2020年湖北省潜江市中考数学试题及参考答案(word解析版)
2023年湖北省潜江、天门、仙桃、江汉油田中考数学真题(解析版)

潜江天门仙桃江汉油田2023年初中学业水平考试(中考)数学试卷(本卷共6页,满分120分,考试时间120分钟)一、选择题(本大题共10个小题,每小题3分,满分30分.在下列每个小题给出的四个答案中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分)1.【答案】D 【解析】解:3322-= .故选:D .2.【答案】B【解析】解:数12910000用科学记数法表示为71.29110⨯.故选:B .3.【答案】D【解析】解:由主视图和左视图为三角形判断出是锥体,根据俯视图是圆可判断出这个几何体应该是圆锥.故选:D .4.【答案】A【解析】解:311442x x x x -≥+⎧⎨+>-⎩①②解不等式①得:1x ≥,解不等式②得:2x <,∴不等式组的解集为12x ≤<,故选A .5.【答案】B【解析】解: 这组数据3,6,4,6,4,3,6,5,7中出现次数最多的是6,∴众数是6.将这组数据3,6,4,6,4,3,6,5,7按从小到大顺序排列是3,3,4,4,5,6,6,6,7,∴中位数为:5.故选:B .6.【答案】C【解析】解:∵当120x x <<时,有12y y <,∴反比例函数4k y x -=的图象在一三象限,∴40k ->解得:4k <,故选:C .7.【答案】D【解析】解:如图:作AB 的垂直平分线MN ,作BC 的垂直平分线PQ ,设MN 与PQ 相交于点O ,连接OA OB OC ,,,则点O 是ABC 外接圆的圆心,由题意得:222125OA =+=,222125OC =+=,2221310AC =+=,∴222OA OC AC +=,∴AOC 是直角三角形,∴=90AOC ∠︒,∵AO OC ==,∴AOC ABCAOC S S S S =--阴影扇形△△29011136022OA OC AB π⨯=-⋅-⋅51121422π=-⨯⨯55142π=--5742π=-,故选:D .8.【答案】C【解析】解:如图所示,过点B 作BE AC ⊥于E ,∵在ABC 中,9034ABC AB BC ∠=︒==,,,∴5AC ,∵1122ABC S AC BE BC AC =⋅=⋅△,∴125AB BC BE AC ⋅==,∴95AE ==,∵BD 平分ABC 的周长,∴AD AB BC CD +=+,即34AD CD +=+,又∵5AD CD AC +==,∴32AD CD ==,,∴65DE AD AE =-=,∴5BD ==,故选C .9.【答案】B【解析】解:①由题意得:()()223123y ax bx c a x x ax ax a =++=+-=+-,∴23b a c a ==-,,∵a<0,∴00b c <>,,∴0abc >,故①错误;②∵抛物线2(0)y ax bx c a =++<与x 轴相交于点()()3010A B -,,,.∴20ax bx c ++=有两个不相等的实数根,∴240b ac ∆=->,故②正确;③∵23b a c a ==-,,∴32660b c a a +=-=,故③正确;④∵抛物线2(0)y ax bx c a =++<与x 轴相交于点()()3010A B -,,,.∴抛物线的对称轴为:=1x -,当点()()122P m y Q m y -,,,在抛物线上,且12y y <,∴1m ≤-或()2112(1)m m m m -<-<⎧⎨--->--⎩,解得:0m <,故④错误,综上,②③正确,共2个,故选:B .10.【答案】C【解析】解:根据图象知,1=t t 时,铁桶注满了水,10t t ≤≤,1y 是一条斜线段,1t t >,1y 是一条水平线段,当1=t t 时,长方体水池开始注入水;当2=t t 时,长方体水池中的水没过铁桶,水池中水面高度比之开始变得平缓;当3t t =时,长方体水池满了水,∴2y 开始是一段陡线段,后变缓,最后是一条水平线段,观察函数图象,选项C 符合题意,故选:C .二、填空题(本大题共5个小题,每小题3分,满分15分,请将答案直接填在答线卡对应的横线上)11.【答案】1【解析】解:(0143--+-11144=-+1=,故答案为:1.12.【答案】32【解析】解: 反比例函数()0k y k x =≠的图象经过点()1,2--A ,21k ∴-=-,2k ∴=.∴反比例函数为:2y x =. 反比例函数()0k y k x=≠的图象经过点()2,B m ,212m ∴==,()2,1B ∴.∴如图所示,过点A 作AE x ⊥于E ,过点B 作BD AE ⊥的延长线于D ,设BD 与y 轴的交点为C ,()2,1B ,()1,2--A ,213BD BC CD ∴=+=+=,213AD AE DE =+=+=,1OE OC DE ===,()13133213S S S S 2222AOB ABD AOE OEBD +⨯⨯⨯∴=--=--= 梯形.故答案为:32.13.【答案】35︒##35度【解析】解:如图所示,连接OE OD OB ,,,设OB DE 、交于H ,∵O 是ABC 的内切圆,∴OA OB 、分别是CAB CBA ∠、∠的角平分线,∴1122OAB CAB OBA CBA ==∠,∠,∵70ACB ∠=︒,∴180110CAB CBA ACB +=︒-=︒∠∠∠,∴115522OAB OBA CBA CAB +=+=︒∠∠,∴180125AOB OAB OBA =︒--=︒∠∠∠,∵O 与AB BC ,分别相切于点D ,E ,∴BD BE =,又∵OD OE =,∴OB 是DE 的垂直平分线,∴OB DE ⊥,即90OHF ∠=︒,∴35AFD AOH OHF =-=︒∠∠∠,故答案为:35︒.14.【答案】16【解析】解:分别用a ,b ,c ,d 表示等腰三角形,平行四边形,正五边形,圆,画树状图如下:依题意和由图可知,共有12种等可能的结果数,其中两次抽出的图形都是中心对称图形的占2种,∴两次抽出的图形都是中心对称图形的概率为:21126=.故答案为16.15.【答案】①③④【解析】解:∵,BAC DEB △△和AEF △都是等腰直角三角形,∴,45AB AC ABC DBE =∠=︒=∠,AE EF =,DE BE =,90DEB AEF BAC ∠=∠=∠=︒,∵,DBA DBE ABE EBC ABC ABE ∠=∠-∠∠=∠-∠,,AEB AED DEB FED AEF AED ∠=∠+∠∠=∠+∠,∴,DBA EBC AEB FED ∠=∠∠=∠,故①正确;∴()SAS AEB FED ≌,∴,AB DF AC ABE FDE ==∠=∠,BAE DFE ∠=∠,故③正确;∵90,90ABE BHE EFD EGF ∠+∠=︒∠+∠=︒,90BAE EAC ∠+∠=︒,BE AE >,∴BHE EGF ∠≠∠,EGF EAC ∠=∠;故②错误;∴DF AC ∥,∵DF AC =,∴四边形ADFC 是平行四边形,∴AD CF =,故④正确;故答案为①③④.三、解答题(本大题共9个题,满分75分)16.【答案】(1)224-x x ;(2)32x =【解析】(1)解:原式()324241x x x x =+-+3324244x x x x =+--224x x =-;(2)解:两边乘以()()11x x x -+,得()()5110x x --+=.解得:32x =.检验,将32x =代入()()110x x x -+≠.∴32x =是原分式方程的解.17.【答案】(1)共100人(2)见解析(3)估计该校2000名学生中“防诈骗意识”合格的学生有1300人【解析】(1)解:由统计图可知:2020100÷=%(人);故答案为100;(2)解:由(1)得:10020191645a b +=---=,∵:1:2a b =,∴124515,453033a b =⨯==⨯=,补全条形统计图如下:(3)解:由题意得:15302065200020001300100100++⨯=⨯=(人).∴估计该校2000名学生中“防诈骗意识”合格的学生有1300人.18.【答案】斜坡AB 的长约为10米【解析】解:过点D 作DE BC ⊥于点E ,则四边形ADEF 是矩形,在Rt DEC △中,2018CD C ︒=∠=,,sin 20sin18200.31 6.2DE CD C =⋅∠=⨯︒≈⨯=.∴ 6.2AF DE ==.∵34AF BF =,∴在Rt ABF 中,55 6.21033AB AF ===⨯≈(米).答:斜坡AB 的长约为10米.19.【答案】(1)见解析(2)见解析【解析】(1)解:如图,菱形BMEN 即为所求(点M ,N 可以对调位置):(2)解:如图,菱形BEPQ 即为所求. BEPQ 是菱形,且要求BE 为边,∴①当BE 为上底边的时候,作BE PQ ∥,且BE PQ BQ EP ===,BQ 向右下偏移,如图所示,②当BE 为上底边的时候,作BE PQ ∥,且BE PQ BQ EP ===,BQ 向左下偏移如图所示,③当BE 为下底边的时候,作BE PQ ∥,且BE PQ BQ EP ===,BQ 向左上偏移如图所示,④当BE 为下底边的时候,作BE PQ ∥,且BE PQ BQ EP ===,BQ 向右上偏移如图所示,20.【答案】(1)证明见解析(2)m 的值为1或2-【解析】(1)证明:∵()()22Δ21410m m m ⎡⎤=-+-⨯+=>⎣⎦,∴无论m 取何值,方程都有两个不相等的实数根.(2)解:∵()22210x m x m m -+++=的两个实数根为,a b ,∴221,a b m ab m m +=+=+.∵()()2220a b a b ++=,∴2224220a ab b ab +++=,22()20a b ab ++=.∴222(21)20m m m +++=.即220m m +-=.解得1m =或2m =-.∴m 的值为1或2-.21.【答案】(1)证明见解析(2)125MD =【解析】(1)证明:由翻折和正方形的性质可得,90EMP EBC EM EB ∠=∠=︒=,.∴EMB EBM ∠=∠.∴EMP EMB EBC EBM ∠-∠=∠-∠,即BMP MBC ∠=∠,∵四边形ABCD 是正方形,∴AD BC ∥.∴AMB MBC ∠=∠.∴AMB BMP ∠=∠.(2)解:如图,延长,MN BC 交于点Q .∵AD BC ∥,∴DMP CQP △∽△.又∵1DP =,正方形ABCD 边长为3,∴2CP =∴12MD MP DP QC QP CP ===,∴2QC MD =,2QP MP =,设MD x =,则2QC x =,∴32BQ x =+.∵BMP MBC ∠=∠,即BMQ MBQ ∠=∠,∴32MQ BQ x ==+.∴13233x MP MQ +==.在Rt DMP △中,222MD DP MP +=,∴2223213x x +⎛⎫+= ⎪⎝⎭.解得:10x =(舍),2125x =.∴125MD =.22.【答案】(1)252620,130,402480,3160x x x x w x x x ⎧-++≤≤=⎨-+≤≤⎩为整数,为整数(2)该商品在第26天的日销售利润最大,最大日销售利润是1296元【解析】(1)解:由题意得:当130x ≤≤时,则()()20.53530124252620w x x x x =+--=-+-;当3160x ≤≤时,则()()50301242402480w x x =--=-+;∴252620,130,402480,3160x x x x w x x x ⎧-++≤≤=⎨-+≤≤⎩为整数,为整数;(2)解:当130x ≤≤时,252620w x x =-++;∵抛物线开口向下,对称轴为直线26x =,∴当26x =时,2max 2652266201296w =-+⨯+=(元).当3160x ≤≤时,402480w x =-+,w 随x 增大而减小,∴当31x =时,max 403124801240w =-⨯+=(元).∵12961240>,∴该商品在第26天的日销售利润最大,最大日销售利润是1296元.23.【答案】(1)证明见解析(2)FC =【解析】(1)证明,∵AB CE ∥,∴,ABD CED BAD ECD ∠=∠∠=∠.又AD CD =,∴()AAS ABD CED ≌△△.∴AB CE =.∴四边形ABCE 是平行四边形.∴AE BC ∥.作AH BC ⊥于H.又∵AB AC =,∴AH 为BC 的垂直平分线.∴点O 在AH 上.∴AH AE ⊥.即OA AE ⊥.又点A 在O 上,∴AE 为O 的切线;(2)解:过点D 作DM BC ⊥于M ,连接OB .∵AH 为BC 的垂直平分线,∴132===BH HC BC .∴4OH ===.∴549AH OA OH =+=+=.∴AB AC ====.∴12CD AC ==.∵,AH BC DM BC ⊥⊥,∴DM AH∥∴CMD CHA ∽,又AD CD =,∴12DM CM CD AH CH CA ===.∴1322MH HC ==,1922DM AH ==.∴39322BM BH MH =+=+=.∴BD ===.∵,CFD BAD FDC ADB ∠=∠∠=∠,∴FCD ABD △∽△.∴FC CD AB BD=.29=.∴FC=24.【答案】(1)21262y x x=--(2)45CEB∠=︒(3)3,理由见解析【解析】(1)解:∵抛物线()260y ax bx a=+-≠与x轴交于点()()2,0,6,0A B-,∴426036660a ba b--=⎧⎨+-=⎩,解得:122ab⎧=⎪⎨⎪=-⎩,∴抛物线解析式为21262y x x=--;(2)∵点()2,0A-,点()0,6C-,设直线AC的解析式为:11y k x b=+.∴111206k bb-+=⎧⎨=-⎩,∴1136kb=-⎧⎨=-⎩,直线AC的解析式为:36ACy x=--.同上,由点()()2,8,6,0D B-,可得直线DB的解析式为:212DBy x=-.令36212x x--=-,得65x=.∴点E的坐标为648,55⎛⎫-⎪⎝⎭.方法1:由题意可得:2,6,8OA OB OC AB====.∴AC===如图1,过点E作EF x⊥轴于点F.∴5AE===.∴1010,4416105AC ABAB AE===.∴AC ABAB AE=.又BAC EAB∠=∠,∴ABC AEB∽.∴ABC AEB∠=∠.∵,90OB OC COB=∠=︒,∴=45ABC∠︒.∵45AEB∠=︒,即45CEB∠=︒.方法2:如图2,延长BE与y轴交于点G,过点C作CH BE⊥于点H,过点E作EF x⊥轴于点F.∵212DBy x=-,∴()0,12G-.∴BG===.∴1122BCGS CG OB BG CH=⋅=⋅△.∴116622⨯⨯=⨯.∴5CH =.∵AC ===5AE ===,∴55CE =-=.∴sin 2CH CEH CE ∠==∴45CEH ∠=︒,即45CEB ∠=︒.方法3:如图2,过点C 作CH BE ⊥于点H .∵sin sin 10CBH ACO ∠=∠=.∴CBH ACO ∠=∠.∵,ACB CBH CEB ACB ACO OCB ∠=∠+∠∠=∠+∠,∴45CEB OCB ∠=∠=︒.∴45CEB ∠=︒.(3)设点M 的坐标为21,262m m m ⎛⎫-- ⎪⎝⎭,点N 的坐标为21,262n m m ⎛⎫-- ⎪⎝⎭.∵直线MN 与BC 不重合,∴0m ≠且6,0m n ≠≠且6n ≠.如图3,由点()6,0B ,点()0,6C -,可得到直线BC 的解析式为:6BC y x =-.∵MN BC ∥,∴可设直线MN 的解析式为:MN y x t =+.将MN y x t =+代入21262y x x =--,得213602x x t ---=.∴6m n +=.∴点N 的坐标可以表示为216,42N m m m ⎛⎫-- ⎪⎝⎭.设直线CN 的解析式为:22y k x b =+,由点()0,6C -,点216,42N m m m ⎛⎫-- ⎪⎝⎭,得()2222061642b m k b m m +=-⎧⎪⎨-+=-⎪⎩,解得221126k m b ⎧=-+⎪⎨⎪=-⎩.∴直线CN 的解析式为:1162CN y m x ⎛⎫=-+- ⎪⎝⎭.同上,由点()6,0B ,点21,262M m m m --⎛⎫ ⎪⎝⎭,可得到直线BM 的解析式为:11362BM y m x m ⎛⎫=+--⎪⎝⎭.∴111613622m x m x m ⎛⎫⎛⎫-+-=+-- ⎪ ⎪⎝⎭⎝⎭.∴3mx m =.∴3x =.∴点P 的横坐标为定值3.。
2020年湖北省仙桃市、潜江市、天门市、江汉油田中考数学试卷

2020年湖北省仙桃市、潜江市、天门市、江汉油田中考数学试卷一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.)1.(3分)(2020•湖北)下列各数中,比﹣2小的数是()A.0B.﹣3C.﹣1D.|﹣0.6|2.(3分)(2020•湖北)如图是由4个相同的小正方体组成的立体图形,它的俯视图为()A.B.C.D.3.(3分)(2020•湖北)我国自主研发的“北斗系统”现已广泛应用于国防、生产和生活等各个领域,多项技术处于国际领先地位,其星载原子钟的精度,已经提升到了每3000000年误差1秒.数3000000用科学记数法表示为()A.0.3×106B.3×107C.3×106D.30×1054.(3分)(2020•湖北)将一副三角尺按如图摆放,点E在AC上,点D在BC的延长线上,EF∥BC,∠B=∠EDF=90°,∠A=45°,∠F=60°,则∠CED的度数是()A.15°B.20°C.25°D.30°5.(3分)(2020•湖北)下列说法正确的是()A.为了解人造卫星的设备零件的质量情况,选择抽样调查B.方差是刻画数据波动程度的量C.购买一张体育彩票必中奖,是不可能事件D.掷一枚质地均匀的硬币,正面朝上的概率为16.(3分)(2020•湖北)下列运算正确的是( )A .√4=±2B .(12)﹣1=﹣2C .a +2a 2=3a 3D .(﹣a 2)3=﹣a 67.(3分)(2020•湖北)对于一次函数y =x +2,下列说法不正确的是( )A .图象经过点(1,3)B .图象与x 轴交于点(﹣2,0)C .图象不经过第四象限D .当x >2时,y <48.(3分)(2020•湖北)一个圆锥的底面半径是4cm ,其侧面展开图的圆心角是120°,则圆锥的母线长是( )A .8cmB .12cmC .16cmD .24cm9.(3分)(2020•湖北)关于x 的方程x 2+2(m ﹣1)x +m 2﹣m =0有两个实数根α,β,且α2+β2=12,那么m 的值为( )A .﹣1B .﹣4C .﹣4或1D .﹣1或410.(3分)(2020•湖北)如图,已知△ABC 和△ADE 都是等腰三角形,∠BAC =∠DAE =90°,BD ,CE 交于点F ,连接AF .下列结论:①BD =CE ;②BF ⊥CF ;③AF 平分∠CAD ;④∠AFE =45°.其中正确结论的个数有( )A .1个B .2个C .3个D .4个二、填空题(本大题共6个小题,每小题3分,满分18分.请将结果直接填写在答题卡对应的横线上.)11.(3分)(2020•湖北)已知正n 边形的一个内角为135°,则n 的值是 .12.(3分)(2020•湖北)篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队14场比赛得到23分,则该队胜了 场.13.(3分)(2020•湖北)如图,海中有个小岛A ,一艘轮船由西向东航行,在点B 处测得小岛A 位于它的东北方向,此时轮船与小岛相距20海里,继续航行至点D 处,测得小岛A 在它的北偏西60°方向,此时轮船与小岛的距离AD 为 海里.14.(3分)(2020•湖北)有3张看上去无差别的卡片,上面分别写着2,3,4.随机抽取1张后,放回并混在一起,再随机抽取1张,则两次取出的数字之和是奇数的概率为 .15.(3分)(2020•湖北)某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为 元.16.(3分)(2020•湖北)如图,已知直线a :y =x ,直线b :y =−12x 和点P (1,0),过点P 作y 轴的平行线交直线a 于点P 1,过点P 1作x 轴的平行线交直线b 于点P 2,过点P 2作y 轴的平行线交直线a 于点P 3,过点P 3作x 轴的平行线交直线b 于点P 4,…,按此作法进行下去,则点P 2020的横坐标为 .三、解答题(本大题共8个小题,满分72分.)17.(12分)(2020•湖北)(1)先化简,再求值:a 2−4a+4a 2−2a ÷a 2−42a ,其中a =﹣1.(2)解不等式组{3x +2>x −2x−33≤7−53x ,并把它的解集在数轴上表示出来.18.(6分)(2020•湖北)在平行四边形ABCD 中,E 为AD 的中点,请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.(1)如图1,在BC 上找出一点M ,使点M 是BC 的中点;(2)如图2,在BD上找出一点N,使点N是BD的一个三等分点.19.(7分)(2020•湖北)5月20日九年级复学啦!为了解学生的体温情况,班主任张老师根据全班学生某天上午的《体温监测记载表》,绘制了如下不完整的频数分布表和扇形统计图.学生体温频数分布表组别温度(℃)频数(人数)甲36.36乙36.4a丙36.520丁36.64请根据以上信息,解答下列问题:(1)频数分布表中a=,该班学生体温的众数是,中位数是;(2)扇形统计图中m=,丁组对应的扇形的圆心角是度;(3)求该班学生的平均体温(结果保留小数点后一位).20.(8分)(2020•湖北)把抛物线C1:y=x2+2x+3先向右平移4个单位长度,再向下平移5个单位长度得到抛物线C2.(1)直接写出抛物线C2的函数关系式;(2)动点P(a,﹣6)能否在抛物线C2上?请说明理由;(3)若点A(m,y1),B(n,y2)都在抛物线C2上,且m<n<0,比较y1,y2的大小,并说明理由.21.(8分)(2020•湖北)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D的直线EF交AC于点F,交AB的延长线于点E,且∠BAC=2∠BDE.(1)求证:DF是⊙O的切线;(2)当CF=2,BE=3时,求AF的长.22.(9分)(2020•湖北)如图,直线AB与反比例函数y=kx(x>0)的图象交于A,B两点,已知点A的坐标为(6,1),△AOB的面积为8.(1)填空:反比例函数的关系式为;(2)求直线AB的函数关系式;(3)动点P在y轴上运动,当线段P A与PB之差最大时,求点P的坐标.23.(10分)系统找不到该试题24.(12分)(2020•湖北)小华端午节从家里出发,沿笔直道路匀速步行去妈妈经营的商店帮忙,妈妈同时骑三轮车从商店出发,沿相同路线匀速回家装载货物,然后按原路原速返回商店,小华到达商店比妈妈返回商店早5分钟,在此过程中,设妈妈从商店出发开始所用时间为t(分钟),图1表示两人之间的距离s(米)与时间t(分钟)的函数关系的图象;图2中线段AB表示小华和商店的距离y1(米)与时间t(分钟)的函数关系的图象的一部分,请根据所给信息解答下列问题:(1)填空:妈妈骑车的速度是米/分钟,妈妈在家装载货物所用时间是分钟,点M的坐标是.(2)直接写出妈妈和商店的距离y2(米)与时间t(分钟)的函数关系式,并在图2中画出其函数图象;(3)求t为何值时,两人相距360米.2020年湖北省仙桃市、潜江市、天门市、江汉油田中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.)1.(3分)(2020•湖北)下列各数中,比﹣2小的数是()A.0B.﹣3C.﹣1D.|﹣0.6|【解答】解:∵|﹣0.6|=0.6,∴﹣3<﹣2<﹣1<0<|﹣0.6|.故选:B.2.(3分)(2020•湖北)如图是由4个相同的小正方体组成的立体图形,它的俯视图为()A.B.C.D.【解答】解:俯视图就是从上面看到的图形,因此选项C的图形符合题意,故选:C.3.(3分)(2020•湖北)我国自主研发的“北斗系统”现已广泛应用于国防、生产和生活等各个领域,多项技术处于国际领先地位,其星载原子钟的精度,已经提升到了每3000000年误差1秒.数3000000用科学记数法表示为()A.0.3×106B.3×107C.3×106D.30×105【解答】解:3000000=3×106,故选:C.4.(3分)(2020•湖北)将一副三角尺按如图摆放,点E在AC上,点D在BC的延长线上,EF∥BC,∠B=∠EDF=90°,∠A=45°,∠F=60°,则∠CED的度数是()A .15°B .20°C .25°D .30°【解答】解:∵∠B =90°,∠A =45°,∴∠ACB =45°.∵∠EDF =90°,∠F =60°,∴∠DEF =30°.