风力发电机组的控制器设计讲解
风力发电机组的控制系统设计与仿真

风力发电机组的控制系统设计与仿真一、引言风力发电作为可再生能源的一种重要形式,受到越来越多国家和地区的广泛关注和重视。
风力发电机组的控制系统对于提高发电效率和确保机组安全稳定运行具有至关重要的作用。
本文旨在介绍风力发电机组的控制系统设计和仿真,并探讨其在风力发电行业中的重要性和应用前景。
二、控制系统设计1. 控制系统架构风力发电机组的控制系统通常包括主控制器、传感器、执行器和通信模块等组成部分。
其中,主控制器负责整个系统的运行控制和监测;传感器用于采集风速、转矩、温度等参数;执行器控制叶片角度、转速等;通信模块用于与外部网络进行数据交互。
2. 控制策略风力发电机组的控制策略包括风轮转速控制、叶片角度控制和电网连接控制等。
其中,风轮转速控制可以通过调整叶片角度和变桨控制实现,以优化风轮在不同风速下的转速;叶片角度控制可以根据风速和转速等参数进行自适应调整,以达到最佳发电性能;电网连接控制包括对电力系统的稳定性和功率因数等进行监测和调整。
3. 仿真模型设计为了对风力发电机组的控制系统进行仿真验证,需要建立相应的仿真模型。
仿真模型应包括风速、转速、叶片角度和发电功率等参数,并结合风场条件和机组特性进行模拟。
在仿真过程中,可以通过改变参数和策略,评估不同控制系统设计对机组性能的影响,并找出最优解。
三、仿真应用与优化1. 性能评估通过仿真模型,可以对不同控制系统设计的风力发电机组进行性能评估。
包括发电效率、稳定性和可靠性等方面的指标。
根据评估结果,可以对控制系统进行优化设计,提高发电机组的整体性能。
2. 变桨控制优化变桨控制是风力发电机组中的重要环节,直接影响着叶片的角度和风轮的转速。
通过仿真模型,可以对不同变桨控制策略进行比较和优化。
例如,调整叶片角度的时机和角度范围,以提高风力发电机组的发电效率和稳定性。
3. 智能优化算法应用利用智能优化算法,可以对风力发电机组的控制系统进行优化设计。
例如,遗传算法、模糊控制和人工神经网络等算法可以结合仿真模型,寻求最佳的控制策略和参数配置,以提高机组的发电效率和适应性。
风力发电机组的控制与调节系统设计与实现

风力发电机组的控制与调节系统设计与实现一、引言风力发电是一种利用风能将其转化为电能的可再生能源发电方式。
随着环境保护意识的提高和非化石能源的需求增加,风力发电成为全球范围内的重要能源产业。
风力发电机组的控制与调节系统对于提高发电效率、确保系统安全稳定运行具有至关重要的作用。
本文将重点讨论风力发电机组的控制与调节系统设计与实现。
二、风力发电机组的基本原理风力发电机组将风能转化为机械能,然后通过发电机将机械能转化为电能。
风能转化为机械能的过程需要通过叶片捕捉风能,并将其转化为转子的旋转运动。
而叶片的转动速度和角度会直接影响到风力发电机组的发电效率。
三、风力发电机组的控制系统设计1. 控制策略设计控制策略是风力发电机组控制系统的核心。
根据风力发电机组的特点,常见的控制策略包括最大功率跟踪控制、速度控制和角度控制等。
最大功率跟踪控制旨在使风力发电机组在不同风速下输出最大功率。
速度控制则通过控制转子的转速来实现对系统的控制。
角度控制是调整叶片的角度,以便捕获更多的风能。
2. 控制器设计控制器设计是风力发电机组控制系统的关键。
常见的控制器包括PID控制器、模糊控制器和神经网络控制器等。
PID控制器是一种经典的控制器,通过比例、积分和微分三项来实现对系统的控制。
模糊控制器则可以根据输入和输出之间的关系进行模糊推理,实现对系统的控制。
神经网络控制器则可以通过训练神经网络模型来实现对系统的控制。
3. 传感器设计风力发电机组的传感器设计是控制系统的重要组成部分。
常见的传感器包括风速传感器、转速传感器和加速度传感器等。
风速传感器用于测量风速,转速传感器用于测量转子的转速,加速度传感器用于测量叶片的加速度。
这些传感器的准确性和稳定性对于控制系统的性能起着关键作用。
四、风力发电机组的调节系统实现1. 软件实现风力发电机组的调节系统可以通过软件实现。
常见的软件平台包括MATLAB、LabVIEW和Simulink等。
