯片中把数字数据解译回模拟数据或实际环境格式。

它不仅具有可编程性,而且其实时运行速度可达每秒数以千万条复杂指令程序,远远超过通用微处理器,是数字化电子世界中日益重要的电脑芯片。

它的强大数据处理能力和高运行速度,是最值得称道的两大特色。

•控制系统主要任务就是能自动控制风电机组依照其特性运行、故障的自动检测并根据情况采取相应的措施。

•控制系统包括控制和检测两部分,控制部分又分为手动和自动。

运行维护人员可在现场根据需要进行手动控制,自动控制应该在无人值守的条件下实施运行人员设置的控制策略,保证机组正常安全运行。

•检测部分将各种传感器采集到的数据送到控制器,经过处理作为控制参数或作为原始记录储存起来,在机组控制器的显示屏上可以查询,也要送到风电场中央控制室的电脑系统,通过网络或电信系统现场数据还能传输到业主所在城市的办公室。

•第一:低于切入风速区域。

一旦满足切入条件,控制启动风机。

•第二:切入风速到额定风速区域。

控制目标是最大风能捕获,通常将桨距角保持在某个优化值不变,通过发电机转矩控制叶轮转速,实现最佳叶尖速比。

•第三:超过额定风速区域。

通过变桨控制保持输出功率和叶轮转速恒定。

叶尖速比:叶轮的叶尖线速度与风速之比。

叶尖速比在5-15时,具有较高的风能利用系数Cp(最大值是0.593)。

通常可取6-8。

•风传感器:风速、风向;•温度传感器:空气、润滑油、发电机线圈等;•位置传感器:润滑油、刹车片厚度、偏航等;•转速传感器:叶轮、发电机等;•压力传感器:液压油压力,润滑油压力等;•特殊传感器:叶片角度、电量变送器等;•⑴控制系统保持风力发电机组安全可靠运行,同时高质量地将不断变化的风能转化为频率、电压恒定的交流电送入电网。

风力发电机控制系统介绍

风力发电机控制系统介绍

风力发电机控制系统介绍控制系统概述第一部分•风力发电机组的控制系统由各种传感器、控制器以及各种执行机构等组成。

各种传感器包括:风速传感器、风向传感器、转速传感器、位置传感器、各种电量变送器、温度传感器、振动传感器、限位开关、压力传感器以及各种操作开关和按钮等。

这些传感器信号将传送至控制器进行运算处理。

第一部分控制系统基础主控制器一般以PLC为核心,包括其硬件系统和软件系统。

上述传感器信号表征了风力发电机组目前的运行状态。

当机组的运行状态与设定状态不相一致时,经过PLC的适当运算和处理后,由控制器发出控制指令,将系统调整到设定运行状态,从而完成各种控制功能。

这些控制功能主要有:机组的启动和停机、变速恒频控制、变桨距控制、偏航控制等。

控制的执行机构可以采用电动执行机构,也可采用液压执行机构等。

•目前,风力发电机组主要有两种系统控制方式,即恒速恒频控制方式和变速恒频控制方式。

前者采用“恒速风力机+感应发电机”,常采用定桨距失速调节或主动失速调节来实现功率控制。

后者采用“变速风力机+变速发电机”,在额定风速以下时,控制发电机的转矩,使系统转速跟踪风速变化,以保持最佳叶尖速比,最大限度地捕获风能;在额定风速以上时,采用变速与变桨距双重控制,以便限制风力机所获取的风能,保证风电机组恒功率(一般为额定功率)输出。

PLC的控制顺序主控制系统(PLC)•WP4051 WPL110 WP4000 WPL150 WPL351 WPL351•触摸屏电源(通信)模块CPU模块电量测量模块I/O模块I/O模块可给8个存储、处理数据实时DSP 2个RS-485接口模块供电2个串口、电量测量16个DO、26个DI、4个AO光纤通信1个以太网接口可测量三相:4个计数器输入、以太网接口编程环境C、电压电流8个PT100、IEC61131-3 有功无功4个AI(±10V)功率因数4个AI(0~20mA)2个热敏电阻输入•目前,风力发电机组主要有两种系统控制方式,即恒速恒频控制方式和变速恒频控制方式。