∵EF ∥BC ,∴∠EDC =∠DEF =30°,∴∠CED =∠ACB ﹣∠EDC =45°﹣30°=15°.故选:A .5.(3分)(2020•湖北)下列说法正确的是( )A .为了解人造卫星的设备零件的质量情况,选择抽样调查B .方差是刻画数据波动程度的量C .购买一张体育彩票必中奖,是不可能事件D .掷一枚质地均匀的硬币,正面朝上的概率为1【解答】解:为了解人造卫星的设备零件的质量情况,应选择全面调查,即普查,不宜选择抽样调查,因此选项A 不符合题意;方差是刻画数据波动程度的量,反映数据的离散程度,因此选项B 符合题意;购买一张体育彩票中奖,是可能的,只是可能性较小,是可能事件,因此选项C 不符合题意;掷一枚质地均匀的硬币,正面朝上的概率为12,因此选项D 不符合题意; 故选:B .6.(3分)(2020•湖北)下列运算正确的是( )A .√4=±2B .(12)﹣1=﹣2C .a +2a 2=3a 3D .(﹣a 2)3=﹣a 6【解答】解:A .因为√4=2,所以A 选项错误;B .因为(12)﹣1=2, 所以B 选项错误;C .因为a 与2a 2不是同类项,不能合并,所以C 选项错误;D .因为(﹣a 2)3=﹣a 6,所以D 选项正确.故选:D .7.(3分)(2020•湖北)对于一次函数y =x +2,下列说法不正确的是( )A .图象经过点(1,3)B .图象与x 轴交于点(﹣2,0)C .图象不经过第四象限D .当x >2时,y <4【解答】解:∵一次函数y =x +2,∴当x =1时,y =3,∴图象经过点(1,3),故选项A 正确;令y =0,解得x =﹣2,∴图象与x 轴交于点(﹣2,0),故选项B 正确;∵k =1>0,b =2>0,∴不经过第四象限,故选项C 正确;∵k =1>0,∴函数值y 随x 的增大而增大,当x =2时,y =4,∴当x >2时,y >4,故选项D 不正确,故选:D .8.(3分)(2020•湖北)一个圆锥的底面半径是4cm ,其侧面展开图的圆心角是120°,则圆锥的母线长是( )A .8cmB .12cmC .16cmD .24cm【解答】解:圆锥的底面周长为2π×4=8πcm ,即为展开图扇形的弧长,由弧长公式得,120×π×R 180=8π,解得,R=12,即圆锥的母线长为12cm.故选:B.9.(3分)(2020•湖北)关于x的方程x2+2(m﹣1)x+m2﹣m=0有两个实数根α,β,且α2+β2=12,那么m的值为()A.﹣1B.﹣4C.﹣4或1D.﹣1或4【解答】解:∵关于x的方程x2﹣2(m﹣1)x+m2=0有两个实数根,∴△=[2(m﹣1)]2﹣4×1×(m2﹣m)=﹣4m+4≥0,解得:m≤1.∵关于x的方程x2+2(m﹣1)x+m2﹣m=0有两个实数根α,β,∴α+β=﹣2(m﹣1),α•β=m2﹣m,∴α2+β2=(α+β)2﹣2α•β=[﹣2(m﹣1)]2﹣2(m2﹣m)=12,即m2﹣3m﹣4=0,解得:m=﹣1或m=4(舍去).故选:A.10.(3分)(2020•湖北)如图,已知△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=90°,BD,CE交于点F,连接AF.下列结论:①BD=CE;②BF⊥CF;③AF平分∠CAD;④∠AFE=45°.其中正确结论的个数有()A.1个B.2个C.3个D.4个【解答】解:如图,作AM⊥BD于M,AN⊥EC于N.∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∵AB =AC ,AD =AE , ∴△BAD ≌△CAE (SAS ),∴EC =BD ,∠BDA =∠AEC ,故①正确 ∵∠DOF =∠AOE , ∠DFO =∠EAO =90°, ∴BD ⊥EC ,故②正确,∵△BAD ≌△CAE ,AM ⊥BD ,AN ⊥EC , ∴AM =AN , ∴F A 平分∠EFB ,∴∠AFE =45°,故④正确,若③成立,则∠AEF =∠ABD =∠ADB ,推出AB =AD ,显然与条件矛盾,故③错误, 故选:C .二、填空题(本大题共6个小题,每小题3分,满分18分.请将结果直接填写在答题卡对应的横线上.)11.(3分)(2020•湖北)已知正n 边形的一个内角为135°,则n 的值是 8 . 【解答】解:∵正n 边形的一个内角为135°, ∴正n 边形的一个外角为180°﹣135°=45°, ∴n =360°÷45°=8. 故答案为:8.12.(3分)(2020•湖北)篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队14场比赛得到23分,则该队胜了 9 场. 【解答】解:设该队胜了x 场,负了y 场,依题意有 {x +y =142x +y =23, 解得{x =9y =5.故该队胜了9场. 故答案为:9.13.(3分)(2020•湖北)如图,海中有个小岛A ,一艘轮船由西向东航行,在点B 处测得小岛A 位于它的东北方向,此时轮船与小岛相距20海里,继续航行至点D 处,测得小岛A 在它的北偏西60°方向,此时轮船与小岛的距离AD 为 20√2 海里.【解答】解:如图,过点A 作AC ⊥BD 于点C ,根据题意可知:∠BAC =∠ABC =45°,∠ADC =30°,AB =20, 在Rt △ABC 中,AC =BC =AB •sin45°=20×√22=10√2,在Rt △ACD 中,∠ADC =30°, ∴AD =2AC =20√2(海里).答:此时轮船与小岛的距离AD 为20√2海里. 故答案为:20√2.14.(3分)(2020•湖北)有3张看上去无差别的卡片,上面分别写着2,3,4.随机抽取1张后,放回并混在一起,再随机抽取1张,则两次取出的数字之和是奇数的概率为 49.【解答】解:画树状图得:∵共有9种等可能的结果,两次取出的数字之和是奇数的有4种结果, ∴两次取出的数字之和是奇数的概率为49,故答案为:49.15.(3分)(2020•湖北)某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为70元.【解答】解:设每顶头盔的售价为x元,获得的利润为w元,w=(x﹣50)[200+(80﹣x)×20]=﹣20(x﹣70)2+8000,∴当x=70时,w取得最大值,此时w=8000,故答案为:70.16.(3分)(2020•湖北)如图,已知直线a:y=x,直线b:y=−12x和点P(1,0),过点P作y轴的平行线交直线a于点P1,过点P1作x轴的平行线交直线b于点P2,过点P2作y轴的平行线交直线a于点P3,过点P3作x轴的平行线交直线b于点P4,…,按此作法进行下去,则点P2020的横坐标为21010.【解答】解:∵点P(1,0),P1在直线y=x上,∴P1(1,1),∵P1P2∥x轴,∴P2的纵坐标=P1的纵坐标=1,∵P2在直线y=−12x上,∴1=−12x,∴x=﹣2,∴P2(﹣2,1),即P2的横坐标为﹣2=﹣21,同理,P3的横坐标为﹣2=﹣21,P4的横坐标为4=22,P5=22,P6=﹣23,P7=﹣23,P8=24…,∴P4n=212n,∴P2020的横坐标为212×2020=21010,故答案为:21010.三、解答题(本大题共8个小题,满分72分.) 17.(12分)(2020•湖北)(1)先化简,再求值:a 2−4a+4a 2−2a÷a 2−42a,其中a =﹣1.(2)解不等式组{3x +2>x −2x−33≤7−53x ,并把它的解集在数轴上表示出来.【解答】解:(1)原式=(a−2)2a(a−2)•2a (a+2)(a−2)=2a+2, 当a =﹣1时,原式=2−1+2=2; (2){3x +2>x −2①x−33≤7−53x②, ∵解不等式①得:x >﹣2, 解不等式②得:x ≤4,∴不等式组的解集是:﹣2<x ≤4,在数轴上表示为:.18.(6分)(2020•湖北)在平行四边形ABCD 中,E 为AD 的中点,请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.(1)如图1,在BC 上找出一点M ,使点M 是BC 的中点; (2)如图2,在BD 上找出一点N ,使点N 是BD 的一个三等分点.【解答】解:(1)如图1,F 点就是所求作的点: (2)如图2,点N 就是所求作的点:19.(7分)(2020•湖北)5月20日九年级复学啦!为了解学生的体温情况,班主任张老师根据全班学生某天上午的《体温监测记载表》,绘制了如下不完整的频数分布表和扇形统计图.学生体温频数分布表组别温度(℃)频数(人数)甲36.36乙36.4a丙36.520丁36.64请根据以上信息,解答下列问题:(1)频数分布表中a=10,该班学生体温的众数是36.5,中位数是36.5;(2)扇形统计图中m=15,丁组对应的扇形的圆心角是36度;(3)求该班学生的平均体温(结果保留小数点后一位).【解答】解:(1)20÷50%=40(人),a=40×25%=10;36.5出现了20次,次数最多,所以众数是36.5;40个数据按从小到大的顺序排列,其中第20、21个数据都是36.5,所以中位数是(36.5+36.5)÷2=36.5.故答案为:10,36.5,36.5;(2)m%=640×100%=15%,m=15;360°×440=36°. 故答案为:15,36; (3)该班学生的平均体温为:36.3×6+36.4×10+36.5×20+36.6×440=36.455≈36.5(℃).20.(8分)(2020•湖北)把抛物线C 1:y =x 2+2x +3先向右平移4个单位长度,再向下平移5个单位长度得到抛物线C 2.(1)直接写出抛物线C 2的函数关系式;(2)动点P (a ,﹣6)能否在抛物线C 2上?请说明理由;(3)若点A (m ,y 1),B (n ,y 2)都在抛物线C 2上,且m <n <0,比较y 1,y 2的大小,并说明理由.【解答】解:(1)∵y =x 2+2x +3=(x +1)2+2,∴把抛物线C 1:y =x 2+2x +3先向右平移4个单位长度,再向下平移5个单位长度得到抛物线C 2:y =(x +1﹣4)2+2﹣5,即y =(x ﹣3)2﹣3, ∴抛物线C 2的函数关系式为:y =(x ﹣3)2﹣3. (2)动点P (a ,﹣6)不在抛物线C 2上,理由如下: ∵抛物线C 2的函数关系式为:y =(x ﹣3)2﹣3, ∴函数的最小值为﹣3, ∵﹣6<﹣3,∵动点P (a ,﹣6)不在抛物线C 2上;(3)∵抛物线C 2的函数关系式为:y =(x ﹣3)2﹣3, ∴抛物线的开口向上,对称轴为x =3, ∴当x <3时,y 随x 的增大而减小,∵点A (m ,y 1),B (n ,y 2)都在抛物线C 2上,且m <n <0<3, ∴y 1>y 2.21.(8分)(2020•湖北)如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 交BC 于点D ,过点D 的直线EF 交AC 于点F ,交AB 的延长线于点E ,且∠BAC =2∠BDE . (1)求证:DF 是⊙O 的切线;(2)当CF =2,BE =3时,求AF 的长.【解答】解:(1)连接OD ,AD , ∵AB 是直径, ∴∠ADB =90°, ∴AD ⊥BC , ∵AB =AC , ∴∠BAC =2∠BAD , ∵∠BAC =2∠BDE , ∴∠BDE =∠BAD , ∵OA =OD , ∴∠BAD =∠ADO , ∵∠ADO +∠ODB =90°, ∴∠BDE +∠ODB =90°, ∴∠ODE =90°, 即DF ⊥OD , ∵OD 是⊙O 的半径, ∴DF 是⊙O 的切线. (2)∵AB =AC ,AD ⊥BC , ∴BD =CD , ∵BO =AO , ∴OD ∥AC , ∴△EOD ∽△EAF , ∴OD AF=EO EA,设OD =x , ∵CF =2,BE =3,∴OA=OB=x,AF=AC﹣CF=2x﹣2,∴EO=x+3,EA=2x+3,∴x2x−2=x+32x+3,解得x=6,经检验,x=6是分式方程的解,∴AF=2x﹣2=10.22.(9分)(2020•湖北)如图,直线AB与反比例函数y=kx(x>0)的图象交于A,B两点,已知点A的坐标为(6,1),△AOB的面积为8.(1)填空:反比例函数的关系式为y=6x;(2)求直线AB的函数关系式;(3)动点P在y轴上运动,当线段P A与PB之差最大时,求点P的坐标.【解答】解:(1)解:(1)将点A坐标(6,1)代入反比例函数解析式y=k x,得k=1×6=6,则y=6 x,故答案为:y=6 x;(2)过点A作AC⊥x轴于点C,过B作BD⊥y轴于D,延长CA,DB交于点E,则四边形ODEC是矩形,设B (m ,n ), ∴mn =6,∴BE =DE ﹣BD =6﹣m ,AE =CE ﹣AC =n ﹣1, ∴S △ABE =12AE ⋅BE =12(n −1)(6−m),∵A 、B 两点均在反比例函数y =k x(x >0)的图象上, ∴S △BOD =S △AOC =12×6×1=3, ∴S △AOB =S 矩形ODEC ﹣S △AOC ﹣S △BOD ﹣S △ABE =6n ﹣3﹣3−12(n −1)(6−m)=3n −12m , ∵△AOB 的面积为8, ∴3n −12m =8, ∴m =6n ﹣16, ∵mn =6, ∴3n 2﹣8n ﹣3=0, 解得:n =3或−13(舍), ∴m =2, ∴B (2,3),设直线AB 的解析式为:y =kx +b ,则{6k +b =12k +b =3,解得:{k =−12b =4, ∴直线AB 的解析式为:y =−12x +4;(3)如图,根据“三角形两这边之差小于第三边可知: 当点P 为直线AB 与y 轴的交点时,P A ﹣PB 有最大值是AB , 把x =0代入y =−12x +4中,得:y =4, ∴P (0,4).23.(10分)系统找不到该试题24.(12分)(2020•湖北)小华端午节从家里出发,沿笔直道路匀速步行去妈妈经营的商店帮忙,妈妈同时骑三轮车从商店出发,沿相同路线匀速回家装载货物,然后按原路原速返回商店,小华到达商店比妈妈返回商店早5分钟,在此过程中,设妈妈从商店出发开始所用时间为t (分钟),图1表示两人之间的距离s (米)与时间t (分钟)的函数关系的图象;图2中线段AB 表示小华和商店的距离y 1(米)与时间t (分钟)的函数关系的图象的一部分,请根据所给信息解答下列问题:(1)填空:妈妈骑车的速度是 120 米/分钟,妈妈在家装载货物所用时间是 5 分钟,点M 的坐标是 (20,1200) .(2)直接写出妈妈和商店的距离y 2(米)与时间t (分钟)的函数关系式,并在图2中画出其函数图象;(3)求t 为何值时,两人相距360米.【解答】解:(1)妈妈骑车的速度为120米/分钟, 妈妈在家装载货物时间为5分钟, 点M 的坐标为(20,1200). (2)y 2={120t(0≤t <15)1800(15≤t <20)−120t +4200(20≤t ≤35),其图象如图所示,(3)由题意可知:小华速度为60米/分钟,妈妈速度为120米/分钟,①相遇前,依题意有60t+120t+360=1800,解得t=8分钟,②相遇后,依题意有,60t+120t﹣360=1800,解得t=12分钟.③依题意,当t=20分钟时,妈妈从家里出发开始追赶小华,此时小华距商店为1800﹣20×60=600米,只需10分钟,即t=30分钟,小华到达商店.而此时妈妈距离商店为1800﹣10×120=600米>360米,∴120(t﹣5)+360=1800×2,解得t=32分钟,∴t=8,12或32分钟时,两人相距360米。
2020年湖北潜江 仙桃 天门 江汉油田中考数学试卷

正面A .B .C .D .数 学 试 卷本卷共6页,满分120分,考试时间120分钟注意事项:1. 答题前,考生务必将自己的姓名、准考证号填写在试卷第1页装订线内和答题卡上,并在答题卡的规定位置贴好条形码,核准姓名和准考证号.2. 选择题的答案选出后,必须使用2B 铅笔把答题卡上对应的答案标号涂黑.如需改动,先用橡皮擦干净后,再选涂其他答案标号. 非选择题答案必须使用0.5毫米黑色墨水签字笔填写在答题卡对应的区域内,写在试卷上无效.3. 考试结束后,请将本试卷和答题卡一并上交.一、选择题(本大题共10个小题,每小题3分,满分30分)在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分. 1.31-的倒数是 A .31 B .-3 C .3 D .31-2.如图所示,该几何体的俯视图是3.第六次人口普查的标准时间是2020年11月1日零时.普查登记的大陆31个省、自治区、直辖市和现役军人的人口共1 339 724 852人.这个数用科学记数法表示为(保留三个有效数字)A .1013310.⨯ B .1013410.⨯ C .910331⨯. D .910341⨯. 4.某不等式组的解集在数轴上表示如图,则这个不等式组可能是 A .23x x -⎧⎨⎩≥≤ B .23x x -⎧⎨<⎩≥ 03-2(第4题图)•ο潜江市 天门市 仙桃市 江 汉 油 田2020年初中毕业生学业考试BA DCEF ο154ο46(第5题图)C .⎩⎨⎧<->32x x D .23x x >-⎧⎨⎩≤5.如图,AB ∥EF∥CD ,∠ABC =ο46,∠CEF =ο154,则∠BCE 等于A .ο23B .ο16C .ο20D .ο266.化简)2()242(2+÷-+-m mm m 的结果是A .0B .1C .-1D .2)2(+m7.如图,在6×6的方格纸中,每个小方格都是边长为1的正方形,其中A 、B 、C 为格点.作△ABC 的外接圆⊙O ,则»AC 的长等于 A .π43B .π45C . π23D .π258.小英早上从家里骑车上学,途中想到社会实践调查资料忘带了,立刻原路返回,返家途中遇到给她送资料的妈妈,接过资料后,小英加速向学校赶去.能反映她离家距离s 与骑车时间t 的函数关系图象大致是9.如图,已知直线l :y=33x ,过点A (0,1)作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;…;按此作法继续下去,则点A 4的坐标为 A .(0,64) B .(0,128) C .(0,256) D .(0,512)10.如图是近年来我国年财政收入同比(与上一年比较)增长率的折线统计图,其中2020年我国财政收入约为61330亿元.下列命题:A .B .C .D .(第7题图)(第9题图) 年度(第10题图)①2020年我国财政收入约为61330(1-19.5%)亿元; ②这四年中,2020年我国财政收入最少;③2020年我国财政收入约为61330(1+11.7%)(1+21.3%)亿元.其中正确的有 A .3个 B .2个 C .1个 D .0个 二、填空题(本大题共5个小题,每小题3分,满分15分)将结果直接填写在答题卡相应的横线上. 11.分解因式: =+-962a a .12.西周戎生青铜编钟是由八个大小不同的小编钟组成,其中最大编钟高度比最小编钟高度的3倍少5cm ,且它们的高度相差37 cm .则最大编钟的高度是 cm . 13.将点A (-3,-2)先沿y 轴向上平移5个单位,再沿x 轴向左平移4个单位得到点A ′,则点A ′的坐标是 .14.张凯家购置了一辆新车,爸爸妈妈商议确定车牌号,前三位选定为8ZK 后,对后两位数字意见有分歧,最后决定由毫不知情的张凯从如图排列的四个数字中随机划去两个,剩下的两个数字从左到右 组成两位数,续在8ZK 之后,则选中的车牌号为8ZK86的概率是 . 15.已知□ABCD 的周长为28,自顶点A 作AE ⊥DC 于点E ,AF ⊥BC 于点F . 若AE =3,AF =4,则 CE -CF = . 三、解答题(本大题共9个小题,满分75分) 16.(满分6分)计算:165)1(2011+---.17.(满分6分)若关于x 的一元二次方程0342=-+-k x x 的两个实数根为1x 、2x ,且满足213x x =,试求出方程的两个实数根及k 的值.18.(满分7分)五月石榴红,枝头鸟儿歌.一只小鸟从石榴树上的A 处沿直线飞到对面一房屋的顶部C 处.从A 处看房屋顶部C 处的仰角为ο30,看房屋底部D 处的俯角为ο45,石榴树与该房屋之间的水平距离为33米,求出小鸟飞行的距离AC 和房屋的高度CD .19.(满分8分)为迎接市教育局开展的“创先争优”主题演讲活动,某校组织党员教师进行演讲预赛.学校将所有参赛教师的成绩(得分为整数,满分为100分)分成四组,绘制了不完整的统计图表如下:观察图表信息,回答下列问题:(1)参赛教师共有 人;(2)如果将各组的组中值视为该组的平均成绩,请你估算所有参赛教师的平均成绩; (3)成绩落在第一组的恰好是两男两女四位教师,学校从中随机挑选两位教师参加市教育局组织的决赛.通过列表或画树状图求出挑选的两位教师是一男一女的概率.20.(满分8分)如图,BD 是⊙O 的直径, A 、C 是⊙O 上的两点,且AB =AC ,AD 与BC的延长线交于点E .(1)求证:△ABD ∽△AEB ;(2)若AD =1,DE =3,求BD 的长.21.(满分8分)如图,已知直线AB 与x 轴交于点C ,与双曲线x k y =交于A (3,320)、B (-5,a )两点.AD ⊥x 轴于点D ,BE ∥x (1)求点B 的坐标及直线AB 的解析式;(2)判断四边形CBED 的形状,并说明理由第一组 第四组 第二组 40% 第三组32%ABEO •C D22.(满分10分)2020年4月25日,全国人大常委会公布《中华人民共和国个人所得税法修正案(草案)》,向社会公开征集意见.草案规定,公民全月工薪不超过3000元的部分不必纳税,超过3000元的部分为全月应纳税所得额.此项税款按下表分段累进计算.(1)李工程师的月工薪为8000元,则他每月应当纳税多少元?(2)若某纳税人的月工薪不超过10000元,他每月的纳税金额能超过月工薪的8%吗? 若能,请给出该纳税人的月工薪范围;若不能,请说明理由.23.(满分10分)两个大小相同且含ο30角的三角板ABC和DEC如图①摆放,使直角顶点重合. 将图①中△DEC绕点C逆时针旋转ο30得到图②,点F、G分别是CD、DE 与AB的交点,点H是DE与AC的交点.(1)不添加辅助线,写出图②中所有与△BCF全等的三角形;(2)将图②中的△DEC绕点C逆时针旋转ο45得△D1E1C,点F、G、H的对应点分别为F1、G1、H1,如图③.探究线段D1F1与AH1之间的数量关系,并写出推理过程;(3)在(2)的条件下,若D1E1与CE交于点I,求证:G1I=CI.DBE图①D DD1BCEFGHBCEFG1H图③H11IGF124.(满分12分)在平面直角坐标系中,抛物线32++=bx ax y 与x 轴的两个交点分别为A (-3,0)、B (1,0),过顶点C 作CH ⊥x 轴于点H .(1)直接填写:a = ,b = ,顶点C 的坐标为 ; (2)在y 轴上是否存在点D ,使得△ACD 是以AC 为斜边的直角三角形?若存在,求出点D 的坐标;若不存在,说明理由;(3)若点P 为x 轴上方的抛物线上一动点(点P 与顶点C 不重合),PQ ⊥AC 于点Q ,CA 图②A原版录入,曹禺中学 陈玉平数学试卷参考答案及评分说明说明:本试卷中的解答题一般只给出一种解法,对于其它解法,只要推理严谨、运算合理、结果正确,均给满分.对部分正确的,参照本评分说明酌情给分. 一.选择题(每小题3分,共30分) 1——10 BADBC BDDCC 二.填空题(每小题3分,共15分)11.2)3(-a 12.58 13.(-7,3) 14.3115. 3714-或32-(答对前者得2分,答对后者得1分) 三.解答题(共75分)16.解:原式=-1-5+4 ………………………………………………………………… 3分 =-2………………………………………………………………………… 6分 17.解:由根与系数的关系得:421=+x x ① ,=⋅21x x 3-k ②………………… 2分又∵213x x =③,联立①、③,解方程组得⎩⎨⎧==1321x x ……………………… 4分∴6313321=+⨯=+=x x k ……………………………………………… 5分 答:方程两根为12=3,=1;=6x x k .……………………………………… 6分18.解:作AE ⊥CD 于点E .由题意可知:∠CAE =30°,∠EAD =45°,AE =33米. ………………… 1分 在Rt △ACE 中,tan ∠CAE =AE CE,即tan30°=33CE . 潜江市 天门市 仙桃市 江 汉 油 田2020年初中毕业生学业考试∴CE =ο30tan 33=3=(米),…………………………………… 3分 ∴AC =2CE=2×3 =6(米). …………………………………………………… 4分 在Rt △AED 中,∠ADE =90°-∠EAD =90°-45°= 45°, ∴DE =AE =33(米). ……………………………………………………… 5分∴DC =CE+DE =(3+33)米. …………………………………………… 6分 答:AC =6米,DC =(3+33)米. ………………………………………… 7分 19.