在软件实现中,可以利用仿真模型进行系统调试和优化,提高调节系统的性能。
小型风力发电机控制器设计

小型风力发电机控制器设计一、引言二、设计原理1.风速监测风速监测是风力发电机控制的基础,可以使用风速传感器或者压力传感器来实时测量风速。
将传感器与单片机连接,获取实时的风速数据。
2.转速测量转速测量用于监测发电机的转速,以便控制器判断发电机是否在安全范围内运行。
可以使用霍尔元件或者光电传感器等装置实时测量发电机的转速。
3.功率控制根据预设的功率曲线控制发电机的工作。
通过计算机算法,将实时监测到的风速和转速数据与预设的功率曲线进行比较,如果风速和转速达到预设的要求,则控制器将保持发电机的工作状态。
如果风速和转速不能满足要求,则控制器将停止发电机的工作或者切换到备用能源。
4.停机保护在发电机工作过程中,如果出现故障或者超负荷的情况,控制器应该及时停机以防止设备损坏。
可以设置过载保护、欠压保护和过压保护等功能,检测当前环境是否安全,并根据检测结果来控制发电机的运行状态。
三、设计步骤1.确定需求和功能:根据实际需要,确定设计的功能和要求,如额定功率、额定转速、保护等级等。
2.采用合适的硬件:选择合适的单片机和传感器等硬件设备,保证系统的性能和稳定性。
3.硬件设计:根据系统需求,设计并搭建硬件电路,将传感器和单片机进行连接。
4.软件编程:使用相应的开发工具对单片机进行编程,实现风速监测、转速测量、功率控制和停机保护等功能。
5.调试和优化:对整个系统进行调试和优化,确保系统的稳定和可靠运行。
四、设计实例以STC89C52单片机为核心,采用风速传感器和霍尔元件进行风速监测和转速测量,设置合理的功率曲线,实现小型风力发电机的控制。
五、结论本文介绍了一种小型风力发电机控制器的设计原理和实现步骤,通过风速监测、转速测量、功率控制和停机保护等功能,实现对小型风力发电机的稳定控制和保护。
该设计可以提高风力发电机的利用效率,减少能源浪费,具有一定的应用价值和推广前景。
风力发电机组的控制系统

风力发电机组的控制系统风力发电作为一种清洁、可再生的能源,越来越得到人们的重视和使用。
而风力发电最核心的部分就是风力发电机组控制系统。
本文将深入探讨风力发电机组控制系统的相关知识。
一、风力发电机组的基本组成部分风力发电机组通常由3个主要部分组成:风力涡轮、变速器和发电机。
其中变速器是为了将风力涡轮的旋转速度转变成适合发电机的速度,同时保证风力涡轮在各种风速下都能正常转动。
而发电机则是将机械能转变为电能。
二、风力发电机组的控制系统的分类根据控制对象的不同,风力发电机组控制系统可以分为风力涡轮控制系统和整机控制系统。
1. 风力涡轮控制系统风力涡轮控制系统主要由风速测量仪、方向传感器、转矩信号传感器、角度传感器、变桨控制器等部分组成。
其主要作用是对风速和转矩进行检测和获取,然后根据这些数据控制机组桨叶的角度,调节风力涡轮的输出功率,以适应不同的风速和负载要求。
当遭遇大风或预期外部异常情况时,风力涡轮控制系统还可以自动停机。
2. 整机控制系统整机控制系统主要由仪表、控制器、通信模块、电动机传动机构、机械部分等部分组成。
整机控制系统起到了协调、控制各部分工作的作用,可以实现以最佳的效率输出电能。
其主要作用是监控发电机组的运转状态,通过检测各项参数实时调整变速器的转速,并及时进行告警和自动停机。
三、风力发电机组控制系统的关键技术1. 风力涡轮桨叶轴系统的控制风力涡轮桨叶轴系统的控制是风力发电机组控制系统的核心部分之一,也是解决风机输出功率波动和抖动问题的重要技术。
目前常见的调节方式包括机械调节和电动调节两种。
机械调节方式主要采用伺服驱动的伸缩臂与桨叶之间的连杆机构实现,而电动调节则利用变速器的电动油门、电子液压伺服系统或液压拉杆控制桨毂角度。
其中,电动调节方式更加智能化、精准化。
2. 整机控制系统的优化算法整机控制系统的优化算法是风力发电机组控制系统技术的另一个重要方向。
通过对风能、转速、功率、角度等数据进行分析,整机控制系统可通过智能算法,实现最大效率的输出电能。
风力发电机组的控制系统讲课文档