风力发电机组控制系统及SCADA系统参考文档课件

风力发电机组控制系统及SCADA系统参考文档课件

0
环境温度:存储温度-40 C-70 C(低温型)运行温度:0-60 C;相对湿度:5-95%
境 适合于振动环
► 高性能的CPU,大容量的存储器
点 intel 80386EX,33MHZ,8M内存,最大64M程序存储区,适合于复杂的算法,兼具传统DCS和PLC的优
► 灵活的通讯方式,简洁的网络结构
质 ► 支持CAN、FASTBUS、Profibus等现场总线及工业以太网通讯方式,支持双绞线和光纤通讯介 多种可编程的I/O 模块
► (2)控制系统采用计算机控制技术实现对风力发电 机组组的运行参数、状态监控显示及故障处理,完 成机组的最佳运行状态管理和控制。
► (3)利用计算机智能控制实现机组的启停及功率优 化控制,主要进行软切入、功率因数补偿控制、大 小发电机切换和额定风速以上的恒功率控制。
风机控制系统组成
► 塔基控制柜
小风和逆功率停机是将风机停在待风状态, 当十分钟平均风速小于小风脱网风速或发电 机输出功率负到一定值后,风机不允许长期 在电网运行,必须脱网,处于自由状态,风 机靠自身的摩擦阻力缓慢停机,进入待风状 态。当风速再次上升,风机又可自动旋转起 来,达到并网转速,风机又投入并网运行。
自动运行控制要求 ► 3、普通
风电机组工作状态及控制方法
►V ≤V ≤V 切入风速
风速
转子最大转速下的风速
最佳Cp值控制:虽然最大Cp值在不同风速下是不相同的,但在风速一定 的情况下,需要使它达到最大。由上面的公式知道,只需要控制发电机 的转速ω ,使叶尖速比值为λ opt即可实现该风速下的最佳风能利用。发电机
的转速控制是通过风电变频器对发电机的控制来实现的。
轮毂控制柜
► 安装于柜体中,分3个部分,每个部分负责一个叶片 ► 轮毂PLC站

风力发电机组的控制系统

风力发电机组的控制系统

风力发电机组的控制系统风力发电作为一种清洁、可再生的能源,越来越得到人们的重视和使用。

而风力发电最核心的部分就是风力发电机组控制系统。

本文将深入探讨风力发电机组控制系统的相关知识。

一、风力发电机组的基本组成部分风力发电机组通常由3个主要部分组成:风力涡轮、变速器和发电机。

其中变速器是为了将风力涡轮的旋转速度转变成适合发电机的速度,同时保证风力涡轮在各种风速下都能正常转动。

而发电机则是将机械能转变为电能。

二、风力发电机组的控制系统的分类根据控制对象的不同,风力发电机组控制系统可以分为风力涡轮控制系统和整机控制系统。

1. 风力涡轮控制系统风力涡轮控制系统主要由风速测量仪、方向传感器、转矩信号传感器、角度传感器、变桨控制器等部分组成。

其主要作用是对风速和转矩进行检测和获取,然后根据这些数据控制机组桨叶的角度,调节风力涡轮的输出功率,以适应不同的风速和负载要求。

当遭遇大风或预期外部异常情况时,风力涡轮控制系统还可以自动停机。

2. 整机控制系统整机控制系统主要由仪表、控制器、通信模块、电动机传动机构、机械部分等部分组成。

整机控制系统起到了协调、控制各部分工作的作用,可以实现以最佳的效率输出电能。

其主要作用是监控发电机组的运转状态,通过检测各项参数实时调整变速器的转速,并及时进行告警和自动停机。

三、风力发电机组控制系统的关键技术1. 风力涡轮桨叶轴系统的控制风力涡轮桨叶轴系统的控制是风力发电机组控制系统的核心部分之一,也是解决风机输出功率波动和抖动问题的重要技术。