解:(1)25. ……………………………………………………………………… 2分 (2)x =81253658751085495=⨯+⨯+⨯+⨯.………………………………4分分总共有12种结果,每种结果出现的可能性相同.挑选的两位教师恰好是一男一女的结果有8种,其概率为32128=. ……………………………………………… 8分 20.(1)证明:∵AB =AC , ∴»»AB AC =. ∴∠ABC =∠ADB . …………………… 2分又∠BAE =∠DAB ,∴ △ABD ∽△AEB . ………………………………… 4分(2)解:∵△ABD ∽△AEB , ∴ABADAE AB =. ∵ AD =1, DE =3, ∴AE =4. ∴ AB 2=AD ·AE =1×4=4.∴ AB =2. ……………………………………………………………………6分 ∵ BD 是⊙O 的直径, ∴∠DAB =90°.在Rt △ABD 中,BD 2=AB 2+AD 2=22+12=5,∴BD =5.………………………………………………………………… 8分21.解:(1)∵双曲线xk y =过A (3,320),∴20=k .把B (-5,a )代入x y 20=,得4-=a . ∴点B 的坐标是(-5,-4). ……………………………… 2分设直线AB 的解析式为n mx y +=,将 A (3,320)、B (-5,-4)代入得, ⎪⎩⎪⎨⎧+-=-+=nm nm 543320, 解得:38,34==n m . ∴直线AB 的解析式为:3834+=x y .………………………………… 4分 (2)四边形CBED 是菱形.理由如下: ………………………………… 5分点D 的坐标是(3,0),点C 的坐标是(-2,0). ∵ BE ∥x 轴, ∴点E 的坐标是(0,-4).而CD =5, BE=5, 且BE ∥CD .∴四边形CBED 是平行四边形. ………………………………………… 6分 在Rt △OED 中,ED 2=OE 2+OD 2, ∴ ED =2243+=5,∴ED =CD . ∴□CBED 是菱形. ……………………………………………………… 8分22.解:(1)李工程师每月纳税:1500×5% +3000×10% +(8000-7500)×20%=75+300+100= 475(元)…………………………………………… 4分(2)设该纳税人的月工薪为x 元,则当x ≤4500时,显然纳税金额达不到月工薪的8% ………………5分 当4500<x ≤7500时,由1500×5% +(x -4500)×10%>8%x得x >18750,不满足条件;………………………………………… 7分 当7500<x ≤10000时,由1500×5% +3000×10%+(x -7500)×20%>8%x 解得x >9375,故9375<x ≤10000………………………………… 9分 答:若该纳税人月工薪大于9375元且不超过10000元时,他的纳税金额能超过月工薪的8%.………………………………………………………… 10分23.解:(1)图②中与△BCF 全等的有△GDF 、 △GAH 、△ECH .……………3分(2)11F D =1AH …………………………………………………………… 4分证明:∵⎪⎩⎪⎨⎧∠==∠=∠公共111130CH F CD CA D A ο∴△AF 1C ≌△D 1H 1C . ………………… 5分 ∴ F 1C = H 1C , 又CD 1=CA ,∴CD 1- F 1C =CA - H 1C .即111AH F D =………………………………… 6分(3)连结CG 1.在△D 1G 1F 1和△AG 1H 1中,∵111111111H AHF D AG F G D A D ⎪⎩⎪⎨⎧=∠=∠∠=∠,∴△D 1G 1F 1 ≌△AG 1H 1. ∴G 1F 1=G 1H 1 ……………………………………7分 又∵H 1C =F 1C ,G 1C=G 1C ,∴△CG 1F 1 ≌△CG 1H 1. ∴∠1=∠2. ……………………………………8分 ∵∠B =60°,∠BCF =30° ,∴∠BFC =90°.又∵∠DCE =90°,∴∠BFC =∠DCE ,∴B A ∥CE , ∴∠1=∠3, ∴∠2=∠3,C 1∴G 1I=CI …………………………………………………………………… 10分24.解:(1)2,1-=-=b a ,顶点C 的坐标为(-1,4)………………………… 3分(2)假设在y 轴上存在满足条件的点D , 过点C由∠CDA =90°得,∠1+∠2=90°. 又∠2+∠∴∠3=∠1. 又∵∠CED =∠DOA =90°,∴△CED ∽△DOA ,∴AO DOED CE =. 设D (0,c ),则341cc =-. 变形得0342=+-c c ,解之得1231c ,c ==.综合上述:在y 轴上存在点D (0,3)或(0,1使△ACD 是以AC 为斜边的直角三角形.(3)①若点P 在对称轴右侧(如图①),只能是△PCQ ∽△CAH ,得∠QCP =∠CAH . 延长CP 交x 轴于M ,∴AM =CM , ∴AM 2=CM 2. 设M (m ,0),则( m +3)2=42+(m +1)2,∴m =2,即M (2,0). 设直线CM 的解析式为y=k 1x+b 1, 则⎩⎨⎧=+=+-0241111b k b k , 解之得341-=k ,381=b .∴直线CM 的解析式3834+-=x y .…………………………………………… 8分 联立⎪⎩⎪⎨⎧+--=+-=3238342x x y x y ,解之得13209x y ⎧=⎪⎪⎨⎪=⎪⎩或14x y =-⎧⎨=⎩(舍去).∴)92031(,P .…… 9分②若点P 在对称轴左侧(如图②),只能是△PCQ ∽△ACH ,得∠PCQ =∠ACH .过A 作CA 的垂线交PC 于点F ,作FN ⊥x 轴于点N .由△CF A ∽△CAH 得2==AHCHAF CA , 由△FNA ∽△AHC 得21===CA AF HC NA AH FN .∴12==FN AN ,, 点F 坐标为(-5,1). …………………………………10分设直线CF 的解析式为y=k 2x+b 2,则⎩⎨⎧=+-=+-1542222b k b k ,解之得419,4322==b k .∴直线CF 的解析式41943+=x y . ……………………………………………11分 联立 ⎪⎩⎪⎨⎧+--=+=32419432x x y x y ,解之得⎪⎪⎩⎪⎪⎨⎧=-=165547y x 或 14x y =-⎧⎨=⎩(舍去). ∴)165547(,-P .∴满足条件的点P 坐标为)92031(,或)165547(,- ………………………………12分。
湖北省天门、仙桃、潜江、江汉油田2020年中考数学试题

湖北省天门、仙桃、潜江、江汉油田2020年中考数学试题学校:___________姓名:___________班级:___________考号:___________1.下列各数中,比2-小的数是( )A .0B .3-C .1-D .0.6-2.如图是由4个相同的小正方体组成的立体图形,它的俯视图为( )A .B .C .D .3.我国自主研发的“北斗系统”现已广泛应用于国防、生产和生活等各个领域,多项技术处于国际领先地位,其星载原子钟的精度,已经提升到了每3000000年误差1秒.数3000000用科学记数法表示为( )A .60.310⨯B .7310⨯C .6310⨯D .53010⨯4.将一副三角尺如图摆放,点E 在AC 上,点D 在BC 的延长线上,//,90,45,60EF BC B EDF A F ∠=∠=︒∠=︒∠=︒,则CED ∠的度数是( )A .15°B .20°C .25°D .30°5.下列说法正确的是( )A .为了解人造卫星的设备零件的质量情况,选择抽样调查B .方差是刻画数据波动程度的量C .购买一张体育彩票必中奖,是不可能事件D .掷一枚质地均匀的硬币,正面朝上的概率为16.下列运算正确的是( )A2=± B .1122-⎛⎫=- ⎪⎝⎭ C .2323a a a += D .()326a a -=-7.对于一次函数2y x =+,下列说法不正确的是( )A .图象经过点()1,3B .图象与x 轴交于点()2,0-C .图象不经过第四象限D .当2x >时,4y <8.一个圆锥的底面半径是4cm ,其侧面展开图的圆心角是120°,则圆锥的母线长是( )A .8cmB .12cmC .16cmD .24cm 9.关于x 的方程222(1)0x m x m m +-+-=有两个实数根α,β,且2212αβ+=,那么m 的值为( )A .1-B .4-C .4-或1D .1-或410.如图,已知ABC 和ADE 都是等腰三角形,90BAC DAE ∠=∠=︒,,BD CE 交于点F ,连接AF ,下列结论:①BD CE =;②BF CF ⊥;③AF 平分CAD ∠;④45AFE ∠=︒.其中正确结论的个数有( )A .1个B .2个C .3个D .4个11.正n 边形的一个内角等于135°,则边数n 的值为_________.12.篮球联赛中,每玚比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队14场比赛得到23分,则该队胜了_________场.13.如图,海中有个小岛A ,一艘轮船由西向东航行,在点B 处测得小岛A 位于它的东北方向,此时轮船与小岛相距20海里,继续航行至点D 处,测得小岛A 在它的北偏西60°方向,此时轮船与小岛的距离AD 为________海里.14.有3张看上去无差别的卡片,上面分别写着2,3,4.随机抽取1张后,放回并混在一起,再随机抽取1张,则两次取出的数字之和是奇数的概率为_________.15.某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为_______元.16.如图,已知直线:a y x =,直线1:2b y x =-和点()1,0P ,过点1P 作y 轴的平行线交直线a 于点1P ,过点1P 作x 轴的平行线交直线b 于点2P ,过点2P 作y 轴的平行线交直线a 于点3P ,过点3P 作x 轴的平行线交直线b 于点4P ,…,按此作法进行下去,则点2020P 的横坐标为____.17.(1)先化简,再求值:22244422a a a a a a-+-÷-,其中1a =-. (2)解不等式组32235733x x x x +>-⎧⎪-⎨≤-⎪⎩,并把它的解集在数轴上表示出来.18.在平行四边形ABCD 中,E 为AD 的中点,请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.(1)如图1,在BC 上找出一点M ,使点M 是BC 的中点;(2)如图2,在BD 上找出一点N ,使点N 是BD 的一个三等分点.19.5月20日九年级复学啦!为了解学生的体温情况,班主任张老师根据全班学生某天上午的《体温监测记载表》,绘制了如下不完整的频数分布表和扇形统计图. 学生体温频数分布表:请根据以上信息,解答下列问题:(1)频数分布表中a =__________,该班学生体温的众数是_______,中位数是_________;(2)扇形统计图中m =__________,丁组对应的扇形的圆心角是_________度;(3)求该班学生的平均体温(结果保留小数点后一位).20.把抛物线21:23C y x x =++先向右平移4个单位长度,再向下平移5个单位长度得到抛物线2C .(1)直接写出抛物线2C 的函数关系式;(2)动点(),6P a -能否在拋物线2C 上?请说明理由;(3)若点()()12,,,A m y B n y 都在抛物线2C 上,且0m n <<,比较12,y y 的大小,并说明理由.21.如图,在ABC 中,AB AC =,以AB 为直径的⊙O 交BC 于点D ,过点D 的直线EF 交AC 于点F ,交AB 的延长线于点E ,且2BAC BDE ∠=∠.(1)求证:DF 是⊙O 的切线;(2)当2,3CF BE ==时,求AF 的长.22.如图,直线AB 与反比例函数(0)k y x x=>的图象交于A ,B 两点,已知点A 的坐标为()6,1,AOB 的面积为8.(1)填空:反比例函数的关系式为_________________;(2)求直线AB 的函数关系式;(3)动点P 在y 轴上运动,当线段PA 与PB 之差最大时,求点P 的坐标.23.实践操作:第一步:如图1,将矩形纸片ABCD 沿过点D 的直线折叠,使点A 落在CD 上的点A '处,得到折痕DE ,然后把纸片展平.第二步:如图2,将图1中的矩形纸片ABCD 沿过点E 的直线折叠,点C 恰好落在AD 上的点C '处,点B 落在点B '处,得到折痕EF ,B C ''交AB 于点M ,C F '交DE 于点N ,再把纸片展平.问题解决:(1)如图1,填空:四边形AEA D '的形状是_____________________;(2)如图2,线段MC '与ME 是否相等?若相等,请给出证明;若不等,请说明理由;(3)如图2,若2cm,'4cm AC DC '==,求:DN EN 的值.24.小华端午节从家里出发,沿笔直道路匀速步行去妈妈经营的商店帮忙,妈妈同时骑三轮车从商店出发,沿相同路线匀速回家装载货物,然后按原路原速返回商店,小华到达商店比妈妈返回商店早5分钟.在此过程中,设妈妈从商店出发开始所用时间为t (分钟),图1表示两人之间的距离s (米)与时间t (分钟)的函数关系的图象;图2中线段AB 表示小华和商店的距离1y (米)与时间t (分钟)的函数关系的图象的一部分,请根据所给信息解答下列问题:(1)填空:妈妈骑车的速度是___________米/分钟,妈妈在家装载货物所用时间是__________分钟,点M 的坐标是___________;(2)直接写出妈妈和商店的距离2y (米)与时间t (分钟)的函数关系式,并在图2中画出其函数图象;(3)求t 为何值时,两人相距360米.参考答案1.B【解析】【分析】根据有理数的大小比较法则比较即可.【详解】 解:.0.606-=,∵32100.6-<-<-<<,∴比2-小的数是3-,故选:B .【点睛】本题考查了有理数的比较大小,注意绝对值越大的负数的值越小是解题的关键.2.C【解析】【分析】根据俯视图是从立体图形上方看得到的图形解答即可.【详解】解:这个由4个相同的小正方体组成的立体图形:从上方可以看到前后两排正方形,后排有两个正方形,前排左边有一个正方形,即C 选项符合.故答案为C .【点睛】本题考查了三规图的知识以及细心观察事物的能力,掌握俯视图的概念和较好的空间想象能力是解答本题的关键.3.C【解析】【分析】根据科学记数法的定义即可得.【详解】科学记数法:将一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数,这种记数的方法叫做科学记数法则63000000310⨯=故选:C .【点睛】本题考查了科学记数法的定义,熟记定义是解题关键.4.A【解析】【分析】根据三角板的特点可知∠ACB=45°、∠DEF=30°,根据//EF BC 可知∠CEF=∠ACB=45°,最后运用角的和差即可解答.【详解】解:由三角板的特点可知∠ACB=45°、∠DEF=30°∵//EF BC∴∠CEF=∠ACB=45°,∴∠CED=∠CEF-∠DEF=45°-30°=15°.故答案为A .【点睛】本题考查了三角板的特点、平行线的性质以及角的和差,其中掌握平行线的性质是解答本题的关键.5.B【解析】【分析】根据抽样调查和普查、方差的意义、随机事件等知识逐项排除即可.【详解】解:A. 为了解人造卫星的设备零件的质量情况,选择普查,故A选项不符合题意;B. 方差是刻画数据波动程度的量,故B选项符合题意;C. 购买一张体育彩票必中奖,是随机事件,故C选项不符合题意;D. 掷一枚质地均匀的硬币,正面朝上的概率为0.5, 故D选项不符合题意.故答案为B.【点睛】本题考查了抽样调查和普查、方差的意义、随机事件等知识,掌握相关基础知识是解答本题的关键.6.D【解析】【分析】根据算术平方根,负整数指数幂,幂的乘方和合并同类项的运算法则进行判断即可.【详解】A2=,故本选项错误;B、1122-⎛⎫=⎪⎝⎭,故本选项错误;C、2222a a a a+=+,故本选项错误;D、()326a a-=-,故本选项正确;故选:D.本题考查了算术平方根,负整数指数幂,幂的乘方和合并同类项的运算法则,掌握运算法则是解题关键.7.D【解析】【分析】根据一次函数的图像与性质即可求解.【详解】A.图象经过点()1,3,正确;B.图象与x 轴交于点()2,0-,正确C.图象经过第一、二、三象限,故错误;D.当2x >时,y >4,故错误;故选D .【点睛】此题主要考查一次函数的图像与性质,解题的关键是熟知一次函数的性质特点.8.B【解析】【分析】根据题意求出圆锥的底面周长,根据弧长公式计算即可.【详解】解:圆锥的底面周长=2×π×4=8π,∴侧面展开图的弧长为8π, 则圆锥母线长=1808120ππ⨯=12(cm ),【点睛】本题考查的是圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.9.A【解析】【分析】通过根与系数之间的关系得到22m αβ,2m m αβ,由()2222αβαβαβ+=+-可求出m 的值,通过方程有实数根可得到[]()222(1)40m m m --≥-,从而得到m 的取值范围,确定m 的值.【详解】 解:∵方程222(1)0x m x m m +-+-=有两个实数根α,β, ∴21221m m αβ, 221m m m m αβ, ∵()2222αβαβαβ+=+-,2212αβ+=∴()()2222212m m m -+-=-, 整理得,2340m m --=,解得,11m =-,23m =,若使222(1)0x m x m m +-+-=有实数根,则[]()222(1)40m m m --≥-, 解得,1m ,所以1m =-,故选:A .【点睛】本题考查了一元二次方程根与系数之间的关系和跟的判别式,注意使一元二次方程有实数根的条件是解题的关键.10.C【解析】【分析】①证明△BAD≌△CAE,再利用全等三角形的性质即可判断;②由△BAD≌△CAE可得∠ABF=∠ACF,再由∠ABF+∠BGA=90°、∠BGA=∠CGF证得∠BFC=90°即可判定;③分别过A作AM⊥BD、AN⊥CE,根据全等三角形面积相等和BD=CE,证得AM=AN,即即可判定.AF平分∠BFE,即可判定;④由AF平分∠BFE结合BF CF【详解】解:∵∠BAC=∠EAD∴∠BAC+∠CAD=∠EAD+∠CAD,即∠BAD=∠CAE在△BAD和△CAE中AB=AC, ∠BAD=∠CAE,AD=AE∴△BAD≌△CAE∴BD=CE故①正确;∵△BAD≌△CAE∴∠ABF=∠ACF∵∠ABF+∠BGA=90°、∠BGA=∠CGF∴∠ACF+∠BGA=90°,∴∠BFC=90°故②正确;分别过A 作AM ⊥BD 、AN ⊥CE 垂足分别为M 、N∵△BAD ≌△CAE∴S △BAD =S △CAE , ∴1122BD AM CE AN ⋅=⋅ ∵BD=CE∴AM=AN∴AF 平分∠BFE ,无法证明AF 平分∠CAD .故③错误;∵AF 平分∠BFE ,BF CF ⊥∴45AFE ∠=︒故④正确.故答案为C.【点睛】本题考查了全等三角形的判定与性质、角平分线的判定与性质以及角的和差等知识,其中正确应用角平分线定理是解答本题的关键.11.8【解析】【分析】先根据多边形的外角与相邻的内角互补求出外角的度数,再根据外角和求边数即可. 【详解】多边形的外角是:180﹣135=45°,=8.∴n=36045【点睛】本题考查了多边形的外角和,熟练掌握多边形的外角和等于360°是解答本题的关键. 12.9【解析】【分析】设该对胜x场,则负14-x场,然后根据题意列一元一次方程解答即可.【详解】解:设该对胜x场由题意得:2x+(14-x)=23,解得x=9.故答案为9.【点睛】本题考查了一元一次方程的应用,弄清题意、设出未知数、找准等量关系、列出方程是解答本题的关键.13.【解析】【分析】过点A作AC⊥BD,根据方位角及三角函数即可求解.【详解】如图,过点A作AC⊥BD,依题意可得∠ABC=45°∴△ABC是等腰直角三角形,AB=20(海里)∴AC=BC=ABsin45°(海里)在Rt△ACD中,∠ADC=90°-60°=30°∴(海里)故答案为:.【点睛】此题主要考查解直角三角形,解题的关键是熟知特殊角的三角函数值.14.4 9【解析】【分析】根据题意列出表格,找出所有可能结果和满足条件的结果即可求出.【详解】依题意列的表格如下:由表格看出共有9种结果,奇数的结果是4种.故答案是49.【点睛】本次主要考查了概率知识点,准确的找出所有结果和满足条件的结果是解题关键.15.70【解析】【分析】设降价x元,利润为W,根据题意得出方程,然后求出取最大值时的x值即可得到售价.【详解】解:设降价x元,利润为W,由题意得:W=(80-50-x)(200+20x),整理得:W=-20x2+400x+6000=-20(x-10)2+8000,∴当x=10时,可获得最大利润,此时每顶头盔的售价为:80-10=70(元),故答案为:70.【点睛】本题考查了二次函数的实际应用,根据题意列出式子是解题关键.16.10102【解析】【分析】根据题意求出P 1,P 5,P 9…的坐标,发现规律即可求解.【详解】∵()1,0P ,1P 在直线:a y x =上 ∴1P (1,1); ∵过点1P 作x 轴的平行线交直线b 于点2P ,2P 在直线1:2b y x =-上 ∴2P (-2,1)同理求出P 3(-2,-2),P 4(4,-2),P 5(4,4),P 6(-8,4),P 7(-8,-8),P 8(16,-8),P 9(16,16)…可得P 4n+1(22n , 22n )(n ≥1,n 为整数)令4n+1=2021解得n=505∴P 2021(10102,10102 )∴2020P 的横坐标为10102.【点睛】此题主要考查坐标的规律探索,解题的关键是熟知一次函数的图像与性质,找到坐标规律进行求解.17.(1)22a +,2;(2)24x -<≤,数轴见解析 【解析】【分析】(1)首先把分式的分子和分母分解因式,把除法去处转化成乘法运算,再把a 代入计算即可;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【详解】(1)22244422a a a a a a-+-÷- 2(2)2(2)(2)(2)a a a a a a -=⋅-+- 22a =+, 当1a =-时, 原式2212==-+; (2)解:由322x x +>-得:2x >-, 由35733x x --得:4x ≤, ∴不等式组的解集为:24x -<≤.在数轴上表示如下:【点睛】本题考查了解一元一次不等式组以及分式的化简求值,正确对分式进行通分、约分是关键.18.(1)见解析;(2)见解析【解析】【分析】(1)连接对角线AC,BD ,再连接E 与对角线的交点,与BC 的交点即为M 点;(2)连接CE 交BD 即为N 点,根据相似三角形的性质可得12ND DE NB BC ==,于是DN=13BD . 【详解】解:(1)如图1,点M即为所求;(2)如图2,点N即为所求.【点睛】此题主要考查平行四边形与相似三角形的性质,解题的关键是熟知平行四边形的特点.19.(1)10,36.5,36.5;(2)15,36;(3)36.5℃【解析】【分析】(1)先求出调查的学生总人数,再分别减去各组人数即可求出a,再根据众数、中位数的定义即可求解;(2)分别求出甲、丁的占比即可求解;(3)根据加权平均数的定义即可求解.【详解】解:(1)调查的学生总人数为20÷50%=40(人)频数分布表中40620410a=---=,该班学生体温的众数是36.5,中位数是36.5;故答案为:10,36.5,36.5;(2)扇形统计图中64010015m=÷⨯=,丁组对应的扇形的圆心角是436040⨯︒=36度;故答案为:15,36;(3)该班学生的平均体温为36.3636.41036.52036.6436.45536.5610204⨯+⨯+⨯+⨯=≈+++(℃). 【点睛】此题主要考查统计调查的应用,解题的关键是熟知求出调查的学生总人数.20.(1)2(3)3y x =--;(2)不在,见解析;(3)12y y >,见解析【解析】【分析】(1)先求出抛物线1C 的顶点坐标,再根据向右平移横坐标加,向下平移纵坐标减求出平移后的抛物线的顶点坐标即可;(2)根据抛物线2C 的顶点的纵坐标为3-,即可判断点()6P a -,不在拋物线2C 上; (3)根据抛物线2C 的增减性质即可解答.