1.轮毂 同时轮毂也是控制叶片桨距(使叶片作俯仰转动)的所在。在设计中应
保证足够的强度。
现在八页,总共一百零五页。
3.2 风力发电机组控制系统的基本组成
2.叶片:捕获风能并将风力传送到转子轴心。
现在九页,总共一百零五页。
叶片和轮毂的链接 定桨距叶片的叶根与轮毂直接相连,连接结构主要有法兰式, 螺纹件预埋式,钻孔组装式三种。
现在二页,总共一百零五页。
3.1 控制系统的控制策略和功能
•控制系统要实现的基本功能: 根据风速信号自动加入起动状态、并网或从电网切除; 根据功率及风速大小自动进行转速和功率控制; 根据风向信号自动对风;迎风装置根据风向传感器测得的 风向信号,由控制器控制偏航电机,驱动与塔架上大齿轮相 啮合的小齿轮转动,使机舱始终对准风向方向 根据功率因数自动投入(或切出)相应的补偿电容。
现在二十页,总共一百零五页。
3.3 风力发控电制机系组统控的结制构系与统功的能构成
一、控制系统的总体结构
监视电网、风况和机组运 行数据。
并网、脱网控制。
机组优化控制。
一般采用微机控 制。
控制系统的总体结构
现在二十一页,总共一百零五页。
3.3 风力发电机组控制系统的构成
风力发电机组控制系统:由传感器、执行机构和软/硬件处理器系统组成。
现在三十四页,总共一百零五页。
三、电-液变桨距系统 特点是电液伺服系统中使用交流伺服电机而不是电液伺服阀。
因此具有电动机控制灵活和液压出力大的双重优点。
四、变桨距系统的控制 变桨距系统的控制是由控制器来实现的。控制器一方面控制
执行机构完成变桨距的动作,另一方面还要通过现场总线实现
与主控制器的通信。控制器的核心部件是微处理器或PLC。
风力发电机组的动力学与控制系统设计

风力发电机组的动力学与控制系统设计一、引言风力发电作为一种清洁、可再生的能源,受到越来越多国家和地区的广泛关注和推广。
风力发电机组作为风能转化为电能的重要设备,其动力学和控制系统设计对发电机组的稳定性、效率和可靠性至关重要。
本文主要探讨风力发电机组的动力学特性以及相应的控制系统设计。
二、风力发电机组的动力学特性1. 动态响应特性风力发电机组的动态响应特性是指在外部风速变化或负载变化的条件下,发电机组的功率调节性能和稳态响应特性。
其中,功率调节性能是指发电机组在风速变化时及时调整产生的功率;稳态响应特性是指发电机组在负载变化时及时调整产生的功率。
在设计动力学和控制系统时,需要考虑发电机组的动态响应速度、精度和稳定性。
提高发电机组的动态响应速度可以使其更好地适应风速和负载的变化,提高发电机组的动态响应精度可以减小功率调节误差,提高发电机组的稳定性可以避免过载或失速等故障。
2. 动态模型建立为了研究风力发电机组的动态响应特性,需要建立相应的动态模型。
常见的风力发电机组动态模型包括机械振动模型、气动模型和电磁模型。
机械振动模型用于描述风轮和发电机组的机械振动特性,包括弯曲振动、扭转振动和塔架振动等。
气动模型用于描述风轮受到风速和空气动力的影响,包括风轮的转速、风轮的载荷和风轮的输出功率等。
电磁模型用于描述发电机组的电磁特性,包括发电机的电压、电流和发电机的输出功率等。
建立风力发电机组的动态模型可以帮助设计和优化控制系统,提高发电机组的性能和可靠性。
三、风力发电机组的控制系统设计1. 控制目标风力发电机组的控制系统设计的目标是使发电机组在不同的工作条件下(包括不同的风速和负载)能够保持稳定的工作状态,并且提供最大的功率输出。
控制系统需要实时监测风速和负载的变化,并根据这些变化调整发电机组的运行状态。
通过调整发电机组的转速、转矩和叶片的角度等参数,可以实现对发电机组的功率输出进行控制。
2. 控制策略常见的风力发电机组控制策略包括变速控制和变桨控制。
风力发电机组的发电机控制器

风力发电机组的发电机控制器风力发电机组是一种重要的可再生能源发电技术。
在现代社会中,对环保和可持续发展的需求越来越强烈,因而风力发电技术得到了广泛应用和推广。
风力发电机组的关键部件之一是发电机控制器,发电机控制器的作用是控制发电机的运转,并将其发出的电力投入电网以供使用。