目前常见的调节方式包括机械调节和电动调节两种。

机械调节方式主要采用伺服驱动的伸缩臂与桨叶之间的连杆机构实现,而电动调节则利用变速器的电动油门、电子液压伺服系统或液压拉杆控制桨毂角度。

其中,电动调节方式更加智能化、精准化。

2. 整机控制系统的优化算法整机控制系统的优化算法是风力发电机组控制系统技术的另一个重要方向。

通过对风能、转速、功率、角度等数据进行分析,整机控制系统可通过智能算法,实现最大效率的输出电能。

风力发电机组的动力学与控制系统设计

风力发电机组的动力学与控制系统设计

风力发电机组的动力学与控制系统设计一、引言风力发电作为一种清洁、可再生的能源,受到越来越多国家和地区的广泛关注和推广。

风力发电机组作为风能转化为电能的重要设备,其动力学和控制系统设计对发电机组的稳定性、效率和可靠性至关重要。

本文主要探讨风力发电机组的动力学特性以及相应的控制系统设计。

二、风力发电机组的动力学特性1. 动态响应特性风力发电机组的动态响应特性是指在外部风速变化或负载变化的条件下,发电机组的功率调节性能和稳态响应特性。

其中,功率调节性能是指发电机组在风速变化时及时调整产生的功率;稳态响应特性是指发电机组在负载变化时及时调整产生的功率。

在设计动力学和控制系统时,需要考虑发电机组的动态响应速度、精度和稳定性。

提高发电机组的动态响应速度可以使其更好地适应风速和负载的变化,提高发电机组的动态响应精度可以减小功率调节误差,提高发电机组的稳定性可以避免过载或失速等故障。

2. 动态模型建立为了研究风力发电机组的动态响应特性,需要建立相应的动态模型。

常见的风力发电机组动态模型包括机械振动模型、气动模型和电磁模型。

机械振动模型用于描述风轮和发电机组的机械振动特性,包括弯曲振动、扭转振动和塔架振动等。

气动模型用于描述风轮受到风速和空气动力的影响,包括风轮的转速、风轮的载荷和风轮的输出功率等。

电磁模型用于描述发电机组的电磁特性,包括发电机的电压、电流和发电机的输出功率等。

建立风力发电机组的动态模型可以帮助设计和优化控制系统,提高发电机组的性能和可靠性。

三、风力发电机组的控制系统设计1. 控制目标风力发电机组的控制系统设计的目标是使发电机组在不同的工作条件下(包括不同的风速和负载)能够保持稳定的工作状态,并且提供最大的功率输出。

控制系统需要实时监测风速和负载的变化,并根据这些变化调整发电机组的运行状态。

通过调整发电机组的转速、转矩和叶片的角度等参数,可以实现对发电机组的功率输出进行控制。

2. 控制策略常见的风力发电机组控制策略包括变速控制和变桨控制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