【详解】(1)抛物线221:23(1)2C y x x x =++=++,∴抛物线1C 的顶点坐标为(-1,2),根据题意,抛物线2C 的顶点坐标为(-1+4,2-5),即(3,-3),∴抛物线2C 的函数关系式为:2(3)3y x =--;(2)动点P 不在抛物线2C 上.理由如下:∵抛物线2C 的顶点为()3,3-,开口向上,∴抛物线2C 的最低点的纵坐标为3-.∵63P y =-<-,∴动点P 不在抛物线2C 上;(3)12y y >.理由如下:由(1)知抛物线2C 的对称轴是3x =,且开口向上,∴在对称轴左侧y 随x 的增大而减小.∵点()()12,,,A m y B n y 都在抛物线2C 上,且03m n <<<,∴12y y >.【点睛】本题考查了二次函数图象与几何变换,二次函数图象上点的坐标特征,熟练掌握平移的规律“左加右减,上加下减”以及熟练掌握二次函数的性质是解题的关键.21.(1)见解析;(2)10【解析】【分析】(1)连接OD ,AD ,由AB 是直径可得到90ADB ∠=︒,然后通过题中角的关系可推出90ODE ∠=︒,即可得证;(2)通过EOD EAF ∽,得到OD EO AF EA=,然后设OD x =,列分式方程即可解得x ,从而得到AF 的长.【详解】(1)证明:如图,连接OD ,AD ,∵AB 是直径,∴90ADB ∠=︒.∴AD BC ⊥.∵AB AC =,∴2BAC BAD ∠=∠,∴2BAC BDE ∠=∠,∴BDE BAD ∠=∠.∵OA OD =,∴BAD ADO =∠∠.∵ADO ODB 90∠+∠=︒,∴90BDE ODB ∠+∠=︒.∴90ODE ∠=︒,即DF OD ⊥.又OD 是O 的半径, ∴DF 是O 的切线.(2)解:∵,=⊥AB AC AD BC ,∴BD CD =.∵BO AO =,∴//OD AC .∴EOD EAF ∽, ∴OD EO AF EA=. 设OD x =,∵2CF =,3BE =,∴OA OB x ==,22AF AC CF x =-=-,3EO x =+,23EA x =+. ∴32223x x x x +=-+. 解得6x =.经检验6x =是所列分式方程的解.∴2210AF x =-=.【分析】本题考查了切线的判定,相似三角形的判定和性质,熟练掌握切线的判定方法是解题的关键.22.(1)6y x =;(2)142y x =-+;(3)()0,4 【解析】【分析】(1)把点()6,1代入解析式,即可得到结果;(2)过点A 作AC x ⊥轴于点C ,过点B 作BD y ⊥轴于点D ,,CA DB 交于点E ,则四边形OCED 为矩形,设点B 的坐标为(),m n ,表示出△ABE 的面积,根据△AOB 得面积可得616m n =-,得到点B 的坐标,代入即可的到解析式;(3)根据“三角形两边之差小于第三边”可知,当点P 为直线AB 与y 轴的交点时,PA PB -有最大值为AB ,代入即可求值.【详解】解:(1)把点()6,1A 代入(0)k y x x=>可得6k =, ∴反比例函数的解析式为6y x=; (2)如图,过点A 作AC x ⊥轴于点C ,过点B 作BD y ⊥轴于点D ,,CA DB 交于点E ,则四边形OCED 为矩形.设点B 的坐标为(),m n ,∴6mn =.∵点A 的坐标为()6,1,∴6,1BE DE BD m AE CE AC n =-=-=-=-. ∴11(1)(6)22ABE S AE BE n m =⋅=--. ∵A ,B 两点均在双曲线6(0)y x x=>上, ∴16132BOD AOC S S ==⨯⨯=. ∴AOB AOC BOD ABE OCED S S S S S =---矩形11633(1)(6)322n n m n m =-----=-. ∵AOB 的面积为8, ∴1382n m -=,整理得616m n =-. ∴23830n n --=.解得1213,3n n ==-(舍去). ∴2m =.∴点B 的坐标为(2,3).设直线AB 的函数关系式为(0)y kx b k =+≠,则6123k b k b +=⎧⎨+=⎩.解得124k b =-=⎧⎪⎨⎪⎩. ∴直线AB 的函数关系式为142y x =-+.(3)如上图,根据“三角形两边之差小于第三边”可知,当点P 为直线AB 与y 轴的交点时,PA PB -有最大值为AB ,把0x =代入142y x =-+,得4y =. ∴点P 的坐标为()0,4.【点睛】本题主要考查了反比例函数与一次函数的综合,准确分析题意是解题的关键.23.(1)正方形;(2)MC ME '=,见解析;(3)25【解析】【分析】(1)有一组邻边相等且一个角为直角的平行四边形是正方形;(2)连接EC ',由(1)问的结论可知,90AD BC EAC B '=∠=∠=︒,,又因为矩形纸片ABCD 沿过点E 的直线折叠,可知折叠前后对应角以及对应边相等,有B B '∠=∠,B C BC ''=,90AE B C EAC B ''''=∠=∠=︒,,可以证明Rt EC A '和Rt C EB ''全等,得到C EA EC B '''∠=∠,从而有MC ME '=;(3)由Rt EC A Rt C EB '''≌,有AC B E ''=;由折叠知,AC BE '=,可以计算出()8cm AB =;用勾股定理计算出DF 的长度,再证明DNF ENG ∽得出等量关系,从而得到:DN EN 的值.【详解】(1)解:∵ABCD 是平行四边形,∴'////AD BC EA ,'//AE DA∴四边形'AEA D 是平行四边形∵矩形纸片ABCD 沿过点D 的直线折叠,使点A 落在CD 上的点A '处∴'AED A ED ≌∴'AE A E =∵90A ∠=∴四边形AEA D '的形状是正方形故最后答案为:四边形AEA D '的形状是正方形;(2)MC ME '=理由如下:如图,连接EC ',由(1)知:AD AE =∵四边形ABCD 是矩形,∴90AD BC EAC B '=∠=∠=︒,由折叠知:B C BC B B '''=∠=∠,∴90AE B C EAC B ''''=∠=∠=︒,又EC C E ''=,∴Rt EC A Rt C EB '''≌∴C EA EC B '''∠=∠∴MC ME '=(3)∵Rt EC A Rt C EB '''≌,∴AC B E ''=由折叠知:B E BE '=,∴AC BE '=∵2(cm)4(cm)AC DC ''==,∴()2428cm AB CD ==++=设cm DF x =,则()8cm FC FC x '==-在Rt DC F '中,由勾股定理得:2224(8)x x +=- 解得:3x =,即()3cm DF =如图,延长BA FC ',交于点G ,则AC G DC F ''∠=∠ ∴3tan tan 4AG DF AC G DC F AC DC ''∠=∠==='' ∴3(cm)2AG =∴3156(cm)22EG =+= ∵//DF EG ,∴DNF ENG ∽ ∴152::3:25DN EN DF EG === 【点睛】(1)本问主要考查了正方形的定义,即有一组邻边相等且一个角为直角的平行四边形是正方形,其中明确折叠前后对应边、对应角相等是解题的关键;(2)本问利用了正方形的性质以及折叠前后对应边、对应角相等来证明三角形全等,再根据角相等则边相等即可做题,其中知道角相等则边相等的思想是解题的关键;(3)本问考查了全等三角形、相似三角形的性质、角相等则正切值相等以及勾股定理的应用,其中知道三角形相似则对应边成比例是解题的关键.24.(1)120,5,()20,1200;(2)2120(015)1800(1520)1204200(2035)t t y t t t ≤<⎧⎪=≤<⎨⎪-+≤≤⎩,见解析;(3)当t 为8,12或32(分钟)时,两人相距360米.【解析】【分析】(1)先求出小华步行的速度,然后即可求出妈妈骑车的速度;先求出妈妈回家用的时间,然后根据小华到达商店比妈妈返回商店早5分钟,即可求出装货时间;根据题意和图像可得妈妈在M 点时开始返回商店,然后即可求出M 的坐标;(2)分①当0≤t <15时,②当15≤t <20时,③当20≤t ≤35时三段求出解析式即可,根据解析式画图即可;(3)由题意知,小华速度为60米/分钟,妈妈速度为120米/分钟,分①相遇前,②相遇后,③在小华到达以后三种情况讨论即可.【详解】解:(1)由题意可得:小华步行的速度为:180030=60(米/分钟), 妈妈骑车的速度为:1800601010-⨯=120(米/分钟); 妈妈回家用的时间为:1800120=15(分钟), ∵小华到达商店比妈妈返回商店早5分钟,∴可知妈妈在35分钟时返回商店,∴装货时间为:35-15×2=5(分钟),即妈妈在家装载货物的时间为5分钟;由题意和图像可得妈妈在M 点时开始返回商店,∴M 点的横坐标为:15+5=20(分钟),此时纵坐标为:20×60=1200(米),∴点M 的坐标为()20,1200;故答案为:120,5,()20,1200;(2)①当0≤t <15时y 2=120t ,②当15≤t <20时y 2=1800,③当20≤t ≤35时,设此段函数解析式为y 2=kx+b ,将(20,1800),(35,0),代入得180020035k b k b =+⎧⎨=+⎩, 解得1204200k b =-⎧⎨=⎩, ∴此段的解析式为y 2=-120x+4200,综上:2120(015)1800(1520)1204200(2035)t t y t t t ≤<⎧⎪=≤<⎨⎪-+≤≤⎩; 其函数图象如图,;(3)由题意知,小华速度为60米/分钟,妈妈速度为120米/分钟,①相遇前,依题意有601203601800t t ++=,解得8t =(分钟);②相遇后,依题意有601203601800t t +-=,解得12t =(分钟);③依题意,当20t =分钟时,妈妈从家里出发开始追赶小华,此时小华距商店为180********-⨯=(米),只需10分钟,即30t =分钟时,小华到达商店,而此时妈妈距离商店为180010120600-⨯=(米)360>(米),∴()120536018002t -+=⨯,解得32t =(分钟),∴当t 为8,12或32(分钟)时,两人相距360米.【点睛】本题考查了一次函数的实际应用,由图像获取正确的信息是解题关键。
2020年湖北省仙桃市、潜江市、天门市、江汉油田中考数学试卷

2020年湖北省仙桃市、潜江市、天门市、江汉油田中考数学试卷一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.)1.(3分)下列各数中,比﹣2小的数是()A.0 B.﹣3 C.﹣1 D.|﹣0.6|2.(3分)如图是由4个相同的小正方体组成的立体图形,它的俯视图为()A.B.C.D.3.(3分)我国自主研发的“北斗系统”现已广泛应用于国防、生产和生活等各个领域,多项技术处于国际领先地位,其星载原子钟的精度,已经提升到了每3000000年误差1秒.数3000000用科学记数法表示为()A.0.3×106B.3×107C.3×106D.30×1054.(3分)将一副三角尺按如图摆放,点E在AC上,点D在BC的延长线上,EF∥BC,∠B =∠EDF=90°,∠A=45°,∠F=60°,则∠CED的度数是()A.15°B.20°C.25°D.30°5.(3分)下列说法正确的是()A.为了解人造卫星的设备零件的质量情况,选择抽样调查B.方差是刻画数据波动程度的量C.购买一张体育彩票必中奖,是不可能事件D.掷一枚质地均匀的硬币,正面朝上的概率为16.(3分)下列运算正确的是())﹣1=﹣2 C.a+2a2=3a3D.(﹣a2)3=﹣a6 A.√4=±2 B.(127.(3分)对于一次函数y=x+2,下列说法不正确的是()A.图象经过点(1,3)B.图象与x轴交于点(﹣2,0)C.图象不经过第四象限D.当x>2时,y<48.(3分)一个圆锥的底面半径是4cm,其侧面展开图的圆心角是120°,则圆锥的母线长是()A.8cm B.12cm C.16cm D.24cm9.(3分)关于x的方程x2+2(m﹣1)x+m2﹣m=0有两个实数根α,β,且α2+β2=12,那么m的值为()A.﹣1 B.﹣4 C.﹣4或1 D.﹣1或4 10.(3分)如图,已知△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=90°,BD,CE交于点F,连接AF.下列结论:①BD=CE;②BF⊥CF;③AF平分∠CAD;④∠AFE=45°.其中正确结论的个数有()A.1个B.2个C.3个D.4个二、填空题(本大题共6个小题,每小题3分,满分18分.请将结果直接填写在答题卡对应的横线上.)11.(3分)已知正n边形的一个内角为135°,则n的值是.12.(3分)篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队14场比赛得到23分,则该队胜了场.13.(3分)如图,海中有个小岛A,一艘轮船由西向东航行,在点B处测得小岛A位于它的东北方向,此时轮船与小岛相距20海里,继续航行至点D处,测得小岛A在它的北偏西60°方向,此时轮船与小岛的距离AD为海里.14.(3分)有3张看上去无差别的卡片,上面分别写着2,3,4.随机抽取1张后,放回并混在一起,再随机抽取1张,则两次取出的数字之和是奇数的概率为.15.(3分)某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为元.x和点P(1,0),过点P作y轴的平16.(3分)如图,已知直线a:y=x,直线b:y=−12行线交直线a于点P1,过点P1作x轴的平行线交直线b于点P2,过点P2作y轴的平行线交直线a于点P3,过点P3作x轴的平行线交直线b于点P4,…,按此作法进行下去,则点P2020的横坐标为.三、解答题(本大题共8个小题,满分72分.) 17.(12分)(1)先化简,再求值:a 2−4a+4a 2−2a÷a 2−42a,其中a =﹣1.(2)解不等式组{3x +2>x −2x−33≤7−53x,并把它的解集在数轴上表示出来.18.(6分)在平行四边形ABCD 中,E 为AD 的中点,请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.(1)如图1,在BC 上找出一点M ,使点M 是BC 的中点;(2)如图2,在BD 上找出一点N ,使点N 是BD 的一个三等分点.19.(7分)5月20日九年级复学啦!为了解学生的体温情况,班主任张老师根据全班学生某天上午的《体温监测记载表》,绘制了如下不完整的频数分布表和扇形统计图. 学生体温频数分布表请根据以上信息,解答下列问题:(1)频数分布表中a = ,该班学生体温的众数是 ,中位数是 ;(2)扇形统计图中m = ,丁组对应的扇形的圆心角是 度; (3)求该班学生的平均体温(结果保留小数点后一位).组别 温度(℃) 频数(人数)甲 36.3 6乙 36.4 a 丙 36.5 20 丁36.6420.(8分)把抛物线C1:y=x2+2x+3先向右平移4个单位长度,再向下平移5个单位长度得到抛物线C2.(1)直接写出抛物线C2的函数关系式;(2)动点P(a,﹣6)能否在抛物线C2上?请说明理由;(3)若点A(m,y1),B(n,y2)都在抛物线C2上,且m<n<0,比较y1,y2的大小,并说明理由.21.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D的直线EF 交AC于点F,交AB的延长线于点E,且∠BAC=2∠BDE.(1)求证:DF是⊙O的切线;(2)当CF=2,BE=3时,求AF的长.(x>0)的图象交于A,B两点,已知点A的22.(9分)如图,直线AB与反比例函数y=kx坐标为(6,1),△AOB的面积为8.(1)填空:反比例函数的关系式为;(2)求直线AB的函数关系式;(3)动点P在y轴上运动,当线段PA与PB之差最大时,求点P的坐标.23.实践操作:第一步:如图1,将矩形纸片ABCD 沿过点D 的直线折叠,使点A 落在CD 上的点A '处,得到折痕DE ,然后把纸片展平.第二步:如图2,将图1中的矩形纸片ABCD 沿过点E 的直线折叠,点C 恰好落在AD 上的点C '处,点B 落在点B '处,得到折痕EF ,B C ''交AB 于点M ,C F '交DE 于点N ,再把纸片展平.问题解决:(1)如图1,填空:四边形AEA D '的形状是_____________________;(2)如图2,线段MC '与ME 是否相等?若相等,请给出证明;若不等,请说明理由; (3)如图2,若2cm,'4cm AC DC '==,求:DN EN 的值.24.(12分)小华端午节从家里出发,沿笔直道路匀速步行去妈妈经营的商店帮忙,妈妈同时骑三轮车从商店出发,沿相同路线匀速回家装载货物,然后按原路原速返回商店,小华到达商店比妈妈返回商店早5分钟,在此过程中,设妈妈从商店出发开始所用时间为t (分钟),图1表示两人之间的距离s(米)与时间t(分钟)的函数关系的图象;图2中线段AB表示小华和商店的距离y1(米)与时间t(分钟)的函数关系的图象的一部分,请根据所给信息解答下列问题:(1)填空:妈妈骑车的速度是米/分钟,妈妈在家装载货物所用时间是分钟,点M的坐标是.(2)直接写出妈妈和商店的距离y2(米)与时间t(分钟)的函数关系式,并在图2中画出其函数图象;(3)求t为何值时,两人相距360米.2020年湖北省仙桃市、潜江市、天门市、江汉油田中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.)1.(3分)下列各数中,比﹣2小的数是()A.0 B.﹣3 C.﹣1 D.|﹣0.6|【解答】解:∵|﹣0.6|=0.6,∴﹣3<﹣2<﹣1<0<|﹣0.6|.故选:B.2.(3分)如图是由4个相同的小正方体组成的立体图形,它的俯视图为()A.B.C.D.【解答】解:俯视图就是从上面看到的图形,因此选项C的图形符合题意,故选:C.3.(3分)我国自主研发的“北斗系统”现已广泛应用于国防、生产和生活等各个领域,多项技术处于国际领先地位,其星载原子钟的精度,已经提升到了每3000000年误差1秒.数3000000用科学记数法表示为()A.0.3×106B.3×107C.3×106D.30×105【解答】解:3000000=3×106,故选:C.4.(3分)将一副三角尺按如图摆放,点E在AC上,点D在BC的延长线上,EF∥BC,∠B =∠EDF=90°,∠A=45°,∠F=60°,则∠CED的度数是()A.15°B.20°C.25°D.30°【解答】解:∵∠B=90°,∠A=45°,∴∠ACB=45°.∵∠EDF=90°,∠F=60°,∴∠DEF=30°.∵EF∥BC,∴∠EDC=∠DEF=30°,∴∠CED=∠ACB﹣∠EDC=45°﹣30°=15°.故选:A.5.(3分)下列说法正确的是()A.为了解人造卫星的设备零件的质量情况,选择抽样调查B.方差是刻画数据波动程度的量C.购买一张体育彩票必中奖,是不可能事件D.掷一枚质地均匀的硬币,正面朝上的概率为1【解答】解:为了解人造卫星的设备零件的质量情况,应选择全面调查,即普查,不宜选择抽样调查,因此选项A不符合题意;方差是刻画数据波动程度的量,反映数据的离散程度,因此选项B符合题意;购买一张体育彩票中奖,是可能的,只是可能性较小,是可能事件,因此选项C不符合题意;,因此选项D不符合题意;掷一枚质地均匀的硬币,正面朝上的概率为12故选:B.6.(3分)下列运算正确的是())﹣1=﹣2 C.a+2a2=3a3D.(﹣a2)3=﹣a6 A.√4=±2 B.(12【解答】解:A.因为√4=2,所以A选项错误;B.因为(1)﹣1=2,2所以B选项错误;C.因为a与2a2不是同类项,不能合并,所以C选项错误;D.因为(﹣a2)3=﹣a6,所以D选项正确.故选:D.7.(3分)对于一次函数y=x+2,下列说法不正确的是()A.图象经过点(1,3)B.图象与x轴交于点(﹣2,0)C.图象不经过第四象限D.当x>2时,y<4【解答】解:∵一次函数y=x+2,∴当x=1时,y=3,∴图象经过点(1,3),故选项A正确;令y=0,解得x=﹣2,∴图象与x轴交于点(﹣2,0),故选项B正确;∵k=1>0,b=2>0,∴不经过第四象限,故选项C正确;∵k=1>0,∴函数值y随x的增大而增大,当x=2时,y=4,∴当x>2时,y>4,故选项D不正确,故选:D.8.(3分)一个圆锥的底面半径是4cm,其侧面展开图的圆心角是120°,则圆锥的母线长是()A.8cm B.12cm C.16cm D.24cm【解答】解:圆锥的底面周长为2π×4=8πcm,即为展开图扇形的弧长,=8π,由弧长公式得,120×π×R180解得,R=12,即圆锥的母线长为12cm.故选:B.9.(3分)关于x的方程x2+2(m﹣1)x+m2﹣m=0有两个实数根α,β,且α2+β2=12,那么m的值为()A.﹣1 B.﹣4 C.﹣4或1 D.﹣1或4【解答】解:∵关于x的方程x2﹣2(m﹣1)x+m2=0有两个实数根,∴△=[2(m﹣1)]2﹣4×1×(m2﹣m)=﹣4m+4≥0,解得:m≤1.∵关于x的方程x2+2(m﹣1)x+m2﹣m=0有两个实数根α,β,∴α+β=﹣2(m﹣1),α•β=m2﹣m,∴α2+β2=(α+β)2﹣2α•β=[﹣2(m﹣1)]2﹣2(m2﹣m)=12,即m2﹣3m﹣4=0,解得:m=﹣1或m=4(舍去).故选:A.10.(3分)如图,已知△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=90°,BD,CE交于点F,连接AF.下列结论:①BD=CE;②BF⊥CF;③AF平分∠CAD;④∠AFE=45°.其中正确结论的个数有()A.1个B.2个C.3个D.4个【解答】解:如图,作AM⊥BD于M,AN⊥EC于N.∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴EC=BD,∠BDA=∠AEC,故①正确∵∠DOF=∠AOE,∠DFO=∠EAO=90°,∴BD⊥EC,故②正确,∵△BAD ≌△CAE ,AM ⊥BD ,AN ⊥EC , ∴AM =AN ,∴FA 平分∠EFB ,∴∠AFE =45°,故④正确,若③成立,则∠AEF =∠ABD =∠ADB ,推出AB =AD ,显然与条件矛盾,故③错误, 故选:C .二、填空题(本大题共6个小题,每小题3分,满分18分.请将结果直接填写在答题卡对应的横线上.) 11.(3分)已知正n 边形的一个内角为135°,则n 的值是 8 . 【解答】解:∵正n 边形的一个内角为135°, ∴正n 边形的一个外角为180°﹣135°=45°, ∴n =360°÷45°=8. 故答案为:8. 12.(3分)篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队14场比赛得到23分,则该队胜了 9 场.【解答】解:设该队胜了x 场,负了y 场,依题意有 {x +y =142x +y =23, 解得{x =9y =5.故该队胜了9场. 故答案为:9. 13.(3分)如图,海中有个小岛A ,一艘轮船由西向东航行,在点B 处测得小岛A 位于它的东北方向,此时轮船与小岛相距20海里,继续航行至点D 处,测得小岛A 在它的北偏西60°方向,此时轮船与小岛的距离AD 为 20√2 海里.【解答】解:如图,过点A 作AC ⊥BD 于点C ,根据题意可知:∠BAC =∠ABC =45°,∠ADC =30°,AB =20, 在Rt △ABC 中,AC =BC =AB •sin45°=20×√22=10√2,在Rt △ACD 中,∠ADC =30°,∴AD=2AC=20√2(海里).答:此时轮船与小岛的距离AD为20√2海里.故答案为:20√2.14.(3分)有3张看上去无差别的卡片,上面分别写着2,3,4.随机抽取1张后,放回并混在一起,再随机抽取1张,则两次取出的数字之和是奇数的概率为4.9【解答】解:画树状图得:∵共有9种等可能的结果,两次取出的数字之和是奇数的有4种结果,∴两次取出的数字之和是奇数的概率为4,9.故答案为:4915.(3分)某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为70 元.【解答】解:设每顶头盔的售价为x元,获得的利润为w元,w=(x﹣50)[200+(80﹣x)×20]=﹣20(x﹣70)2+8000,∴当x=70时,w取得最大值,此时w=8000,故答案为:70.x和点P(1,0),过点P作y轴的平16.(3分)如图,已知直线a:y=x,直线b:y=−12行线交直线a于点P1,过点P1作x轴的平行线交直线b于点P2,过点P2作y轴的平行线交直线a于点P3,过点P3作x轴的平行线交直线b于点P4,…,按此作法进行下去,则点P2020的横坐标为21010.