本文将探讨风力发电机组的发电机控制器的工作原理、结构和参数。
一、工作原理风力发电机组的发电机控制器是一个基于计算机控制的系统,核心是一个微控制器。
发电机控制器实现的功能包括:调节风力发电机的输出功率,执行保护措施,监测风力发电机的状态等。
发电机控制器和风力发电机的转速检测器、风速仪、机械制动器等组成了风力发电机组的控制系统。
发电机控制器与风力发电机的转速检测器进行通讯,通过读取转速信号,判断风力发电机的转速,根据预设值控制发电机的输出功率。
当风速不稳定或转速过高时,发电机控制器将发电机切出电网,避免损坏设备。
此外,发电机控制器还负责风力发电机的保护工作。
当风力发电机发生过电流、过载或短路等异常情况时,发电机控制器会立即控制发电机切出电网,以避免对电网或设备产生不利影响。
同时还会通过人机界面的形式将报警信息发送给系统操作员,以便及时处理故障。
发电机控制器通过多个输入和输出接口,实现与其他外部设备的连接。
比如与变频器、升压器等进行通讯,对电网电压、频率等进行调节。
二、结构和参数发电机控制器通常由微控制器、操作装置、通讯接口、诊断与监控模块等部分组成。
在具体设计中,这些部分的数量及其功能各不相同,主要取决于风力发电机的类型、转速范围、输出功率等因素。
发电机控制器的性能主要取决于其控制精度、响应时间、可靠性和稳定性等性能指标。
其中,响应时间是最为重要的指标之一。
风力发电机组工作在复杂的风速环境下,风速变化涉及到风力发电机的输出功率、转速和机械负荷等多个因素,因此,系统对于风速的响应时间要求极高,以确保设备的安全可靠运行。
除了基本的控制功能之外,现代发电机控制器还具备大量的诊断和监控功能。
风力发电--控制系统详解

风力发电—发电机控制系统风力发电机由多个部分组成,而控制系统贯穿到每个部分,相当于风电系统的神经。
因此控制系统的好坏直接关系到风力发电机的工作状态、发电量的多少以及设备的安全。
目前风力发电亟待研究解决的的两个问题:发电效率和发电质量都和风电控制系统密切相关。
对此国内外学者进行了大量的研究,取得了一定进展,随着现代控制技术和电力电子技术的发展,为风电控制系统的研究提供了技术基础。
控制系统的组成风力发电控制系统的基本目标分为三个层次:这就是保证风力发电机组安全可靠运行,获取最大能量,提供良好的电力质量。
控制系统组成主要包括各种传感器、变距系统、运行主控制器、功率输出单元、无功补偿单元、并网控制单元、安全保护单元、通讯接口电路、监控单元。
具体控制内容有:信号的数据采集、处理,变桨控制、转速控制、自动最大功率点跟踪控制、功率因数控制、偏航控制、自动解缆、并网和解列控制、停机制动控制、安全保护系统、就地监控、远程监控。
当然对于不同类型的风力发电机控制单元会不相同。
控制系统结构示意图如下:针对上述结构,目前绝大多数风力发电机组的控制系统都采用集散型或称分布式控制系统(DCS)工业控制计算机。
采用分布式控制最大优点是许多控制功能模块可以直接布置在控制对象的位置。
就地进行采集、控制、处理。
避免了各类传感器、信号线与主控制器之间的连接。
同时DCS现场适应性强,便于控制程序现场调试及在机组运行时可随时修改控制参数。
并与其他功能模块保持通信,发出各种控制指令。
目前计算机技术突飞猛进,更多新的技术被应用到了DCS之中。
PLC是一种针对顺序逻辑控制发展起来的电子设备,目前功能上有较大提高。
很多厂家也开始采用PLC构成控制系统。
现场总线技术(FCS)在进入九十年代中期以后发展也十分迅猛,以至于有些人已做出预测:基于现场总线的FCS将取代DCS成为控制系统的主角。
风力发电机控制系统(二)控制系统技术风力发电系统中的控制技术和伺服传动技术是其中的关键技术,这是因为自然风速的大小和方向是随机变化的,风力发电机组的并网和退出电网、输入功率的限制、风轮的主动对风以及对运行过程中故障的检测和保护必须能够自动控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双馈风力机组稳态曲线 双馈风力机组模态分析 模型的线性化 控制闭环(loop) 仿真计算
电机转矩 [kNm] Cp [.]