链组成,以实现风机运行过程中的各种控制功能,同时必须满
足当严重故障发生时,能够保障风力发电机组处于安全状态。
3.3 风力发电机组控制系统的基本组成
整个系统由主控制系统、机舱偏航控制系统、叶轮变桨控 制系统组成,各子系统通过通讯母线系统互联在一起。 采用分布式I/O方式:主控+远程I/O站 PLC控制器组成实时多任务操作系统。所有控制逻辑 、控制策略、控制算法全部由PLC完成,执行单元按照 PLC输出的控制量进行动作。
多用焊接件
多用铸件
双馈式机组机舱底盘
机舱壳体
机舱壳体由机舱底盘、机舱罩和整流罩组成。
叶片 轮毂
齿轮箱 发电机 主轴
风向标 机舱电 气控制 柜
风速仪
整流罩 偏航电机
机舱罩
塔架
机舱底盘
6 主传动
功能:是将风力机的动力传递给发电机 组成:主轴、主轴承、齿轮箱、联轴器等。
6 主传动
7.风力发电机 •种类有很多:异步发电机,同步发电机,开关磁阻发电 机,轴向磁场发电机等。
使偏航载荷最小化。偏航速度设定为0.5°/s。
风向标的测量信号滤波后如果超过15°,风力发电机 组即开始偏航对风。风向标输出信号为0,风向即为0°。
人机界面
人机界面是计算机与操作人员的交互窗口。其主要
功能是风力发电机组运行操作、状态显示、故障监测和 数据记录。 一、运行操作 1.机组起停及复位
2.手动操作
第3章 风力发电机组的控制系统
•3.1 风力发电机组控制系统的控制策略和功能
•3.2 风力发电机组的基本组成
•3.3 风力发电机组控制系统的基本组成 •3.4 变桨距系统 •3.5 偏航系统 •3.6 液压系统
•3.7 安全保护系统
•3.8 控制系统的设计
3.1 控制系统的控制策略和功能
•控制目标: 保证系统的可靠运行 能量利用率最大 电能质量高 机组寿命长 •常规控制策略: 在运行的风速范围内,确保系统的稳定运行 低风速时,跟踪最佳叶尖速比,获取最大能量 高风速时,限制风能的捕获,保持风力发电机组输出的功率为额定值 减小阵风引起的转矩波动峰值,减小风轮的机械应力和输出的功率波动, 避免共振 减小功率传动链的暂态响应 控制器简单,控制代价小 调节机组功率,确保机组输出的电压和频率稳定
面与风向保持垂直。
3.5 偏航系统
二、偏航系统的组成和工作原理 偏航系统是一个自动控制系统,其组成和工作原理如下图。
3.5偏航系统
偏航系统结构
偏航系统的执行机构一般由偏航轴承、偏航驱动装置、 偏航制动器、偏航液压回路等部分组成。
39
1、偏航轴承 偏航轴承的内外圈分别与机组的塔体和机舱用螺栓连接。 2、偏航驱动 偏航系统用在对风、解缆时,驱动机舱相对于塔筒旋转, 一般为驱动电机或液压驱动单元,安置在机舱中,通过减速 机驱动输出轴上的小齿轮,小齿轮与固定在塔筒上的大齿圈 啮合,驱动机舱偏航,啮合齿轮可以在塔筒外,也可以在塔 筒内。
变距轴承: 对于电动机驱动齿轮式变距的机组来说,一般选用有 内齿的4点接触球式转盘轴承,变距轴承的内外圈分别与风 轮的叶片和轮毂用螺栓连接。
三、电-液变桨距系统 特点是电液伺服系统中使用交流伺服电机而不是电液伺 服阀。因此具有电动机控制灵活和液压出力大的双重优点。 四、变桨距系统的控制 变桨距系统的控制是由控制器来实现的。控制器一方 面控制执行机构完成变桨距的动作,另一方面还要通过现 场总线实现与主控制器的通信。控制器的核心部件是微处 理器或PLC。 (1)开环控制 即将桨距角由顺桨状态(一般90°)按照一 定的顺控程序置为最大风能利用系数的角度(一般2°~3 °),以获得最大起动力矩。 (2)闭环控制 通过变桨距控制使转速以一定升速率上升 至同步转速,进行升速闭环控制;为了对电网产生尽可能 小的冲击,控制器也同时用于并网前的同步转速控制。
•在定桨距风力发电机组中,液压系统的主要任务是驱动 风力发电机的气动刹车和机械刹车;
•在变桨距风力发电机组中,主要控制变距机构,实现风 力发电机组的转速控制、功率控制,同时也控制机械刹车 机构。
3.2 风力发电机组的基本组成
10.电子控制系统 由传感器、执行机构和软/硬件处理器系统组成。不断监 控风力机状态……
3.1 控制系统的控制策略和功能
•控制系统要实现的基本功能: 当发电机脱网时,能确保机组安全关机; 在机组运行过程中,能对电网、风况和机组的运行状况进 行监测和记录,对出现的异常情况能够自行判断并采取相应
的保护措施,并能够根据记录的数据,生成各种图表,以及
风力发电机组的各项性能指标; 能实现远程通信。
3.4 变桨距系统
二、电动变桨距系统 1、总体结构 电动变桨距系统以伺服电机驱动齿轮系实现变距调节 功能,可以使3个叶片独立实现变桨距。
变桨距控制执行系统原理
32
3.4 变桨距系统