【解答】解:∵点P(1,0),P1在直线y=x上,∴P1(1,1),∵P1P2∥x轴,∴P2的纵坐标=P1的纵坐标=1,x上,∵P2在直线y=−12∴1=−12x ,∴x =﹣2,∴P 2(﹣2,1),即P 2的横坐标为﹣2=﹣21,同理,P 3的横坐标为﹣2=﹣21,P 4的横坐标为4=22,P 5=22,P 6=﹣23,P 7=﹣23,P 8=24…, ∴P 4n =212n ,∴P 2020的横坐标为212×2020=21010,故答案为:21010.三、解答题(本大题共8个小题,满分72分.) 17.(12分)(1)先化简,再求值:a 2−4a+4a 2−2a÷a 2−42a,其中a =﹣1.(2)解不等式组{3x +2>x −2x−33≤7−53x ,并把它的解集在数轴上表示出来.【解答】解:(1)原式=(a−2)2a(a−2)•2a(a+2)(a−2)=2a+2,当a =﹣1时,原式=2−1+2=2;(2){3x +2>x −2①x−33≤7−53x ②, ∵解不等式①得:x >﹣2,解不等式②得:x ≤4,∴不等式组的解集是:﹣2<x ≤4,在数轴上表示为:.18.(6分)在平行四边形ABCD 中,E 为AD 的中点,请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.(1)如图1,在BC 上找出一点M ,使点M 是BC 的中点;(2)如图2,在BD 上找出一点N ,使点N 是BD 的一个三等分点.【解答】解:(1)如图1,M点就是所求作的点:(2)如图2,点N就是所求作的点:19.(7分)5月20日九年级复学啦!为了解学生的体温情况,班主任张老师根据全班学生某天上午的《体温监测记载表》,绘制了如下不完整的频数分布表和扇形统计图.学生体温频数分布表组别温度(℃)频数(人数)甲36.3 6乙36.4 a丙36.5 20丁36.6 4 请根据以上信息,解答下列问题:(1)频数分布表中a=10 ,该班学生体温的众数是36.5 ,中位数是36.5 ;(2)扇形统计图中m=15 ,丁组对应的扇形的圆心角是36 度;(3)求该班学生的平均体温(结果保留小数点后一位).【解答】解:(1)20÷50%=40(人),a=40×25%=10;36.5出现了20次,次数最多,所以众数是36.5;40个数据按从小到大的顺序排列,其中第20、21个数据都是36.5,所以中位数是(36.5+36.5)÷2=36.5.故答案为:10,36.5,36.5;×100%=15%,m=15;(2)m%=640=36°.360°×440故答案为:15,36;=36.455≈36.5(℃).(3)该班学生的平均体温为:36.3×6+36.4×10+36.5×20+36.6×44020.(8分)把抛物线C1:y=x2+2x+3先向右平移4个单位长度,再向下平移5个单位长度得到抛物线C2.(1)直接写出抛物线C2的函数关系式;(2)动点P(a,﹣6)能否在抛物线C2上?请说明理由;(3)若点A(m,y1),B(n,y2)都在抛物线C2上,且m<n<0,比较y1,y2的大小,并说明理由.【解答】解:(1)∵y=x2+2x+3=(x+1)2+2,∴把抛物线C1:y=x2+2x+3先向右平移4个单位长度,再向下平移5个单位长度得到抛物线C2:y=(x+1﹣4)2+2﹣5,即y=(x﹣3)2﹣3,∴抛物线C2的函数关系式为:y=(x﹣3)2﹣3.(2)动点P(a,﹣6)不在抛物线C2上,理由如下:∵抛物线C2的函数关系式为:y=(x﹣3)2﹣3,∴函数的最小值为﹣3,∵﹣6<﹣3,∵动点P(a,﹣6)不在抛物线C2上;(3)∵抛物线C2的函数关系式为:y=(x﹣3)2﹣3,∴抛物线的开口向上,对称轴为x=3,∴当x<3时,y随x的增大而减小,∵点A(m,y1),B(n,y2)都在抛物线C2上,且m<n<0<3,∴y1>y2.21.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D的直线EF 交AC于点F,交AB的延长线于点E,且∠BAC=2∠BDE.(1)求证:DF是⊙O的切线;(2)当CF=2,BE=3时,求AF的长.【解答】解:(1)连接OD,AD,∵AB是直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴∠BAC=2∠BAD,∵∠BAC=2∠BDE,∴∠BDE=∠BAD,∵OA=OD,∴∠BAD=∠ADO,∵∠ADO+∠ODB=90°,∴∠BDE+∠ODB=90°,∴∠ODE=90°,即DF⊥OD,∵OD是⊙O的半径,∴DF是⊙O的切线.(2)∵AB=AC,AD⊥BC,∴BD=CD,∵BO=AO,∴OD∥AC,∴△EOD∽△EAF,∴ODAF =EOEA,设OD=x,∵CF=2,BE=3,∴OA=OB=x,AF=AC﹣CF=2x﹣2,∴EO=x+3,EA=2x+3,∴x2x−2=x+32x+3,解得x=6,经检验,x=6是分式方程的解,∴AF=2x﹣2=10.22.(9分)如图,直线AB与反比例函数y=kx(x>0)的图象交于A,B两点,已知点A的坐标为(6,1),△AOB的面积为8.(1)填空:反比例函数的关系式为y=6x;(2)求直线AB的函数关系式;(3)动点P在y轴上运动,当线段PA与PB之差最大时,求点P的坐标.【解答】解:(1)解:(1)将点A坐标(6,1)代入反比例函数解析式y=kx,得k =1×6=6, 则y =6x ,故答案为:y =6x ;(2)过点A 作AC ⊥x 轴于点C ,过B 作BD ⊥y 轴于D ,延长CA ,DB 交于点E ,则四边形ODEC 是矩形, 设B (m ,n ), ∴mn =6,∴BE =DE ﹣BD =6﹣m ,AE =CE ﹣AC =n ﹣1, ∴S △ABE =12AE ⋅BE =12(n −1)(6−m),∵A 、B 两点均在反比例函数y =kx (x >0)的图象上, ∴S △BOD =S △AOC =12×6×1=3,∴S △AOB =S 矩形ODEC ﹣S △AOC ﹣S △BOD ﹣S △ABE =6n ﹣3﹣3−12(n −1)(6−m)=3n −12m ,∵△AOB 的面积为8, ∴3n −12m =8,∴m =6n ﹣16, ∵mn =6,∴3n 2﹣8n ﹣3=0, 解得:n =3或−13(舍),∴m =2, ∴B (2,3),设直线AB 的解析式为:y =kx +b , 则{6k +b =12k +b =3,解得:{k =−12b =4, ∴直线AB 的解析式为:y =−12x +4;(3)如图,根据“三角形两这边之差小于第三边可知: 当点P 为直线AB 与y 轴的交点时,PA ﹣PB 有最大值是AB , 把x =0代入y =−12x +4中,得:y =4,∴P (0,4).(10分)23.实践操作:第一步:如图1,将矩形纸片ABCD 沿过点D 的直线折叠,使点A 落在CD 上的点A '处,得到折痕DE ,然后把纸片展平.第二步:如图2,将图1中的矩形纸片ABCD 沿过点E的直线折叠,点C 恰好落在AD 上的点C '处,点B 落在点B '处,得到折痕EF ,B C ''交AB 于点M ,C F '交DE 于点N ,再把纸片展平.问题解决:(1)如图1,填空:四边形AEA D '的形状是_____________________;(2)如图2,线段MC '与ME 是否相等?若相等,请给出证明;若不等,请说明理由; (3)如图2,若2cm,'4cm AC DC '==,求:DN EN 的值.【解答】(1)解:∵ABCD 是矩形,∴'////AD BC EA ,'//AE DA ∴四边形'AEA D 是矩形∵矩形纸片ABCD 沿过点D 的直线折叠,使点A 落在CD 上的点A '处∴'AED A ED ≌∴'AE A E = ∵90A ∠=∴四边形AEA D '的形状是正方形故最后答案为:四边形AEA D '的形状是正方形;(2)MC ME '=理由如下:如图,连接EC ',由(1)知:AD AE = ∵四边形ABCD 是矩形,∴90AD BC EAC B '=∠=∠=︒,由折叠知:B C BC B B '''=∠=∠,∴90AE B C EAC B ''''=∠=∠=︒, 又EC C E ''=,∴Rt EC A Rt C EB '''≌∴C EA EC B '''∠=∠∴MC ME '=(3)∵Rt EC A Rt C EB '''≌,∴AC B E ''=由折叠知:B E BE '=,∴AC BE '=∵2(cm)4(cm)AC DC ''==,∴()2428cm AB CD ==++=设cm DF x =,则()8cm FC FC x '==-在RtDC F '中,由勾股定理得:2224(8)x x +=-解得:3x =,即()3cm DF=如图,延长BA FC ',交于点G ,则AC G DC F ''∠=∠ ∴3tan tan 4AG DF AC G DC F AC DC ''∠=∠==='' ∴3(cm)2AG =∴3156(cm)22EG =+=∵//DF EG ,∴DNF ENG ∽∴152::3:25DN EN DF EG ===【点评】(1)本问主要考查了正方形的定义,即有一组邻边相等且一个角为直角的平行四边形是正方形,其中明确折叠前后对应边、对应角相等是解题的关键;(2)本问利用了正方形的性质以及折叠前后对应边、对应角相等来证明三角形全等,再根据角相等则边相等即可做题,其中知道角相等则边相等的思想是解题的关键;(3)本问考查了全等三角形、相似三角形的性质、角相等则正切值相等以及勾股定理的应用,其中知道三角形相似则对应边成比例是解题的关键.23.24.(12分)小华端午节从家里出发,沿笔直道路匀速步行去妈妈经营的商店帮忙,妈妈同时骑三轮车从商店出发,沿相同路线匀速回家装载货物,然后按原路原速返回商店,小华到达商店比妈妈返回商店早5分钟,在此过程中,设妈妈从商店出发开始所用时间为t (分钟),图1表示两人之间的距离s (米)与时间t (分钟)的函数关系的图象;图2中线段AB 表示小华和商店的距离y 1(米)与时间t (分钟)的函数关系的图象的一部分,请根据所给信息解答下列问题:(1)填空:妈妈骑车的速度是 120 米/分钟,妈妈在家装载货物所用时间是 5 分钟,点M 的坐标是 (20,1200) .(2)直接写出妈妈和商店的距离y 2(米)与时间t (分钟)的函数关系式,并在图2中画出其函数图象;(3)求t 为何值时,两人相距360米.【解答】解:(1)妈妈骑车的速度为120米/分钟, 妈妈在家装载货物时间为5分钟, 点M 的坐标为(20,1200). (2)y 2={120t(0≤t <15)1800(15≤t <20)−120t +4200(20≤t ≤35),其图象如图所示,(3)由题意可知:小华速度为60米/分钟,妈妈速度为120米/分钟, ①相遇前,依题意有60t +120t +360=1800, 解得t =8分钟,②相遇后,依题意有, 60t +120t ﹣360=1800, 解得t =12分钟.③依题意,当t =20分钟时,妈妈从家里出发开始追赶小华, 此时小华距商店为1800﹣20×60=600米,只需10分钟, 即t =30分钟,小华 到达商店.而此时妈妈距离商店为1800﹣10×120=600米>360米, ∴120(t ﹣5)+360=1800×2, 解得t =32分钟,∴t =8,12或32分钟时,两人相距360米。
2020年湖北天门仙桃潜江江汉油田中考数学试题及答案

2020年湖北天门仙桃潜江江汉油田中考数学试题及答案一、选择题(本大题共10个小题,在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请 将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.)1.下列各数中,比-2小的数是() A. O B. -3 C. -1 D. |-0.6|2. 如图是由4个相同的小正方体组成的立体图形,它的俯视图为()3.我国自主研发的“北斗系统”现巳广泛应用于国防、生产和生活等各个领域, 位,其星载原子钟的精度,己经提升到了每3000000年误差1秒.数3000000用科学记数法表示为4. 将一副三角尺如图摆放,点E 在AC 上,点D 在的延长线上,EF//BC, ZB = ZEDF = 90°,ZA = 45°, ZF = 60°,则 Z.CED 的度数是( )A.15° B. 20° C. 25° D. 30°5. 下列说法正确是() A. 为了解人造卫星的设备零件的质量情况,选择抽样调查B. 方差是刻画数据波动程度的量C. 购买一张体育彩票必中奖,是不可能事件D. 掷一枚质地均匀的硬币,正面朝上的概率为1多项技术处于国际领先地A. 0.3x106B. 3xl07C. 3x106D. 30xl056. 下列运算正确的是()7. 对于一次函数y = x+2,下列说法不正确的是()B, 图象与x 轴交于点(-2,0)C.图象不经过第四象限 D,当x>2时,y<4 8. 一个圆锥的底面半径是4cm,其侧面展开图的圆心角是120。
,则圆锥的母线长是()A. 8cmB. 12cmC. 16cmD. 24cm9. 关于x 的方程x 2 + 2(m-l )x + m 2-m = 0有两个实数根a , 0 ,且次+歹=12,那么m 的值为10.如图,己知和函庞都是等腰三角形,ZBAC = ZDAE = 9Q°. BD,CE 交于点q 连接AF ,下列结论:®BD = CEx②BF1CF;③人F 平分匕60:④ZAFE = 45。
2020年湖北省中考数学试卷资料

2020年湖北省仙桃市、潜江市、天门市、江汉油田中考数学试卷一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.)1.(3分)(2020•湖北)下列各数中,比﹣2小的数是()A.0B.﹣3C.﹣1D.|﹣0.6|2.(3分)(2020•湖北)如图是由4个相同的小正方体组成的立体图形,它的俯视图为()A.B.C.D.3.(3分)(2020•湖北)我国自主研发的“北斗系统”现已广泛应用于国防、生产和生活等各个领域,多项技术处于国际领先地位,其星载原子钟的精度,已经提升到了每3000000年误差1秒.数3000000用科学记数法表示为()A.0.3×106B.3×107C.3×106D.30×1054.(3分)(2020•湖北)将一副三角尺按如图摆放,点E在AC上,点D在BC的延长线上,EF∥BC,∠B=∠EDF=90°,∠A=45°,∠F=60°,则∠CED的度数是()A.15°B.20°C.25°D.30°5.(3分)(2020•湖北)下列说法正确的是()A.为了解人造卫星的设备零件的质量情况,选择抽样调查B.方差是刻画数据波动程度的量C.购买一张体育彩票必中奖,是不可能事件D.掷一枚质地均匀的硬币,正面朝上的概率为16.(3分)(2020•湖北)下列运算正确的是( ) A .√4=±2B .(12)﹣1=﹣2C .a +2a 2=3a 3D .(﹣a 2)3=﹣a 67.(3分)(2020•湖北)对于一次函数y =x +2,下列说法不正确的是( ) A .图象经过点(1,3)B .图象与x 轴交于点(﹣2,0)C .图象不经过第四象限D .当x >2时,y <48.(3分)(2020•湖北)一个圆锥的底面半径是4cm ,其侧面展开图的圆心角是120°,则圆锥的母线长是( ) A .8cmB .12cmC .16cmD .24cm9.(3分)(2020•湖北)关于x 的方程x 2+2(m ﹣1)x +m 2﹣m =0有两个实数根α,β,且α2+β2=12,那么m 的值为( ) A .﹣1B .﹣4C .﹣4或1D .﹣1或410.(3分)(2020•湖北)如图,已知△ABC 和△ADE 都是等腰三角形,∠BAC =∠DAE =90°,BD ,CE 交于点F ,连接AF .下列结论:①BD =CE ;②BF ⊥CF ;③AF 平分∠CAD ;④∠AFE =45°.其中正确结论的个数有( )A .1个B .2个C .3个D .4个二、填空题(本大题共6个小题,每小题3分,满分18分.请将结果直接填写在答题卡对应的横线上.)11.(3分)(2020•湖北)已知正n 边形的一个内角为135°,则n 的值是 . 12.(3分)(2020•湖北)篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队14场比赛得到23分,则该队胜了 场.13.(3分)(2020•湖北)如图,海中有个小岛A ,一艘轮船由西向东航行,在点B 处测得小岛A 位于它的东北方向,此时轮船与小岛相距20海里,继续航行至点D 处,测得小岛A 在它的北偏西60°方向,此时轮船与小岛的距离AD 为 海里.14.(3分)(2020•湖北)有3张看上去无差别的卡片,上面分别写着2,3,4.随机抽取1张后,放回并混在一起,再随机抽取1张,则两次取出的数字之和是奇数的概率为 . 15.(3分)(2020•湖北)某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为 元.16.(3分)(2020•湖北)如图,已知直线a :y =x ,直线b :y =−12x 和点P (1,0),过点P 作y 轴的平行线交直线a 于点P 1,过点P 1作x 轴的平行线交直线b 于点P 2,过点P 2作y 轴的平行线交直线a 于点P 3,过点P 3作x 轴的平行线交直线b 于点P 4,…,按此作法进行下去,则点P 2020的横坐标为 .三、解答题(本大题共8个小题,满分72分.) 17.(12分)(2020•湖北)(1)先化简,再求值:a 2−4a+4a 2−2a÷a 2−42a,其中a =﹣1.(2)解不等式组{3x +2>x −2x−33≤7−53x ,并把它的解集在数轴上表示出来.18.(6分)(2020•湖北)在平行四边形ABCD 中,E 为AD 的中点,请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.(1)如图1,在BC 上找出一点M ,使点M 是BC 的中点;(2)如图2,在BD上找出一点N,使点N是BD的一个三等分点.19.(7分)(2020•湖北)5月20日九年级复学啦!为了解学生的体温情况,班主任张老师根据全班学生某天上午的《体温监测记载表》,绘制了如下不完整的频数分布表和扇形统计图.学生体温频数分布表组别温度(℃)频数(人数)甲36.36乙36.4a丙36.520丁36.64请根据以上信息,解答下列问题:(1)频数分布表中a=,该班学生体温的众数是,中位数是;(2)扇形统计图中m=,丁组对应的扇形的圆心角是度;(3)求该班学生的平均体温(结果保留小数点后一位).20.(8分)(2020•湖北)把抛物线C1:y=x2+2x+3先向右平移4个单位长度,再向下平移5个单位长度得到抛物线C2.(1)直接写出抛物线C2的函数关系式;(2)动点P(a,﹣6)能否在抛物线C2上?请说明理由;(3)若点A(m,y1),B(n,y2)都在抛物线C2上,且m<n<0,比较y1,y2的大小,并说明理由.21.(8分)(2020•湖北)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D的直线EF交AC于点F,交AB的延长线于点E,且∠BAC=2∠BDE.(1)求证:DF是⊙O的切线;(2)当CF=2,BE=3时,求AF的长.22.(9分)(2020•湖北)如图,直线AB与反比例函数y=kx(x>0)的图象交于A,B两点,已知点A的坐标为(6,1),△AOB的面积为8.(1)填空:反比例函数的关系式为;(2)求直线AB的函数关系式;(3)动点P在y轴上运动,当线段P A与PB之差最大时,求点P的坐标.23.(10分)系统找不到该试题24.(12分)(2020•湖北)小华端午节从家里出发,沿笔直道路匀速步行去妈妈经营的商店帮忙,妈妈同时骑三轮车从商店出发,沿相同路线匀速回家装载货物,然后按原路原速返回商店,小华到达商店比妈妈返回商店早5分钟,在此过程中,设妈妈从商店出发开始所用时间为t(分钟),图1表示两人之间的距离s(米)与时间t(分钟)的函数关系的图象;图2中线段AB表示小华和商店的距离y1(米)与时间t(分钟)的函数关系的图象的一部分,请根据所给信息解答下列问题:(1)填空:妈妈骑车的速度是米/分钟,妈妈在家装载货物所用时间是分钟,点M的坐标是.(2)直接写出妈妈和商店的距离y2(米)与时间t(分钟)的函数关系式,并在图2中画出其函数图象;(3)求t为何值时,两人相距360米.2020年湖北省仙桃市、潜江市、天门市、江汉油田中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.)1.(3分)(2020•湖北)下列各数中,比﹣2小的数是()A.0B.﹣3C.﹣1D.|﹣0.6|【解答】解:∵|﹣0.6|=0.6,∴﹣3<﹣2<﹣1<0<|﹣0.6|.故选:B.2.(3分)(2020•湖北)如图是由4个相同的小正方体组成的立体图形,它的俯视图为()A.B.C.D.【解答】解:俯视图就是从上面看到的图形,因此选项C的图形符合题意,故选:C.3.(3分)(2020•湖北)我国自主研发的“北斗系统”现已广泛应用于国防、生产和生活等各个领域,多项技术处于国际领先地位,其星载原子钟的精度,已经提升到了每3000000年误差1秒.数3000000用科学记数法表示为()A.0.3×106B.3×107C.3×106D.30×105【解答】解:3000000=3×106,故选:C.4.(3分)(2020•湖北)将一副三角尺按如图摆放,点E在AC上,点D在BC的延长线上,EF∥BC,∠B=∠EDF=90°,∠A=45°,∠F=60°,则∠CED的度数是()A .15°B .20°C .25°D .30°【解答】解:∵∠B =90°,∠A =45°, ∴∠ACB =45°.∵∠EDF =90°,∠F =60°, ∴∠DEF =30°. ∵EF ∥BC ,∴∠EDC =∠DEF =30°,∴∠CED =∠ACB ﹣∠EDC =45°﹣30°=15°. 故选:A .5.(3分)(2020•湖北)下列说法正确的是( )A .为了解人造卫星的设备零件的质量情况,选择抽样调查B .方差是刻画数据波动程度的量C .购买一张体育彩票必中奖,是不可能事件D .掷一枚质地均匀的硬币,正面朝上的概率为1【解答】解:为了解人造卫星的设备零件的质量情况,应选择全面调查,即普查,不宜选择抽样调查,因此选项A 不符合题意;方差是刻画数据波动程度的量,反映数据的离散程度,因此选项B 符合题意; 购买一张体育彩票中奖,是可能的,只是可能性较小,是可能事件,因此选项C 不符合题意;掷一枚质地均匀的硬币,正面朝上的概率为12,因此选项D 不符合题意;故选:B .6.(3分)(2020•湖北)下列运算正确的是( ) A .√4=±2B .(12)﹣1=﹣2C .a +2a 2=3a 3D .(﹣a 2)3=﹣a 6【解答】解:A .因为√4=2, 所以A 选项错误;B .因为(12)﹣1=2,所以B 选项错误;C .因为a 与2a 2不是同类项,不能合并, 所以C 选项错误;D .因为(﹣a 2)3=﹣a 6, 所以D 选项正确. 故选:D .7.(3分)(2020•湖北)对于一次函数y =x +2,下列说法不正确的是( ) A .图象经过点(1,3)B .图象与x 轴交于点(﹣2,0)C .图象不经过第四象限D .当x >2时,y <4【解答】解:∵一次函数y =x +2, ∴当x =1时,y =3,∴图象经过点(1,3),故选项A 正确; 令y =0,解得x =﹣2,∴图象与x 轴交于点(﹣2,0),故选项B 正确; ∵k =1>0,b =2>0,∴不经过第四象限,故选项C 正确; ∵k =1>0,∴函数值y 随x 的增大而增大, 当x =2时,y =4,∴当x >2时,y >4,故选项D 不正确, 故选:D .8.(3分)(2020•湖北)一个圆锥的底面半径是4cm ,其侧面展开图的圆心角是120°,则圆锥的母线长是( ) A .8cmB .12cmC .16cmD .24cm【解答】解:圆锥的底面周长为2π×4=8πcm ,即为展开图扇形的弧长, 由弧长公式得,120×π×R 180=8π,解得,R=12,即圆锥的母线长为12cm.故选:B.9.(3分)(2020•湖北)关于x的方程x2+2(m﹣1)x+m2﹣m=0有两个实数根α,β,且α2+β2=12,那么m的值为()A.﹣1B.﹣4C.﹣4或1D.﹣1或4【解答】解:∵关于x的方程x2﹣2(m﹣1)x+m2=0有两个实数根,∴△=[2(m﹣1)]2﹣4×1×(m2﹣m)=﹣4m+4≥0,解得:m≤1.∵关于x的方程x2+2(m﹣1)x+m2﹣m=0有两个实数根α,β,∴α+β=﹣2(m﹣1),α•β=m2﹣m,∴α2+β2=(α+β)2﹣2α•β=[﹣2(m﹣1)]2﹣2(m2﹣m)=12,即m2﹣3m﹣4=0,解得:m=﹣1或m=4(舍去).故选:A.10.(3分)(2020•湖北)如图,已知△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=90°,BD,CE交于点F,连接AF.