30
25
20
15
10
5
0
700
800
900
1000
1100
1200
1300
电机转速 [rpm]
0.50
0.45
0.40
0.35
0.30
0.25
From: Input To: Output
-10
-5
0
10
10
10
Frequency (rad/sec)
Phase (deg)
Magnitude (dB)
200 100
0 -100 -200 -300 2160
1440
720 0
-720
-15
10
Bode Diagram Gm = 7.36 dB (at 1.13 rad/sec) , Pm = 29.8 deg (at 0.51 rad/sec) From: Collective pitch angle demand To: Collective pitch rate demand
风速 [m/s]
30
25
20
15
10
5
0 2 4 6 8 10 12 14 16 18 20 22 24 26
风速 [m/s]
高于额定风速时,通过桨距角的控制提高功率输出的稳定性 桨距角对于功率的调节是非线性的,可以使用变增益实现控制
Frequency (Hz)
9 8 7 6 5 4 3 2 1 0
0.20
0.15
0.10
0.05
0.00
2
4
6
8
10
12
14
16
尖速比 [.]
电机转矩-电机转速曲线:最优尖速比曲线 Qopt Kopt g2 功率系数-尖速比曲线:通常在零度桨距角附近选择
电功率 [kW] 桨矩角 [deg]
3500 3000 2500 2000 1500 1000 500
0 2 4 6 8 10 12 14 16 18 20 22 24 26
-8
-6
-4
-2
0
2
10
10
10
10
10
10
Frequency (rad/sec)
Amplitude
0.1 0.05
0 -0.05
-0.1 -0.15
0
Step Response From: Collective w ind speed To: Nacelle x-deflection
5
10
15
20
20
25
30
Time (sec)
Phase (deg)
Magnitude (dB)
100 0
-100 -200 -300 -400 -500 720
0 -720 -1440 -2160 -2880
-10
10
Bode Diagram Gm = 7.29 dB (at 1.13 rad/sec) , Pm = 29.7 deg (at 0.51 rad/sec) From: Collective pitch angle demand To: Collective pitch rate demand
-10
-5
0
10
10
10
Frequency (rad/sec)
Amplitude
0.14 0.12
0.1 0.08 0.06 0.04 0.02
0 -0.02
0
Step Response From: Collective w ind speed To: Blade 1 pitch angle
5
10
15
PI或PID控制算法,结合各种串联或并联的滤波器, 设计复杂的高阶控制器
自校正控制器 LQG最优化反馈和H 控制方法 模糊逻辑控制器 神经网络方法 LPV(Linear Parameter-varying)控制器
D
u
x
B+
∫
x
+
C+
y
+
A
u: 输入。(wind speed, Pitch demand, Torque demand)
15
20
25
x: 状态。(风机动态: Tower modes, Rotor modes, Blade actuator modes…) y: 输出。(Gen speed, Gearbox torque, Nacelle motion…) A,B,C,D: 传递矩阵。
开环频率响应:增益裕度(几分贝)和相角裕度(45 度)。
25
30
Time (sec)
Amplitude
Step response: Generator torque demand to Gearbox torque
From: generator torque demand To: Gearbox torque 140
120
100
80
60
40
20
0
0
5
10
穿越频率:控制器响应。 闭环系统的极点位置:调整各种谐振的阻尼。 闭环阶跃响应:超调和振荡。 闭环系统的频率特性。
Phase (deg)
Magnitude (dB)
100
0
-100
-200
-300
-400 360
0 -360 -720 -1080 -1440
-15
10
Bode Diagram Gm = 3.42 dB (at 10.2 rad/sec) , Pm = 25 deg (at 10.1 rad/sec)
10
Campbell Diagram
12
14
16
Rotor speed (rpm)
15P
12P
9P
6P 5P 4P 3P 2P 1P 18
Tower side-side mode 1 Tower fore-aft mode 1 Rotor out of plane mode 1 Rotor out of plane mode 3 Rotor out of plane mode 2 Rotor in plane mode 1 Generator rotation Rotor in plane mode 2 Rotor out of plane mode 6 Rotor out of plane mode 4 Rotor out of plane mode 5 Tower side-side mode 2 Tower fore-aft mode 2 Rotor in plane mode 3 Rotor in plane mode 4 Rotor in plane mode 5 Tower side-side mode 3 Tower fore-aft mode 3