2、单元组成 单个叶片变桨距装置一般包括 控制器、伺服驱动器、伺服电动机、 减速机、变距轴承、传感器、角度 限位开关、蓄电池、变压器等。 伺服电动机: 变桨距系统常用的伺服电动机有异步电动机、无刷直 流电动机和三相永磁同步电动机。
主控系统硬件 大型风电机组系统硬件由塔基控制器模块组和机舱控制器模块组 组成。主控系统安装在塔基的主控制柜中。
偏航控制系统(机舱控制柜)
偏航控制系统控制策略主要完成机舱/轮毂电源分配/转
换,机舱偏航远程I/O,机舱辅助功能控制,塔基加速度监 控(振动)及发电机的温度保护等。 偏航控制器由机舱顶部的风向标激活,风向标测量风 向给偏航控制系统提供输入信号。通过控制器参数的设定,
3.3风力发电机组控制系统的基本组成
具桨控制、转速控制,实现最大功率点跟踪控制, 功率因数控制, 偏航控制, 自动解缆, 并网和解列控制, 停机制动控制, 安全保护系统, 就地监控、远程监控。
信号采集
在风力发电机组运行过程中,必须对相关物理量进行
测量,并根据测量结果发出相应信号,将信号传递到主控
风机叶片设计短片
3.调速或限速装置
4.塔架
•从原理上看,有三类:第一类 使风轮偏离主风向;第二类是 利用气动阻力;第三类改变叶 片的桨距角。
•风力机塔架载有机舱及转子。可以是 管状的塔架(安全),也可是是格子 状的塔架(便宜)。
按结构不同,塔架可分为: 拉索式塔架 桁架式塔架 锥筒式塔架
5.机舱 •包容着风力机的关键设备,包括齿轮箱,发电机。维护人员可 通过风力机塔进入机舱。
8.偏航装置
•借助电动机转动机舱,以使风轮转子叶片正对着风。偏 航装置由电子控制器根据风向标感觉的风向来操作。
9.液压系统
•风力发电机的液压系统属于风力发电机的一种动力系统, 主要功能是为变桨控制装置、安全桨距控制装置、偏航驱 动和控制装置、停机制动装置提供液压驱动力。它是为风 力发电机上一切使用液压作为驱动力装置提供动力。
偏航系统工作流程
(1)自动偏航功能 (2)手动偏航功能 (3)自动解缆功能 (4)90°侧风功能 3、偏航传感器 (1)解绕传感器 (2)偏航方向传感器
3.6 液压系统
功能:以有压液体为介质,实现动力传输和运动控制的机械单 元。 优点:传动平稳、功率密度大、易实现无级调速、易更换元器 件和过载保护可靠等。 主要用于: 控制变距机构,空气动力制动; 机械制动; 偏航驱动与制动; 齿轮箱润滑油液的冷却和过滤; 发电机水冷; 变流器的温度控制; 开关机舱和驱动起重机等。
图5-30 风力发电机组液压站
3.6 液 压 系 统
一、液压元件
• 动力元件:将机械能转换为液体压力能,如液压泵。
• 控制元件:控制系统压力、流量、方向以及进行信号转换 和放大,作为控制元件的主要是各类液压阀。 • 执行元件:将流体的压力能转换为机械能,驱动各类机构 ,如液压缸。 • 辅助元件:保证系统正常工作除上述3元件外的装置。油 箱、过滤器、蓄能器、热交换器等。
3、偏航制动 偏航制动的功能是使偏航停止, 同时可以设置偏航运动的阻尼 力矩,以使机舱平稳转动。
第二节 偏 航 系 统
偏航系统
偏航系统
四、偏航系统的控制
1.偏航控制的硬件 由控制器来实现偏航系统的控制。 人工操作 信号交换
偏航控制器
偏航系统
2.偏航控制的软件
偏航控制系统由于采用计算机控制,因此必须依赖控制软件。
风力发电机组控制系统:由传感器、执行机构和软/硬件处理
器系统组成。 传感器一般包括:风速仪,风向标,转速传感器,电量采集传 感器,桨距角位置传感器,各种限位开关,振动传感器,温度 和油位指示器,液压系统压力传感器,操作开关和按纽等。 执行机构一般包括:液压驱动装置或电动变桨距执行机构,发 电机转矩控制器,发电机接触器,刹车装置和偏航电机等。 处理系统:通常由计算机或微型控制器和可靠性高的硬件安全
3.1 控制系统的控制策略和功能
•控制系统要实现的基本功能: 根据风速信号自动加入起动状态、并网或从电网切除; 根据功率及风速大小自动进行转速和功率控制; 根据风向信号自动对风;迎风装置根据风向传感器测得的
风向信号,由控制器控制偏航电机,驱动与塔架上大齿轮相
啮合的小齿轮转动,使机舱始终对准风向方向 根据功率因数自动投入(或切出)相应的补偿电容。
35
变桨距系统
3.5 偏航系统
水平轴风力机风轮绕垂直轴的旋转叫偏航。偏航系统 可以分为被动偏航系统和主动偏航系统。 一、偏航系统的功能 由于风向经常改变,如果风轮扫掠面和风向不垂直, 不但功率输出减少,而且承受的载荷更加恶劣。 偏航系统的功能就是跟踪风 向的变化,驱动机舱围绕塔 架中心线旋转,使风轮扫掠
1.轮毂 同时轮毂也是控制叶片桨距(使叶片作俯仰转动)的所在。
在设计中应保证足够的强度。
3.2 风力发电机组控制系统的基本组成
2.叶片:捕获风能并将风力传送到转子轴心。
相关文档
最新文档