下列结论:①BD=CE;②BF⊥CF;③AF平分∠CAD;④∠AFE=45°.其中正确结论的个数有()A.1个B.2个C.3个D.4个【解答】解:如图,作AM⊥BD于M,AN⊥EC于N.∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∵AB =AC ,AD =AE , ∴△BAD ≌△CAE (SAS ),∴EC =BD ,∠BDA =∠AEC ,故①正确 ∵∠DOF =∠AOE , ∠DFO =∠EAO =90°, ∴BD ⊥EC ,故②正确,∵△BAD ≌△CAE ,AM ⊥BD ,AN ⊥EC , ∴AM =AN , ∴F A 平分∠EFB ,∴∠AFE =45°,故④正确,若③成立,则∠AEF =∠ABD =∠ADB ,推出AB =AD ,显然与条件矛盾,故③错误, 故选:C .二、填空题(本大题共6个小题,每小题3分,满分18分.请将结果直接填写在答题卡对应的横线上.)11.(3分)(2020•湖北)已知正n 边形的一个内角为135°,则n 的值是 8 . 【解答】解:∵正n 边形的一个内角为135°, ∴正n 边形的一个外角为180°﹣135°=45°, ∴n =360°÷45°=8. 故答案为:8.12.(3分)(2020•湖北)篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队14场比赛得到23分,则该队胜了 9 场. 【解答】解:设该队胜了x 场,负了y 场,依题意有 {x +y =142x +y =23, 解得{x =9y =5.故该队胜了9场. 故答案为:9.13.(3分)(2020•湖北)如图,海中有个小岛A ,一艘轮船由西向东航行,在点B 处测得小岛A 位于它的东北方向,此时轮船与小岛相距20海里,继续航行至点D 处,测得小岛A 在它的北偏西60°方向,此时轮船与小岛的距离AD 为 20√2 海里.【解答】解:如图,过点A 作AC ⊥BD 于点C ,根据题意可知:∠BAC =∠ABC =45°,∠ADC =30°,AB =20, 在Rt △ABC 中,AC =BC =AB •sin45°=20×√22=10√2,在Rt △ACD 中,∠ADC =30°, ∴AD =2AC =20√2(海里).答:此时轮船与小岛的距离AD 为20√2海里. 故答案为:20√2.14.(3分)(2020•湖北)有3张看上去无差别的卡片,上面分别写着2,3,4.随机抽取1张后,放回并混在一起,再随机抽取1张,则两次取出的数字之和是奇数的概率为 49.【解答】解:画树状图得:∵共有9种等可能的结果,两次取出的数字之和是奇数的有4种结果, ∴两次取出的数字之和是奇数的概率为49,故答案为:49.15.(3分)(2020•湖北)某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为70元.【解答】解:设每顶头盔的售价为x元,获得的利润为w元,w=(x﹣50)[200+(80﹣x)×20]=﹣20(x﹣70)2+8000,∴当x=70时,w取得最大值,此时w=8000,故答案为:70.16.(3分)(2020•湖北)如图,已知直线a:y=x,直线b:y=−12x和点P(1,0),过点P作y轴的平行线交直线a于点P1,过点P1作x轴的平行线交直线b于点P2,过点P2作y轴的平行线交直线a于点P3,过点P3作x轴的平行线交直线b于点P4,…,按此作法进行下去,则点P2020的横坐标为21010.【解答】解:∵点P(1,0),P1在直线y=x上,∴P1(1,1),∵P1P2∥x轴,∴P2的纵坐标=P1的纵坐标=1,∵P2在直线y=−12x上,∴1=−12x,∴x=﹣2,∴P2(﹣2,1),即P2的横坐标为﹣2=﹣21,同理,P3的横坐标为﹣2=﹣21,P4的横坐标为4=22,P5=22,P6=﹣23,P7=﹣23,P8=24…,∴P4n=212n,∴P2020的横坐标为212×2020=21010,故答案为:21010.三、解答题(本大题共8个小题,满分72分.) 17.(12分)(2020•湖北)(1)先化简,再求值:a 2−4a+4a 2−2a÷a 2−42a,其中a =﹣1.(2)解不等式组{3x +2>x −2x−33≤7−53x ,并把它的解集在数轴上表示出来.【解答】解:(1)原式=(a−2)2a(a−2)•2a (a+2)(a−2)=2a+2, 当a =﹣1时,原式=2−1+2=2;(2){3x +2>x −2①x−33≤7−53x②, ∵解不等式①得:x >﹣2, 解不等式②得:x ≤4,∴不等式组的解集是:﹣2<x ≤4,在数轴上表示为:.18.(6分)(2020•湖北)在平行四边形ABCD 中,E 为AD 的中点,请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.(1)如图1,在BC 上找出一点M ,使点M 是BC 的中点; (2)如图2,在BD 上找出一点N ,使点N 是BD 的一个三等分点.【解答】解:(1)如图1,F 点就是所求作的点: (2)如图2,点N 就是所求作的点:19.(7分)(2020•湖北)5月20日九年级复学啦!为了解学生的体温情况,班主任张老师根据全班学生某天上午的《体温监测记载表》,绘制了如下不完整的频数分布表和扇形统计图.学生体温频数分布表组别温度(℃)频数(人数)甲36.36乙36.4a丙36.520丁36.64请根据以上信息,解答下列问题:(1)频数分布表中a=10,该班学生体温的众数是36.5,中位数是36.5;(2)扇形统计图中m=15,丁组对应的扇形的圆心角是36度;(3)求该班学生的平均体温(结果保留小数点后一位).【解答】解:(1)20÷50%=40(人),a=40×25%=10;36.5出现了20次,次数最多,所以众数是36.5;40个数据按从小到大的顺序排列,其中第20、21个数据都是36.5,所以中位数是(36.5+36.5)÷2=36.5.故答案为:10,36.5,36.5;(2)m %=640×100%=15%,m =15; 360°×440=36°. 故答案为:15,36;(3)该班学生的平均体温为:36.3×6+36.4×10+36.5×20+36.6×440=36.455≈36.5(℃).20.(8分)(2020•湖北)把抛物线C 1:y =x 2+2x +3先向右平移4个单位长度,再向下平移5个单位长度得到抛物线C 2.(1)直接写出抛物线C 2的函数关系式;(2)动点P (a ,﹣6)能否在抛物线C 2上?请说明理由;(3)若点A (m ,y 1),B (n ,y 2)都在抛物线C 2上,且m <n <0,比较y 1,y 2的大小,并说明理由.【解答】解:(1)∵y =x 2+2x +3=(x +1)2+2,∴把抛物线C 1:y =x 2+2x +3先向右平移4个单位长度,再向下平移5个单位长度得到抛物线C 2:y =(x +1﹣4)2+2﹣5,即y =(x ﹣3)2﹣3, ∴抛物线C 2的函数关系式为:y =(x ﹣3)2﹣3. (2)动点P (a ,﹣6)不在抛物线C 2上,理由如下: ∵抛物线C 2的函数关系式为:y =(x ﹣3)2﹣3, ∴函数的最小值为﹣3, ∵﹣6<﹣3,∵动点P (a ,﹣6)不在抛物线C 2上;(3)∵抛物线C 2的函数关系式为:y =(x ﹣3)2﹣3, ∴抛物线的开口向上,对称轴为x =3, ∴当x <3时,y 随x 的增大而减小,∵点A (m ,y 1),B (n ,y 2)都在抛物线C 2上,且m <n <0<3, ∴y 1>y 2.21.(8分)(2020•湖北)如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 交BC 于点D ,过点D 的直线EF 交AC 于点F ,交AB 的延长线于点E ,且∠BAC =2∠BDE . (1)求证:DF 是⊙O 的切线;(2)当CF =2,BE =3时,求AF 的长.【解答】解:(1)连接OD ,AD , ∵AB 是直径, ∴∠ADB =90°, ∴AD ⊥BC , ∵AB =AC , ∴∠BAC =2∠BAD , ∵∠BAC =2∠BDE , ∴∠BDE =∠BAD , ∵OA =OD , ∴∠BAD =∠ADO , ∵∠ADO +∠ODB =90°, ∴∠BDE +∠ODB =90°, ∴∠ODE =90°, 即DF ⊥OD , ∵OD 是⊙O 的半径, ∴DF 是⊙O 的切线. (2)∵AB =AC ,AD ⊥BC , ∴BD =CD , ∵BO =AO , ∴OD ∥AC , ∴△EOD ∽△EAF , ∴OD AF=EO EA,设OD =x , ∵CF =2,BE =3,∴OA=OB=x,AF=AC﹣CF=2x﹣2,∴EO=x+3,EA=2x+3,∴x2x−2=x+32x+3,解得x=6,经检验,x=6是分式方程的解,∴AF=2x﹣2=10.22.(9分)(2020•湖北)如图,直线AB与反比例函数y=kx(x>0)的图象交于A,B两点,已知点A的坐标为(6,1),△AOB的面积为8.(1)填空:反比例函数的关系式为y=6x;(2)求直线AB的函数关系式;(3)动点P在y轴上运动,当线段P A与PB之差最大时,求点P的坐标.【解答】解:(1)解:(1)将点A坐标(6,1)代入反比例函数解析式y=k x,得k=1×6=6,则y=6 x,故答案为:y=6 x;(2)过点A作AC⊥x轴于点C,过B作BD⊥y轴于D,延长CA,DB交于点E,则四边形ODEC是矩形,设B (m ,n ), ∴mn =6,∴BE =DE ﹣BD =6﹣m ,AE =CE ﹣AC =n ﹣1, ∴S △ABE =12AE ⋅BE =12(n −1)(6−m),∵A 、B 两点均在反比例函数y =k x(x >0)的图象上, ∴S △BOD =S △AOC =12×6×1=3, ∴S △AOB =S 矩形ODEC ﹣S △AOC ﹣S △BOD ﹣S △ABE =6n ﹣3﹣3−12(n −1)(6−m)=3n −12m , ∵△AOB 的面积为8, ∴3n −12m =8, ∴m =6n ﹣16, ∵mn =6, ∴3n 2﹣8n ﹣3=0, 解得:n =3或−13(舍), ∴m =2, ∴B (2,3),设直线AB 的解析式为:y =kx +b ,则{6k +b =12k +b =3,解得:{k =−12b =4, ∴直线AB 的解析式为:y =−12x +4;(3)如图,根据“三角形两这边之差小于第三边可知: 当点P 为直线AB 与y 轴的交点时,P A ﹣PB 有最大值是AB , 把x =0代入y =−12x +4中,得:y =4, ∴P (0,4).23.(10分)系统找不到该试题24.(12分)(2020•湖北)小华端午节从家里出发,沿笔直道路匀速步行去妈妈经营的商店帮忙,妈妈同时骑三轮车从商店出发,沿相同路线匀速回家装载货物,然后按原路原速返回商店,小华到达商店比妈妈返回商店早5分钟,在此过程中,设妈妈从商店出发开始所用时间为t (分钟),图1表示两人之间的距离s (米)与时间t (分钟)的函数关系的图象;图2中线段AB 表示小华和商店的距离y 1(米)与时间t (分钟)的函数关系的图象的一部分,请根据所给信息解答下列问题:(1)填空:妈妈骑车的速度是 120 米/分钟,妈妈在家装载货物所用时间是 5 分钟,点M 的坐标是 (20,1200) .(2)直接写出妈妈和商店的距离y 2(米)与时间t (分钟)的函数关系式,并在图2中画出其函数图象;(3)求t 为何值时,两人相距360米.【解答】解:(1)妈妈骑车的速度为120米/分钟, 妈妈在家装载货物时间为5分钟, 点M 的坐标为(20,1200). (2)y 2={120t(0≤t <15)1800(15≤t <20)−120t +4200(20≤t ≤35),其图象如图所示,(3)由题意可知:小华速度为60米/分钟,妈妈速度为120米/分钟,①相遇前,依题意有60t+120t+360=1800,解得t=8分钟,②相遇后,依题意有,60t+120t﹣360=1800,解得t=12分钟.③依题意,当t=20分钟时,妈妈从家里出发开始追赶小华,此时小华距商店为1800﹣20×60=600米,只需10分钟,即t=30分钟,小华到达商店.而此时妈妈距离商店为1800﹣10×120=600米>360米,∴120(t﹣5)+360=1800×2,解得t=32分钟,∴t=8,12或32分钟时,两人相距360米(素材文档整理不易,若对您有用建议可收藏) (素材文档整理不易,若对您有用建议可收藏) (素材文档整理不易,若对您有用建议可收藏) (素材文档整理不易,若对您有用建议可收藏) (素材文档整理不易,若对您有用建议可收藏) (素材文档整理不易,若对您有用建议可收藏) (素材文档整理不易,若对您有用建议可收藏) (素材文档整理不易,若对您有用建议可收藏) (素材文档整理不易,若对您有用建议可收藏) (素材文档整理不易,若对您有用建议可收藏)。
【最新人教版初中数学精选】2020年湖北省潜江市中考数学试卷.doc

2020年湖北省潜江市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.1.(3分)如果向北走6步记作+6,那么向南走8步记作()A.+8步B.﹣8步C.+14步D.﹣2步2.(3分)北京时间5月27日,蛟龙号载人潜水器在太平洋马里亚纳海沟作业区开展了本航段第3次下潜,最大下潜深度突破6500米,数6500用科学记数法表示为()A.65×102 B.6.5×102C.6.5×103D.6.5×1043.(3分)如图,已知AB∥CD∥EF,FC平分∠AFE,∠C=25°,则∠A的度数是()A.25°B.35°C.45°D.50°4.(3分)如图是一个正方体的展开图,把展开图折叠成正方体后,有“弘”字一面的相对面上的字是()A.传B.统C.文D.化5.(3分)下列运算正确的是()A.(π﹣3)0=1 B.=±3 C.2﹣1=﹣2 D.(﹣a2)3=a66.(3分)关于一组数据:1,5,6,3,5,下列说法错误的是()A.平均数是4 B.众数是5 C.中位数是6 D.方差是3.27.(3分)一个扇形的弧长是10πcm,面积是60πcm2,则此扇形的圆心角的度数是()A.300°B.150°C.120° D.75°8.(3分)若α、β为方程2x2﹣5x﹣1=0的两个实数根,则2α2+3αβ+5β的值为()A.﹣13 B.12 C.14 D.159.(3分)如图,P(m,m)是反比例函数y=在第一象限内的图象上一点,以P为顶点作等边△PAB,使AB落在x轴上,则△POB的面积为()A.B.3 C. D.10.(3分)如图,矩形ABCD中,AE⊥BD于点E,CF平分∠BCD,交EA的延长线于点F,且BC=4,CD=2,给出下列结论:①∠BAE=∠CAD;②∠DBC=30°;③AE=;④AF=2,其中正确结论的个数有()A.1个 B.2个 C.3个 D.4个二、填空题:本大题共6小题,每小题3分,共18分,请将结果直接填写在答题卡对应的横线上.11.(3分)已知2a﹣3b=7,则8+6b﹣4a=.12.(3分)“六一”前夕,市关工委准备为希望小学购进图书和文具若干套,已知1套文具和3套图书需104元,3套文具和2套图书需116元,则1套文具和1套图书需元.13.(3分)飞机着陆后滑行的距离s(单位:米)关于滑行的时间t(单位:秒)的函数解析式是s=60t﹣t2,则飞机着陆后滑行的最长时间为秒.14.(3分)为加强防汛工作,某市对一拦水坝进行加固,如图,加固前拦水坝的横断面是梯形ABCD.已知迎水坡面AB=12米,背水坡面CD=12米,∠B=60°,加固后拦水坝的横断面为梯形ABED,tanE=,则CE的长为米.15.(3分)有5张看上去无差别的卡片,正面分别写着1,2,3,4,5,洗匀后正面向下放在桌子上,从中随机抽取2张,抽出的卡片上的数字恰好是两个连续整数的概率是.16.(3分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,1),B(0,﹣2),C(1,0),点P(0,2)绕点A旋转180°得到点P1,点P1绕点B 旋转180°得到点P2,点P2绕点C旋转180°得到点P3,点P3绕点A旋转180°得到点P4,…,按此作法进行下去,则点P2020的坐标为.三、解答题:本大题共9小题,共72分.17.(6分)化简:﹣.18.(6分)解不等式组,并把它的解集在数轴上表示出来.19.(6分)如图,下列4×4网格图都是由16个相同小正方形组成,每个网格图中有4个小正方形已涂上阴影,请在空白小正方形中,按下列要求涂上阴影.(1)在图1中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形;(2)在图2中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个轴对称图形,但不是中心对称图形.20.(6分)近几年,随着电子商务的快速发展,“电商包裹件”占“快递件”总量的比例逐年增长,根据企业财报,某网站得到如下统计表:(1)请选择适当的统计图,描述2014﹣2020年“电商包裹件”占当年“快递件”总量的百分比(精确到1%);(2)若2018年“快递件”总量将达到675亿件,请估计其中“电商包裹件”约为多少亿件?21.(8分)如图,AB为⊙O的直径,C为⊙O上一点,AD与过点C的切线互相垂直,垂足为点D,AD交⊙O于点E,连接CE,CB.(1)求证:CE=CB;(2)若AC=2,CE=,求AE的长.22.(8分)江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾,“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y甲、y乙(单位:元)与原价x(单位:元)之间的函数关系如图所示:(1)直接写出y甲,y乙关于x的函数关系式;(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?23.(10分)已知关于x的一元二次方程x2﹣(m+1)x+(m2+1)=0有实数根.(1)求m的值;(2)先作y=x2﹣(m+1)x+(m2+1)的图象关于x轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;(3)在(2)的条件下,当直线y=2x+n(n≥m)与变化后的图象有公共点时,求n2﹣4n的最大值和最小值.24.(10分)在Rt△ABC中,∠ACB=90°,点D与点B在AC同侧,∠DAC>∠BAC,且DA=DC,过点B作BE∥DA交DC于点E,M为AB的中点,连接MD,ME.(1)如图1,当∠ADC=90°时,线段MD与ME的数量关系是;(2)如图2,当∠ADC=60°时,试探究线段MD与ME的数量关系,并证明你的结论;(3)如图3,当∠ADC=α时,求的值.25.(12分)如图,在平面直角坐标系中,四边形ABCD的边AD在x轴上,点C 在y轴的负半轴上,直线BC∥AD,且BC=3,OD=2,将经过A、B两点的直线l:y=﹣2x﹣10向右平移,平移后的直线与x轴交于点E,与直线BC交于点F,设AE的长为t(t≥0).(1)四边形ABCD的面积为;(2)设四边形ABCD被直线l扫过的面积(阴影部分)为S,请直接写出S关于t的函数解析式;(3)当t=2时,直线EF上有一动点,作PM⊥直线BC于点M,交x轴于点N,将△PMF沿直线EF折叠得到△PTF,探究:是否存在点P,使点T恰好落在坐标轴上?若存在,请求出点P的坐标;若不存在,请说明理由.2020年湖北省潜江市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.1.(3分)(2020•天门)如果向北走6步记作+6,那么向南走8步记作()A.+8步B.﹣8步C.+14步D.﹣2步【分析】“正”和“负”是表示互为相反意义的量,向北走记作正数,那么向北的反方向,向南走应记为负数.【解答】解:∵向北走6步记作+6,∴向南走8步记作﹣8,故选B.【点评】本题考查了正数和负数的定义.解本题的根据是掌握正数和负数是互为相反意义的量.2.(3分)(2020•天门)北京时间5月27日,蛟龙号载人潜水器在太平洋马里亚纳海沟作业区开展了本航段第3次下潜,最大下潜深度突破6500米,数6500用科学记数法表示为()A.65×102 B.6.5×102C.6.5×103D.6.5×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:数6500用科学记数法表示为6.5×103.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2020•天门)如图,已知AB∥CD∥EF,FC平分∠AFE,∠C=25°,则∠A的度数是()A.25°B.35°C.45°D.50°【分析】先根据平行线的性质以及角平分线的定义,得到∠AFE的度数,再根据平行线的性质,即可得到∠A的度数.【解答】解:∵CD∥EF,∠C=∠CFE=25°,∵FC平分∠AFE,∴∠AFE=2∠CFE=50°,又∵AB∥EF,∴∠A=∠AFE=50°,故选:D.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.4.(3分)(2020•天门)如图是一个正方体的展开图,把展开图折叠成正方体后,有“弘”字一面的相对面上的字是()A.传B.统C.文D.化【分析】利用正方体及其表面展开图的特点解题.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“扬”与“统”相对,面“弘”与面“文”相对,“传”与面“化”相对.故选:C.【点评】本题考查了正方体的展开图得知识,注意正方体的空间图形,从相对面入手,分析及解答问题.5.(3分)(2020•天门)下列运算正确的是()A.(π﹣3)0=1 B.=±3 C.2﹣1=﹣2 D.(﹣a2)3=a6【分析】根据零指数幂、算术平方根、负整数指数幂、积的乘方的计算法则计算,对各选项分析判断后利用排除法求解.【解答】解:解:A、(π﹣3)0=1,故A正确;B、=3,故B错误;C、2﹣1=,故C错误;D、(﹣a2)3=a6,故D错误.故选:A.【点评】本题考查零指数幂、算术平方根、负整数指数幂、积的乘方,熟练掌握运算性质和法则是解题的关键.6.(3分)(2020•天门)关于一组数据:1,5,6,3,5,下列说法错误的是()A.平均数是4 B.众数是5 C.中位数是6 D.方差是3.2【分析】分别求出这组数据的平均数、中位数、众数和方差,再分别对每一项进行判断即可.【解答】解:A、这组数据的平均数是(1+5+6+3+5)÷5=4,故本选项正确;B、5出现了2次,出现的次数最多,则众数是3,故本选项正确;C、把这组数据从小到大排列为:1,3,5,5,6,最中间的数是5,则中位数是5,故本选项错误;D、这组数据的方差是:[(1﹣4)2+(5﹣4)2+(6﹣4)2+(3﹣4)2+(5﹣4)2]=3.2,故本选项正确;故选C.【点评】本题考查平均数,中位数,方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.7.(3分)(2020•天门)一个扇形的弧长是10πcm,面积是60πcm2,则此扇形的圆心角的度数是()A.300°B.150°C.120° D.75°【分析】利用扇形面积公式1求出R的值,再利用扇形面积公式2计算即可得到圆心角度数.【解答】解:∵一个扇形的弧长是10πcm,面积是60πcm2,∴S=Rl,即60π=×R×10π,解得:R=12,∴S=60π=,解得:n=150°,故选B【点评】此题考查了扇形面积的计算,以及弧长的计算,熟练掌握扇形面积公式是解本题的关键.8.(3分)(2020•天门)若α、β为方程2x2﹣5x﹣1=0的两个实数根,则2α2+3αβ+5β的值为()A.﹣13 B.12 C.14 D.15【分析】根据一元二次方程解的定义得到2α2﹣5α﹣1=0,即2α2=5α+1,则2α2+3αβ+5β可表示为5(α+β)+3αβ+1,再根据根与系数的关系得到α+β=,αβ=﹣,然后利用整体代入的方法计算.【解答】解:∵α为2x2﹣5x﹣1=0的实数根,∴2α2﹣5α﹣1=0,即2α2=5α+1,∴2α2+3αβ+5β=5α+1+3αβ+5β=5(α+β)+3αβ+1,∵α、β为方程2x2﹣5x﹣1=0的两个实数根,∴α+β=,αβ=﹣,∴2α2+3αβ+5β=5×+3×(﹣)+1=12.故选B.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a ≠0)的两根时,x1+x2=﹣,x1x2=.也考查了一元二次方程解的定义.9.(3分)(2020•天门)如图,P(m,m)是反比例函数y=在第一象限内的图象上一点,以P为顶点作等边△PAB,使AB落在x轴上,则△POB的面积为()A.B.3 C. D.【分析】易求得点P的坐标,即可求得点B坐标,即可解题.【解答】解:作PD⊥OB,∵P(m,m)是反比例函数y=在第一象限内的图象上一点,∴m=,解得:m=3,∴PD=3,∵△ABP是等边三角形,∴BD=PD=,∴S=OB•PD=(OD+BD)•PD=,△POB故选D.【点评】本题考查了等边三角形的性质,考查了反比例函数点坐标的特性,本题中求得m的值是解题的关键.10.(3分)(2020•天门)如图,矩形ABCD中,AE⊥BD于点E,CF平分∠BCD,交EA的延长线于点F,且BC=4,CD=2,给出下列结论:①∠BAE=∠CAD;②∠DBC=30°;③AE=;④AF=2,其中正确结论的个数有()A.1个 B.2个 C.3个 D.4个【分析】根据余角的性质得到∠BAE=∠ADB,等量代换得到∠BAE=∠CAD,故①正确;根据三角函数的定义得到tan∠DBC==,于是得到∠DBC≠30°,故②错误;由勾股定理得到BD==2,根据相似三角形的性质得到AE=;故③正确;根据角平分线的定义得到∠BCF=45°,求得∠ACF=45°﹣∠ACB,推出∠EAC=2∠ACF,根据外角的性质得到∠EAC=∠ACF+∠F,得到∠ACF=∠F,根据等腰三角形的判定得到AF=AC,于是得到AF=2,故④正确.【解答】解:在矩形ABCD中,∵∠BAD=90°,∵AE⊥BD,∴∠AED=90°,∴∠ADE+∠DAE=∠DAE+∠BAE=90°,∴∠BAE=∠ADB,∵∠CAD=∠ADB,∴∠BAE=∠CAD,故①正确;∵BC=4,CD=2,∴tan∠DBC==,∴∠DBC≠30°,故②错误;∵BD==2,∵AB=CD=2,AD=BC=4,∵△ABE∽△DBA,∴,即,∴AE=;故③正确;∵CF平分∠BCD,∴∠BCF=45°,∴∠ACF=45°﹣∠ACB,∵AD∥BC,∴∠DAC=∠BAE=∠ACB,∴∠EAC=90°﹣2∠ACB,∴∠EAC=2∠ACF,∵∠EAC=∠ACF+∠F,∴∠ACF=∠F,∴AF=AC,∵AC=BD=2,∴AF=2,故④正确;故选C.【点评】本题考查了矩形的性质,相似三角形的判定和性质,三角形的外角的性质,角平分线的定义,熟练掌握相似三角形的判定和性质是解题的关键.二、填空题:本大题共6小题,每小题3分,共18分,请将结果直接填写在答题卡对应的横线上.11.(3分)(2020•天门)已知2a﹣3b=7,则8+6b﹣4a=﹣6.【分析】先变形,再整体代入求出即可.【解答】解:∵2a﹣3b=7,∴8+6b﹣4a=8﹣2(2a﹣3b)=8﹣2×7=﹣6,故答案为:﹣6.【点评】本题考查了求代数式的值,能够整体代入是解此题的关键.12.(3分)(2020•天门)“六一”前夕,市关工委准备为希望小学购进图书和文具若干套,已知1套文具和3套图书需104元,3套文具和2套图书需116元,则1套文具和1套图书需48元.【分析】设1套文具的价格为x元,一套图书的价格为y元,根据“1套文具和3套图书需104元,3套文具和2套图书需116元”,即可得出关于x、y的二元一次方程组,解之即可得出x、y的值,将其代入x+y中,即可得出结论.【解答】解:设1套文具的价格为x元,一套图书的价格为y元,根据题意得:,解得:,∴x+y=20+28=48.故答案为:48.【点评】本题考查了二元一次方程组的应用,找准等量关系,列出关于x、y的二元一次方程组是解题的关键.13.(3分)(2020•天门)飞机着陆后滑行的距离s(单位:米)关于滑行的时间t(单位:秒)的函数解析式是s=60t﹣t2,则飞机着陆后滑行的最长时间为20秒.【分析】将s=60t﹣1.5t2,化为顶点式,即可求得s的最大值,从而可以解答本题.【解答】解:解:s=60t﹣t2=﹣(t﹣20)2+600,∴当t=20时,s取得最大值,此时s=600.故答案是:20.【点评】本题考查二次函数的应用,解题的关键是明确题意,找出所求问题需要的条件,会将二次函数的一般式化为顶点式,根据顶点式求函数的最值.14.(3分)(2020•天门)为加强防汛工作,某市对一拦水坝进行加固,如图,加固前拦水坝的横断面是梯形ABCD.已知迎水坡面AB=12米,背水坡面CD=12米,∠B=60°,加固后拦水坝的横断面为梯形ABED,tanE=,则CE的长为8米.【分析】分别过A、D作下底的垂线,设垂足为F、G.在Rt△ABF中,已知坡面长和坡角的度数,可求得铅直高度AF的值,也就得到了DG的长;在Rt△CDG 中,由勾股定理求CG的长,在Rt△DEG中,根据正切函数定义得到GE的长;根据CE=GE﹣CG即可求解.【解答】解:分别过A、D作AF⊥BC,DG⊥BC,垂点分别为F、G,如图所示.∵在Rt△ABF中,AB=12米,∠B=60°,∴sin∠B=,∴AF=12×=6,∴DG=6.∵在Rt△DGC中,CD=12,DG=6米,∴GC==18.∵在Rt△DEG中,tanE=,∴=,∴GE=26,∴CE=GE﹣CG=26﹣18=8.即CE的长为8米.故答案为8.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,锐角三角函数的定义,勾股定理.作辅助线构造直角三角形是解答此类题的一般思路.15.(3分)(2020•天门)有5张看上去无差别的卡片,正面分别写着1,2,3,4,5,洗匀后正面向下放在桌子上,从中随机抽取2张,抽出的卡片上的数字恰好是两个连续整数的概率是.【分析】列表得出所有等可能的情况数,找出恰好是两个连续整数的情况数,即可求出所求概率.【解答】解:列表如下:所有等可能的情况有20种,其中恰好是两个连续整数的情况有8种,则P(恰好是两个连续整数)==,故答案为:【点评】此题考查了列表法与树状图法,概率=所求情况数与总情况数之比.16.(3分)(2020•天门)如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,1),B(0,﹣2),C(1,0),点P(0,2)绕点A旋转180°得到点P1,点P1绕点B旋转180°得到点P2,点P2绕点C旋转180°得到点P3,点P3绕点A旋转180°得到点P4,…,按此作法进行下去,则点P2020的坐标为(﹣2,0).【分析】画出P1~P6,寻找规律后即可解决问题.【解答】解:如图所示,P1(﹣2,0),P2(2,﹣4),P3(0,4),P4(﹣2,﹣2),P5(2,﹣2),P6(0,2),发现6次一个循环,∵2020÷6=336…1,∴点P2020的坐标与P1的坐标相同,即P2020(﹣2,0),故答案为(﹣2,0).【点评】本题考查坐标与图形的性质、点的坐标等知识,解题的关键是循环探究问题的方法,属于中考常考题型.三、解答题:本大题共9小题,共72分.17.(6分)(2020•天门)化简:﹣.【分析】根据分式的减法可以解答本题.【解答】解:﹣===.【点评】本题考查分式的减法,解答本题的关键是明确分式的减法的计算方法.18.(6分)(2020•天门)解不等式组,并把它的解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式5x+1>3(x﹣1),得:x>﹣2,解不等式x﹣1≤7﹣x,得:x≤4,则不等式组的解集为﹣2<x≤4,将解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.(6分)(2020•天门)如图,下列4×4网格图都是由16个相同小正方形组成,每个网格图中有4个小正方形已涂上阴影,请在空白小正方形中,按下列要求涂上阴影.(1)在图1中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形;(2)在图2中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个轴对称图形,但不是中心对称图形.【分析】(1)根据中心对称图形,画出所有可能的图形即可.(2)根据是轴对称图形,不是中心对称图形,画出图形即可.【解答】解:(1)在图1中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形,答案如图所示;(2)在图2中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个轴对称图形,但不是中心对称图形,答案如图所示;【点评】本题考查中心对称图形、轴对称图形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.(6分)(2020•天门)近几年,随着电子商务的快速发展,“电商包裹件”占“快递件”总量的比例逐年增长,根据企业财报,某网站得到如下统计表:(1)请选择适当的统计图,描述2014﹣2020年“电商包裹件”占当年“快递件”总量的百分比(精确到1%);(2)若2018年“快递件”总量将达到675亿件,请估计其中“电商包裹件”约为多少亿件?【分析】(1)分别计算各年的百分比,并画统计图,也可以画条形图;(2)从2014到2020发现每年上涨两个百分点,所以估计2018年的百分比为80%,据此计算即可.【解答】解:(1)2014:98÷140=0.7,2015:153÷207≈0.74,2016:235÷310≈0.76,2020:351÷450=0.78,画统计图如下:(2)根据统计图,可以预估2018年“电商包裹件”占当年“快递件”总量的80%,所以,2018年“电商包裹件”估计约为:675×80%=540(亿件),答:估计其中“电商包裹件”约为540亿件.【点评】本题考查了统计图的选择、百分比的计算,明确折线统计图的特点:①能清楚地反映事物的变化情况.②显示数据变化趋势.21.(8分)(2020•天门)如图,AB为⊙O的直径,C为⊙O上一点,AD与过点C的切线互相垂直,垂足为点D,AD交⊙O于点E,连接CE,CB.(1)求证:CE=CB;(2)若AC=2,CE=,求AE的长.【分析】(1)连接OC,利用切线的性质和已知条件推知OC∥AD,根据平行线的性质和等角对等边证得结论;(2)AE=AD﹣ED,通过相似三角形△ADC∽△ACB的对应边成比例求得AD=4,DC=2.在直角△DCE中,由勾股定理得到DE==1,故AE=AD﹣ED=3.【解答】(1)证明:连接OC,∵CD是⊙O的切线,∴OC⊥CD.∵AD⊥CD,∴OC∥AD,∴∠1=∠3.又OA=OC,∴∠2=∠3,∴∠1=∠2,∴CE=CB;(2)解:∵AB是直径,∴∠ACB=90°,∵AC=2,CB=CE=,∴AB===5.∵∠ADC=∠ACB=90°,∠1=∠2,∴△ADC∽△ACB,∴==,即==,∴AD=4,DC=2.在直角△DCE中,DE==1,∴AE=AD﹣ED=4﹣1=3.【点评】本题考查了切线的性质,勾股定理,相似三角形的判定与性质,解题时,注意辅助线的作法.22.(8分)(2020•天门)江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾,“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y甲、y乙(单位:元)与原价x(单位:元)之间的函数关系如图所示:(1)直接写出y甲,y乙关于x的函数关系式;(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?【分析】(1)利用待定系数法即可求出y甲,y乙关于x的函数关系式;(2)当0<x<2000时,显然到甲商店购买更省钱;当x≥2000时,分三种情况进行讨论即可.【解答】解:(1)设y甲=kx,把(2000,1600)代入,得2000x=1600,解得k=0.8,所以y=0.8x;甲=ax,当0<x<2000时,设y乙把(2000,2000)代入,得2000x=2000,解得k=1,=x;所以y乙当x≥2000时,设y=mx+n,乙把(2000,2000),(4000,3400)代入,得,解得.=;所以y乙(2)当0<x<2000时,0.8x<x,到甲商店购买更省钱;当x≥2000时,若到甲商店购买更省钱,则0.8x<0.7x+600,解得x<6000;若到乙商店购买更省钱,则0.8x>0.7x+600,解得x>6000;若到甲、乙两商店购买一样省钱,则0.8x=0.7x+600,解得x=6000;故当购买金额按原价小于6000元时,到甲商店购买更省钱;当购买金额按原价大于6000元时,到乙商店购买更省钱;当购买金额按原价等于6000元时,到甲、乙两商店购买花钱一样.【点评】本题考查了一次函数的应用,待定系数法求函数的解析式,正确求出函数解析式进行分类讨论是解题的关键.23.(10分)(2020•天门)已知关于x的一元二次方程x2﹣(m+1)x+(m2+1)=0有实数根.(1)求m的值;(2)先作y=x2﹣(m+1)x+(m2+1)的图象关于x轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;(3)在(2)的条件下,当直线y=2x+n(n≥m)与变化后的图象有公共点时,求n2﹣4n的最大值和最小值.【分析】(1)由题意△≥0,列出不等式,解不等式即可;(2)画出翻折.平移后的图象,根据顶点坐标即可写出函数的解析式;(3)首先确定n的取值范围,利用二次函数的性质即可解决问题;【解答】解:(1)对于一元二次方程x2﹣(m+1)x+(m2+1)=0,△=(m+1)2﹣2(m2+1)=﹣m2+2m﹣1=﹣(m﹣1)2,∵方程有实数根,∴﹣(m﹣1)2≥0,∴m=1.(2)由(1)可知y=x2﹣2x+1=(x﹣1)2,图象如图所示:平移后的解析式为y=﹣(x+2)2+2=﹣x2﹣4x﹣2.(3)由消去y得到x2+6x+n+2=0,由题意△≥0,∴36﹣4n﹣8≥0,∴n≤7,∵n≥m,m=1,∴1≤n≤7,令y′=n2﹣4n=(n﹣2)2﹣4,∴n=2时,y′的值最小,最小值为﹣4,n=7时,y′的值最大,最大值为21,∴n2﹣4n的最大值为21,最小值为﹣4.【点评】本题考查抛物线与x轴的交点、待定系数法、翻折变换、平移变换、二次函数的最值问题等知识,解题的关键是理解题意,学会用转化的思想思考问题,属于中考常考题型.24.(10分)(2020•天门)在Rt△ABC中,∠ACB=90°,点D与点B在AC同侧,∠DAC>∠BAC,且DA=DC,过点B作BE∥DA交DC于点E,M为AB的中点,连接MD,ME.(1)如图1,当∠ADC=90°时,线段MD与ME的数量关系是MD=ME;(2)如图2,当∠ADC=60°时,试探究线段MD与ME的数量关系,并证明你的结论;(3)如图3,当∠ADC=α时,求的值.【分析】(1)先判断出△AMF≌△BME,得出AF=BE,MF=ME,进而判断出∠EBC=∠BED﹣∠ECB=45°=∠ECB,得出CE=BE,即可得出结论;(2)同(1)的方法即可;(3)同(1)的方法判断出AF=BE,MF=ME,再判断出∠ECB=∠EBC,得出CE=BE 即可得出∠MDE=,即可得出结论.【解答】解:(1)如图1,延长EM交AD于F,∵BE∥DA,∴∠FAM=∠EBM,∵AM=BM,∠AMF=∠BME,∴△AMF≌△BME,∴AF=BE,MF=ME,∵DA=DC,∠ADC=90°,∴∠BED=∠ADC=90°,∠ACD=45°,∵∠ACB=90°,∴∠ECB=45°,∴∠EBC=∠BED﹣∠ECB=45°=∠ECB,∴CE=BE,∴AF=CE,∵DA=DC,∴DF=DE,∴DM⊥EF,DM平分∠ADC,∴∠MDE=45°,∴MD=ME,故答案为MD=ME;(2)MD=ME,理由:如图2,延长EM交AD于F,∵BE∥DA,∴∠FAM=∠EBM,∵AM=BM,∠AMF=∠BME,∴△AMF≌△BME,∴AF=BE,MF=ME,∵DA=DC,∠ADC=60°,∴∠BED=∠ADC=60°,∠ACD=60°,∵∠ACB=90°,∴∠ECB=30°,∴∠EBC=∠BED﹣∠ECB=30°=∠ECB,∴CE=BE,∴AF=CE,∵DA=DC,∴DF=DE,∴DM⊥EF,DM平分∠ADC,∴∠MDE=30°,在Rt△MDE中,tan∠MDE=,∴MD=ME.(3)如图3,延长EM交AD于F,∵BE∥DA,∴∠FAM=∠EBM,∵AM=BM,∠AMF=∠BME,∴△AMF≌△BME,∴AF=BE,MF=ME,延长BE交AC于点N,∴∠BNC=∠DAC,∵DA=DC,∴∠DCA=∠DAC,∴∠BNC=∠DCA,∵∠ACB=90°,∴∠ECB=∠EBC,∴CE=BE,∴AF=CE,∴DF=DE,∴DM⊥EF,DM平分∠ADC,∵∠ADC=α,∴∠MDE=,在Rt△MDE中,=tan∠MDE=tan.【点评】此题是相似形综合题,主要考查了全等三角形的判断和性质,等腰三角形的判断和性质,锐角三角函数,解(1)(2)的关键是判断出∠MDE=∠ADC,是一道基础题目.25.(12分)(2020•天门)如图,在平面直角坐标系中,四边形ABCD的边AD 在x轴上,点C在y轴的负半轴上,直线BC∥AD,且BC=3,OD=2,将经过A、B两点的直线l:y=﹣2x﹣10向右平移,平移后的直线与x轴交于点E,与直线BC交于点F,设AE的长为t(t≥0).(1)四边形ABCD的面积为20;(2)设四边形ABCD被直线l扫过的面积(阴影部分)为S,请直接写出S关于t的函数解析式;(3)当t=2时,直线EF上有一动点,作PM⊥直线BC于点M,交x轴于点N,将△PMF沿直线EF折叠得到△PTF,探究:是否存在点P,使点T恰好落在坐标轴上?若存在,请求出点P的坐标;若不存在,请说明理由.【分析】(1)根据函数解析式得到OA=5,求得AC=7,得到OC=4,于是得到结论;(2)①当0≤t≤3时,根据已知条件得到四边形ABFE是平行四边形,于是得到S=AE•OC=4t;②当3≤t<7时,如图1,求得直线CD的解析式为:y=2x﹣4,直线E′F′的解析式为:y=﹣2x+2t﹣10,解方程组得到G(,t﹣7),于是得到S=S四边形ABCD﹣S△DE′G=20﹣×(7﹣t)×(7﹣t)=﹣t2+7t﹣,③当t≥7时,S=S四边形ABCD=20,(3)当t=2时,点E,F的坐标分别为(﹣3,0),(﹣1,﹣4),此时直线EF的解析式为:y=﹣2x﹣6,设动点P的坐标为(m,﹣2m﹣6),求得PM=|(﹣2m ﹣6)﹣(﹣4)|=2|m+1|,PN=|﹣2m﹣6|=2|m+3|,FM=|m﹣(﹣1)|=|m+1|,①假设直线EF上存在点P,使点T恰好落在x轴上,如图2,连接PT,FT,②假设直线EF上存在点P,使点T恰好落在y轴上,如图3,连接PT,FT,根据全等三角形的判定性质和相似三角形的判定和性质即可得到结论.【解答】解:(1)在y=﹣2x﹣10中,当y=0时,x=﹣5,∴A(﹣5,0),∴OA=5,∴AD=7,把x=﹣3代入y=﹣2x﹣10得,y=﹣4∴OC=4,∴四边形ABCD的面积=(3+7)×4=20;故答案为:20;(2)①当0≤t≤3时,∵BC∥AD,AB∥EF,∴四边形ABFE是平行四边形,∴S=AE•OC=4t ;②当3≤t <7时,如图1,∵C (0,﹣4),D (2,0),∴直线CD 的解析式为:y=2x ﹣4,∵E′F′∥AB ,BF′∥A E′∴BF′=AE=t ,∴F′(t ﹣3,﹣4),直线E′F′的解析式为:y=﹣2x +2t ﹣10, 解得,∴G (,t ﹣7), ∴S=S 四边形ABCD ﹣S △DE′G =20﹣×(7﹣t )×(7﹣t )=﹣t 2+7t ﹣,③当t ≥7时,S=S 四边形ABCD =20,综上所述:S 关于t 的函数解析式为:S=;(3)当t=2时,点E ,F 的坐标分别为(﹣3,0),(﹣1,﹣4),此时直线EF 的解析式为:y=﹣2x ﹣6,设动点P 的坐标为(m ,﹣2m ﹣6),∵PM ⊥直线BC 于M ,交x 轴于n ,∴M (m ,﹣4),N (m ,0),∴PM=|(﹣2m ﹣6)﹣(﹣4)|=2|m +1|,PN=|﹣2m ﹣6|=2|m +3|,FM=|m ﹣(﹣1)|=|m +1|,①假设直线EF 上存在点P ,使点T 恰好落在x 轴上,如图2,连接PT ,FT ,则△PFM ≌△PFT ,∴PT=PM=2|m +1|,FT=FM=|m +1|,∴=2,作FK ⊥x 轴于K ,则KF=4,由△TKF ∽△PNT 得,=2, ∴NT=2KF=8,∵PN2+NT2=PT2,∴4(m+3)2+82=4(m+1)2,解得:m=﹣6,∴﹣2m﹣6=6,此时,P(﹣6,6);②假设直线EF上存在点P,使点T恰好落在y轴上,如图3,连接PT,FT,则△PFM≌△PFT,∴PT=PM=2|m+1|,FT=FM=|m+1|,∴=2,作PH⊥y轴于H,则PH=|m|,由△TFC∽△PTH得,,∴HT=2CF=2,∵HT2+PH2=PT2,即22+m2=4(m+1)2,解得:m=﹣,m=0(不合题意,舍去),∴m=﹣时,﹣2m﹣6=﹣,∴P(﹣,﹣),综上所述:直线EF上存在点P(﹣6,6)或P(﹣,﹣)使点T恰好落在y 轴上.【点评】本题考查了平行四边形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,求函数的解析式,正确的作出辅助线是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年湖北省潜江市中考数学试题及参考答案与解析(满分120分,考试时间120分钟)一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案)1.下列各数中,比﹣2小的数是()A.0 B.﹣3 C.﹣1 D.|﹣0.6|2.如图是由4个相同的小正方体组成的立体图形,它的俯视图为()A.B.C.D.3.我国自主研发的“北斗系统”现已广泛应用于国防、生产和生活等各个领域,多项技术处于国际领先地位,其星载原子钟的精度,已经提升到了每3000000年误差1秒.数3000000用科学记数法表示为()A.0.3×106B.3×107C.3×106D.30×1054.将一副三角尺按如图摆放,点E在AC上,点D在BC的延长线上,EF∥BC,∠B=∠EDF=90°,∠A=45°,∠F=60°,则∠CED的度数是()A.15°B.20°C.25°D.30°5.下列说法正确的是()A.为了解人造卫星的设备零件的质量情况,选择抽样调查B.方差是刻画数据波动程度的量C.购买一张体育彩票必中奖,是不可能事件D.掷一枚质地均匀的硬币,正面朝上的概率为16.下列运算正确的是()A.=±2 B.()﹣1=﹣2 C.a+2a2=3a3D.(﹣a2)3=﹣a67.对于一次函数y=x+2,下列说法不正确的是()A.图象经过点(1,3)B.图象与x轴交于点(﹣2,0)C.图象不经过第四象限D.当x>2时,y<48.一个圆锥的底面半径是4cm,其侧面展开图的圆心角是120°,则圆锥的母线长是()A.8cm B.12cm C.16cm D.24cm9.关于x的方程x2+2(m﹣1)x+m2﹣m=0有两个实数根α,β,且α2+β2=12,那么m的值为()A.﹣1 B.﹣4 C.﹣4或1 D.﹣1或410.如图,已知△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=90°,BD,CE交于点F,连接AF.下列结论:①BD=CE;②BF⊥CF;③AF平分∠CAD;④∠AFE =45°.其中正确结论的个数有()A.1个B.2个C.3个D.4个二、填空题(本大题共6个小题,每小题3分,满分18分)11.已知正n边形的一个内角为135°,则n的值是.12.篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队14场比赛得到23分,则该队胜了场.13.如图,海中有个小岛A,一艘轮船由西向东航行,在点B处测得小岛A位于它的东北方向,此时轮船与小岛相距20海里,继续航行至点D处,测得小岛A在它的北偏西60°方向,此时轮船与小岛的距离AD为海里.14.有3张看上去无差别的卡片,上面分别写着2,3,4.随机抽取1张后,放回并混在一起,再随机抽取1张,则两次取出的数字之和是奇数的概率为.15.某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为元.16.如图,已知直线a:y=x,直线b:y=﹣x和点P(1,0),过点P作y轴的平行线交直线a于点P1,过点P1作x轴的平行线交直线b于点P2,过点P2作y轴的平行线交直线a于点P3,过点P3作x轴的平行线交直线b于点P4,…,按此作法进行下去,则点P2020的横坐标为.三、解答题(本大题共8个小题,满分72分.)17.(12分)(1)先化简,再求值:÷,其中a=﹣1.(2)解不等式组,并把它的解集在数轴上表示出来.18.(6分)在平行四边形ABCD中,E为AD的中点,请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.(1)如图1,在BC上找出一点M,使点M是BC的中点;(2)如图2,在BD上找出一点N,使点N是BD的一个三等分点.19.(7分)5月20日九年级复学啦!为了解学生的体温情况,班主任张老师根据全班学生某天上午的《体温监测记载表》,绘制了如下不完整的频数分布表和扇形统计图.学生体温频数分布表组别温度(℃)频数(人数)甲36.3 6乙36.4 a丙36.5 20丁36.6 4请根据以上信息,解答下列问题:(1)频数分布表中a =,该班学生体温的众数是,中位数是;(2)扇形统计图中m=,丁组对应的扇形的圆心角是度;(3)求该班学生的平均体温(结果保留小数点后一位).20.(8分)把抛物线C1:y=x2+2x+3先向右平移4个单位长度,再向下平移5个单位长度得到抛物线C2.(1)直接写出抛物线C2的函数关系式;(2)动点P(a,﹣6)能否在抛物线C2上?请说明理由;(3)若点A(m,y1),B(n,y2)都在抛物线C2上,且m<n<0,比较y1,y2的大小,并说明理由.21.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D的直线EF交AC于点F,交AB的延长线于点E,且∠BAC=2∠BDE.(1)求证:DF是⊙O的切线;(2)当CF=2,BE=3时,求AF的长.22.(9分)如图,直线AB与反比例函数y=(x>0)的图象交于A,B两点,已知点A的坐标为(6,1),△AOB的面积为8.(1)填空:反比例函数的关系式为;(2)求直线AB的函数关系式;(3)动点P在y轴上运动,当线段PA与PB之差最大时,求点P的坐标.23.(10分)实践操作:第一步:如图1,将矩形纸片ABCD沿过点D的直线折叠,使点A落在CD上的点A'处,得到折痕DE,然后把纸片展平.第二步:如图2,将图1中的矩形纸片ABCD沿过点E的直线折叠,点C恰好落在AD上的点C′处,点B落在点B'处,得到折痕EF,B'C′交AB于点M,C′F交DE于点N,再把纸片展平.问题解决:(1)如图1,填空:四边形AEA'D的形状是;(2)如图2,线段MC′与ME是否相等?若相等,请给出证明;若不等,请说明理由;(3)如图2,若AC′=2cm,DC'=4cm,求DN:EN的值.24.(12分)小华端午节从家里出发,沿笔直道路匀速步行去妈妈经营的商店帮忙,妈妈同时骑三轮车从商店出发,沿相同路线匀速回家装载货物,然后按原路原速返回商店,小华到达商店比妈妈返回商店早5分钟,在此过程中,设妈妈从商店出发开始所用时间为t(分钟),图1表示两人之间的距离s(米)与时间t(分钟)的函数关系的图象;图2中线段AB表示小华和商店的距离y1(米)与时间t(分钟)的函数关系的图象的一部分,请根据所给信息解答下列问题:(1)填空:妈妈骑车的速度是米/分钟,妈妈在家装载货物所用时间是分钟,点M的坐标是.(2)直接写出妈妈和商店的距离y2(米)与时间t(分钟)的函数关系式,并在图2中画出其函数图象;(3)求t为何值时,两人相距360米.答案与解析一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案)1.下列各数中,比﹣2小的数是()A.0 B.﹣3 C.﹣1 D.|﹣0.6|【思路分析】先计算|﹣0.6|,再比较大小.【解题过程】解:∵|﹣0.6|=0.6,∴﹣3<﹣2<﹣1<0<|﹣0.6|.故选:B.【总结归纳】本题考查了绝对值的化简及有理数大小的比较.掌握有理数大小的比较方法是解决本题的关键.有理数大小的比较:正数大于0,0大于一切负数.两个负数比较大小,绝对值大的反而小.2.如图是由4个相同的小正方体组成的立体图形,它的俯视图为()A.B.C.D.【思路分析】从上面看物体所得到的图形即为俯视图,因此选项C的图形符合题意.【解题过程】解:俯视图就是从上面看到的图形,因此选项C的图形符合题意,故选:C.【总结归纳】本题考查简单几何体的三视图,主视图、左视图、俯视图实际上就是从正面、左面、上面对该几何体正投影所得到的图形.3.我国自主研发的“北斗系统”现已广泛应用于国防、生产和生活等各个领域,多项技术处于国际领先地位,其星载原子钟的精度,已经提升到了每3000000年误差1秒.数3000000用科学记数法表示为()A.0.3×106B.3×107C.3×106D.30×105【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解题过程】解:3000000=3×106,故选:C.【总结归纳】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.将一副三角尺按如图摆放,点E在AC上,点D在BC的延长线上,EF∥BC,∠B=∠EDF=90°,∠A=45°,∠F=60°,则∠CED的度数是()A.15°B.20°C.25°D.30°【思路分析】由∠B=∠EDF=90°,∠A=45°,∠F=60°,利用三角形内角和定理可得出∠ACB=45°,由EF∥BC,利用“两直线平行,内错角相等”可得出∠EDC的度数,结合三角形外角的性质可得结论.【解题过程】解:∵∠B=90°,∠A=45°,∴∠ACB=45°.∵∠EDF=90°,∠F=60°,∴∠DEF=30°.∵EF∥BC,∴∠EDC=∠DEF=30°,∴∠CED=∠ACB﹣∠EDC=45°﹣30°=15°.故选:A.【总结归纳】本题考查了三角形内角和定理和平行线的性质,牢记“两直线平行,内错角相等”是解题的关键.5.下列说法正确的是()A.为了解人造卫星的设备零件的质量情况,选择抽样调查B.方差是刻画数据波动程度的量C.购买一张体育彩票必中奖,是不可能事件D.掷一枚质地均匀的硬币,正面朝上的概率为1【知识考点】全面调查与抽样调查;方差;随机事件;概率的意义;概率公式.【思路分析】根据普查、抽查,方差,概率的意义逐项进行判断即可.【解题过程】解:为了解人造卫星的设备零件的质量情况,应选择全面调查,即普查,不宜选择抽样调查,因此选项A不符合题意;方差是刻画数据波动程度的量,反映数据的离散程度,因此选项B符合题意;购买一张体育彩票中奖,是可能的,只是可能性较小,是可能事件,因此选项C不符合题意;掷一枚质地均匀的硬币,正面朝上的概率为,因此选项D不符合题意;故选:B.【总结归纳】本题考查普查、抽查,方差,概率的意义,理解各个概念的意义是正确判断的前提.6.下列运算正确的是()A.=±2 B.()﹣1=﹣2 C.a+2a2=3a3D.(﹣a2)3=﹣a6【知识考点】算术平方根;合并同类项;幂的乘方与积的乘方;负整数指数幂.【思路分析】根据算术平方根、幂的乘方与积的乘方、合并同类项、负整数指数幂分别进行计算,即可判断.【解题过程】解:A.因为=2,所以A选项错误;B.因为()﹣1=2,所以B选项错误;C.因为a与2a2不是同类项,不能合并,所以C选项错误;D.因为(﹣a2)3=﹣a6,所以D选项正确.故选:D.【总结归纳】本题考查了幂的乘方与积的乘方、算术平方根、合并同类项、负整数指数幂,解决本题的关键是准确掌握以上知识.7.对于一次函数y=x+2,下列说法不正确的是()A.图象经过点(1,3)B.图象与x轴交于点(﹣2,0)C.图象不经过第四象限D.当x>2时,y<4【知识考点】一次函数的性质;一次函数图象上点的坐标特征.【思路分析】根据题目中的函数解析式和一次函数的性质可以判断各个选项中的结论是否成立,从而可以解答本题.【解题过程】解:∵一次函数y=x+2,∴当x=1时,y=3,∴图象经过点(1,3),故选项A正确;令y=0,解得x=﹣2,∴图象与x轴交于点(﹣2,0),故选项B正确;∵k=1>0,b=2>0,∴不经过第四象限,故选项C正确;∵k=1>0,∴函数值y随x的增大而增大,当x=2时,y=4,∴当x>2时,y>4,故选项D不正确,故选:D.【总结归纳】本题考查一次函数图象上点的坐标特征、一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.8.一个圆锥的底面半径是4cm,其侧面展开图的圆心角是120°,则圆锥的母线长是()A.8cm B.12cm C.16cm D.24cm【知识考点】圆锥的计算.【思路分析】根据圆锥侧面展开图的实际意义求解即可.【解题过程】解:圆锥的底面周长为2π×4=8πcm,即为展开图扇形的弧长,由弧长公式得,=8π,解得,R=12,即圆锥的母线长为12cm.故选:B.【总结归纳】本题考查圆锥的侧面展开图,明确展开图扇形的各个部分与圆锥的关系是正确计算的前提.9.关于x的方程x2+2(m﹣1)x+m2﹣m=0有两个实数根α,β,且α2+β2=12,那么m的值为()A.﹣1 B.﹣4 C.﹣4或1 D.﹣1或4【知识考点】根的判别式;根与系数的关系.【思路分析】根据方程的根的判别式,得出m的取值范围,然后根据根与系数的关系可得α+β=﹣2(m﹣1),α•β=m2﹣m,结合α2+β2=12即可得出关于m的一元二次方程,解之即可得出结论.【解题过程】解:∵关于x的方程x2﹣2(m﹣1)x+m2=0有两个实数根,∴△=[2(m﹣1)]2﹣4×1×(m2﹣m)=﹣4m+4≥0,解得:m≤1.∵关于x的方程x2+2(m﹣1)x+m2﹣m=0有两个实数根α,β,∴α+β=﹣2(m﹣1),α•β=m2﹣m,∴α2+β2=(α+β)2﹣2α•β=[﹣2(m﹣1)]2﹣2(m2﹣m)=12,即m2﹣3m﹣4=0,解得:m=﹣1或m=4(舍去).故选:A.【总结归纳】本题考查了根与系数的关系、根的判别式以及解一元二次方程,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)根据根与系数的关系得出关于m的一元二次方程.10.如图,已知△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=90°,BD,CE交于点F,连接AF.下列结论:①BD=CE;②BF⊥CF;③AF平分∠CAD;④∠AFE=45°.其中正确结论的个数有()A.1个B.2个C.3个D.4个【知识考点】全等三角形的判定与性质;等腰直角三角形.【思路分析】如图,作AM⊥BD于M,AN⊥EC于N.证明△BAD≌△CAE,利用全等三角形的性质一一判断即可.【解题过程】解:如图,作AM⊥BD于M,AN⊥EC于N.∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴EC=BD,∠BDA=∠AEC,故①正确∵∠DOF=∠AOE,∠DFO=∠EAO=90°,∴BD⊥EC,故②正确,∵△BAD≌△CAE,AM⊥BD,AN⊥EC,∴AM=AN,∴FA平分∠EFB,∴∠AFE=45°,故④正确,若③成立,则∠AEF=∠ABD=∠ADB,推出AB=AD,显然与条件矛盾,故③错误,故选:C.【总结归纳】本题考查全等三角形的判定和性质,等腰直角三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.二、填空题(本大题共6个小题,每小题3分,满分18分)11.已知正n边形的一个内角为135°,则n的值是.【知识考点】多边形内角与外角.【思路分析】根据多边形的相邻的内角与外角互为邻补角求出每一个外角的度数,再根据多边形的边数等于外角和除以每一个外角的度数进行计算即可得解.【解题过程】解:∵正n边形的一个内角为135°,∴正n边形的一个外角为180°﹣135°=45°,∴n=360°÷45°=8.故答案为:8.【总结归纳】本题考查了多边形的外角,利用多边形的边数等于外角和除以每一个外角的度数是常用的方法,求出多边形的每一个外角的度数是解题的关键.12.篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队14场比赛得到23分,则该队胜了场.【知识考点】一元一次方程的应用;二元一次方程组的应用.【思路分析】设该队胜了x场,负了y场,根据:①某队14场比赛;②得到23分;列方程组即可求解.【解题过程】解:设该队胜了x场,负了y场,依题意有,解得.故该队胜了9场.故答案为:9.【总结归纳】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.13.如图,海中有个小岛A,一艘轮船由西向东航行,在点B处测得小岛A位于它的东北方向,此时轮船与小岛相距20海里,继续航行至点D处,测得小岛A在它的北偏西60°方向,此时轮船与小岛的距离AD为海里.【知识考点】解直角三角形的应用﹣方向角问题.【思路分析】如图,过点A作AC⊥BD于点C,根据题意可得,∠BAC=∠ABC=45°,∠ADC =30°,AB=20,再根据锐角三角函数即可求出轮船与小岛的距离AD.【解题过程】解:如图,过点A作AC⊥BD于点C,根据题意可知:∠BAC=∠ABC=45°,∠ADC=30°,AB=20,在Rt△ABC中,AC=BC=AB•sin45°=20×=10,在Rt△ACD中,∠ADC=30°,∴AD=2AC=20(海里).答:此时轮船与小岛的距离AD为20海里.故答案为:20.【总结归纳】本题考查了解直角三角形的应用﹣方向角问题,解决本题的关键是掌握方向角定义.14.有3张看上去无差别的卡片,上面分别写着2,3,4.随机抽取1张后,放回并混在一起,再随机抽取1张,则两次取出的数字之和是奇数的概率为.【知识考点】列表法与树状图法.【思路分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽到的两张卡片上的数字之和为奇数的情况,再利用概率公式即可求得答案.【解题过程】解:画树状图得:∵共有9种等可能的结果,两次取出的数字之和是奇数的有4种结果,∴两次取出的数字之和是奇数的概率为,故答案为:.【总结归纳】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.15.某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为元.【知识考点】二次函数的应用.【思路分析】根据题意,可以得到利润和售价之间的函数关系,然后化为顶点式,即可得到当售价为多少元时,利润达到最大值.【解题过程】解:设每顶头盔的售价为x元,获得的利润为w元,w=(x﹣50)[200+(80﹣x)×20]=﹣20(x﹣70)2+8000,∴当x=70时,w取得最大值,此时w=8000,故答案为:70.【总结归纳】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.16.如图,已知直线a:y=x,直线b:y=﹣x和点P(1,0),过点P作y轴的平行线交直线a于点P1,过点P1作x轴的平行线交直线b于点P2,过点P2作y轴的平行线交直线a于点P3,过点P3作x轴的平行线交直线b于点P4,…,按此作法进行下去,则点P2020的横坐标为.【知识考点】规律型:点的坐标;正比例函数的性质;一次函数图象上点的坐标特征.【思路分析】点P(1,0),P1在直线y=x上,得到P1(1,1),求得P2的纵坐标=P1的纵坐标=1,得到P2(﹣2,1),即P2的横坐标为﹣2=﹣21,同理,P3的横坐标为﹣2=﹣21,P4的横坐标为4=22,P5=22,P6=﹣23,P7=﹣23,P8=24…,求得P4n=2,于是得到结论.【解题过程】解:∵点P(1,0),P1在直线y=x上,∴P1(1,1),∵P1P2∥x轴,∴P2的纵坐标=P1的纵坐标=1,∵P2在直线y=﹣x上,∴1=﹣x,∴x=﹣2,∴P2(﹣2,1),即P2的横坐标为﹣2=﹣21,同理,P3的横坐标为﹣2=﹣21,P4的横坐标为4=22,P5=22,P6=﹣23,P7=﹣23,P8=24…,∴P4n=2,∴P2020的横坐标为2=21010,故答案为:21010.【总结归纳】本题考查了一次函数图象上点的坐标特征,规律型:点的坐标,正确的作出规律是解题的关键.三、解答题(本大题共8个小题,满分72分.)17.(12分)(1)先化简,再求值:÷,其中a=﹣1.(2)解不等式组,并把它的解集在数轴上表示出来.【知识考点】分式的化简求值;在数轴上表示不等式的解集;解一元一次不等式组.【思路分析】(1)先把除法变成乘法,算乘法,最后代入求出即可;(2)先求出不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.【解题过程】解:(1)原式=•=,当a=﹣1时,原式==2;(2),∵解不等式①得:x>﹣2,解不等式②得:x≤4,∴不等式组的解集是:﹣2<x≤4,在数轴上表示为:.【总结归纳】本题考查了分式的混合运算和求值,解一元一次不等式组和在数轴上表示不等式组的解集等知识点,能正确根据分式的运算法则进行化简是解(1)的关键,能求出不等式组的解集是解(2)的关键.18.(6分)在平行四边形ABCD中,E为AD的中点,请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.(1)如图1,在BC上找出一点M,使点M是BC的中点;(2)如图2,在BD上找出一点N,使点N是BD的一个三等分点.【知识考点】平行四边形的性质;作图—复杂作图.【思路分析】(1)连接AC和BD,它们的交点为O,延长EO并延长交AD于M,则M点为所作;(2)连接CE交BD于点N,则N点为所作.【解题过程】解:(1)如图1,M点就是所求作的点:(2)如图2,点N就是所求作的点:【总结归纳】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行四边形的性质.19.(7分)5月20日九年级复学啦!为了解学生的体温情况,班主任张老师根据全班学生某天上午的《体温监测记载表》,绘制了如下不完整的频数分布表和扇形统计图.学生体温频数分布表组别温度(℃)频数(人数)甲36.3 6乙36.4 a丙36.5 20丁36.6 4请根据以上信息,解答下列问题:(1)频数分布表中a =,该班学生体温的众数是,中位数是;(2)扇形统计图中m=,丁组对应的扇形的圆心角是度;(3)求该班学生的平均体温(结果保留小数点后一位).【知识考点】频数(率)分布表;扇形统计图;中位数;众数.【思路分析】(1)根据丙组的人数和所占的百分比求出总人数,再用总人数乘以乙组所占的百分比,求出a的值;再根据众数与中位数的定义求解;(2)用甲组的人数除以总人数得出甲组所占百分比,求出m的值;用360°丁组所占百分比,即可求出丁组对应的扇形圆心角的度数;(3)利用加权平均数的公式计算即可.【解题过程】解:(1)20÷50%=40(人),a=40×25%=10;36.5出现了20次,次数最多,所以众数是36.5;40个数据按从小到大的顺序排列,其中第20、21个数据都是36.5,所以中位数是(36.5+36.5)÷2=36.5.故答案为:10,36.5,36.5;(2)m%=×100%=15%,m=15;360°×=36°.故答案为:15,36;(3)该班学生的平均体温为:=36.455≈36.5(℃).【总结归纳】此题考查了频率分布表,扇形统计图,众数与中位数的定义,读懂统计图表,运用数形结合思想来解决由统计图形式给出的数学实际问题是本题的关键.20.(8分)把抛物线C1:y=x2+2x+3先向右平移4个单位长度,再向下平移5个单位长度得到抛物线C2.(1)直接写出抛物线C2的函数关系式;(2)动点P(a,﹣6)能否在抛物线C2上?请说明理由;(3)若点A(m,y1),B(n,y2)都在抛物线C2上,且m<n<0,比较y1,y2的大小,并说明理由.【知识考点】二次函数图象上点的坐标特征;二次函数图象与几何变换;待定系数法求二次函数解析式.【思路分析】(1)根据二次函数图象左加右减,上加下减的平移规律进行求解;(2)根据二次函数的最小值即可判断;(3)根据二次函数的性质可以求得y1与y2的大小.【解题过程】解:(1)∵y=x2+2x+3=(x+1)2+2,∴把抛物线C1:y=x2+2x+3先向右平移4个单位长度,再向下平移5个单位长度得到抛物线C2:y=(x+1﹣4)2+2﹣5,即y=(x﹣3)2﹣3,∴抛物线C2的函数关系式为:y=(x﹣3)2﹣3.(2)动点P(a,﹣6)不在抛物线C2上,理由如下:∵抛物线C2的函数关系式为:y=(x﹣3)2﹣3,∴函数的最小值为﹣3,∵﹣6<﹣3,∴动点P(a,﹣6)不在抛物线C2上;(3)∵抛物线C2的函数关系式为:y=(x﹣3)2﹣3,∴抛物线的开口向上,对称轴为x=3,∴当x<3时,y随x的增大而减小,∵点A(m,y1),B(n,y2)都在抛物线C2上,且m<n<0<3,∴y1>y2.【总结归纳】本题考查二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答;也考查函数图象的平移的规律.21.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D的直线EF交AC于点F,交AB的延长线于点E,且∠BAC=2∠BDE.(1)求证:DF是⊙O的切线;(2)当CF=2,BE=3时,求AF的长.【知识考点】等腰三角形的性质;圆周角定理;切线的判定与性质;相似三角形的判定与性质.【思路分析】(1)连接OD,AD,根据切线的判定即可求证.(2)先证明△EOD∽△EAF,设OD=x,根据相似三角形的性质列出关于x的方程从而可求出答案.【解题过程】(1)证明:连接OD,AD,∵AB是直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴∠BAC=2∠BAD,∵∠BAC=2∠BDE,∴∠BDE=∠BAD,∵OA=OD,∴∠BAD=∠ADO,∵∠ADO+∠ODB=90°,∴∠BDE+∠ODB=90°,∴∠ODE=90°,即DF⊥OD,∵OD是⊙O的半径,∴DF是⊙O的切线.(2)解:∵AB=AC,AD⊥BC,∴BD=CD,∵BO=AO,∴OD∥AC,∴△EOD∽△EAF,∴,设OD=x,∵CF=2,BE=3,∴OA=OB=x,AF=AC﹣CF=2x﹣2,∴EO=x+3,EA=2x+3,∴=,解得x=6,经检验,x=6是分式方程的解,∴AF=2x﹣2=10.【总结归纳】本题考查了圆的综合问题,涉及切线的判定,相似三角形的性质与判定,解方程等知识,需要学生灵活运用所学知识.22.(9分)如图,直线AB与反比例函数y=(x>0)的图象交于A,B两点,已知点A的坐标为(6,1),△AOB的面积为8.(1)填空:反比例函数的关系式为;(2)求直线AB的函数关系式;(3)动点P在y轴上运动,当线段PA与PB之差最大时,求点P的坐标.【知识考点】反比例函数综合题.【思路分析】(1)将点A坐标(6,1)代入反比例函数解析式y=,求出k的值即可;(2)过点A作AC⊥x轴于点C,过B作BD⊥y轴于D,延长CA,DB交于点E,则四边形ODEC 是矩形,设B(m,n),根据△AOB的面积为8,得3n﹣m=8,得方程3n2﹣8n﹣3=0,解出可得B的坐标,利用待定系数法可得AB的解析式;(3)如图,根据“三角形两边之差小于第三边可知:当点P为直线AB与y轴的交点时,PA﹣PB有最大值是AB,可解答.【解题过程】解:(1)将点A坐标(6,1)代入反比例函数解析式y=,得k=1×6=6,则y=,故答案为:y=;(2)过点A作AC⊥x轴于点C,过B作BD⊥y轴于D,延长CA,DB交于点E,则四边形ODEC 是矩形,设B(m,n),∴mn=6,∴BE=DE﹣BD=6﹣m,AE=CE﹣AC=n﹣1,∴S△ABE==,∵A、B两点均在反比例函数y=(x>0)的图象上,∴S△BOD=S△AOC==3,∴S△AOB=S矩形ODEC﹣S△AOC﹣S△BOD﹣S△ABE=6n﹣3﹣3﹣=3n﹣m,∵△AOB的面积为8,∴3n﹣m=8,∴m=6n﹣16,∵mn=6,∴3n2﹣8n﹣3=0,解得:n=3或﹣(舍),∴m=2,∴B(2,3),设直线AB的解析式为:y=kx+b,则,解得:,∴直线AB的解析式为:y=﹣x+4;(3)如图,根据“三角形两边之差小于第三边可知:当点P为直线AB与y轴的交点时,PA﹣PB有最大值是AB,把x=0代入y=﹣x+4中,得:y=4,∴P(0,4).【总结归纳】本题考查了反比例函数与一次函数的交点问题,反比例函数图象上点的坐标特征,利用待定系数法求反比例函数和一次函数的解析式,难度适中,利用数形结合是解题的关键.23.(10分)实践操作:第一步:如图1,将矩形纸片ABCD沿过点D的直线折叠,使点A落在CD上的点A'处,得到折痕DE,然后把纸片展平.第二步:如图2,将图1中的矩形纸片ABCD沿过点E的直线折叠,点C恰好落在AD上的点C′处,点B落在点B'处,得到折痕EF,B'C′交AB于点M,C′F交DE于点N,再把纸片展平.问题解决:(1)如图1,填空:四边形AEA'D的形状是;(2)如图2,线段MC′与ME是否相等?若相等,请给出证明;若不等,请说明理由;(3)如图2,若AC′=2cm,DC'=4cm,求DN:EN的值.【知识考点】四边形综合题.【思路分析】(1)由折叠性质得AD=AD′,AE=A′E,∠ADE=∠A′DE,再根据平行线的性质和等腰三角形的判定得到四边形AEA′D是菱形,进而结合内角为直角条件得四边形AEA′D为正方形;(2)连接C′E,证明Rt△EC′A≌Rt△CEB′,得∠C′EA=∠EC′B′,便可得结论;。