时间序列分析与预测教程
spss教程第四章---时间序列分析

第四章时间序列分析由于反映社会经济现象的大多数数据是按照时间顺序记录的,所以时间序列分析是研究社会经济现象的指标随时间变化的统计规律性的统计方法。
.为了研究事物在不同时间的发展状况,就要分析其随时间的推移的发展趋势,预测事物在未来时间的数量变化。
因此学习时间序列分析方法是非常必要的。
本章主要内容:1. 时间序列的线图,自相关图和偏自关系图;2. SPSS 软件的时间序列的分析方法−季节变动分析。
§4.1 实验准备工作§4.1.1 根据时间数据定义时间序列对于一组示定义时间的时间序列数据,可以通过数据窗口的Date菜单操作,得到相应时间的时间序列。
定义时间序列的具体操作方法是:将数据按时间顺序排列,然后单击Date →Define Dates打开Define Dates对话框,如图4.1所示。
从左框中选择合适的时间表示方法,并且在右边时间框内定义起始点后点击OK,可以在数据库中增加时间数列。
图4.1 产生时间序列对话框§4.1.2 绘制时间序列线图和自相关图一、线图线图用来反映时间序列随时间的推移的变化趋势和变化规律。
下面通过例题说明线图的制作。
例题4.1:表4.1中显示的是某地1979至1982年度的汗衫背心的零售量数据。
试根据这些的数据对汗衫背心零售量进行季节分析。
(参考文献[2])表4.1 某地背心汗衫零售量一览表单位:万件解:根据表4.1的数据,建立数据文件SY-11(零售量),并对数据定义相应的时间值,使数据成为时间序列。
为了分析时间序列,需要先绘制线图直观地反映时间序列的变化趋势和变化规律。
具体操作如下:1. 在数据编辑窗口单击Graphs→Line,打开Line Charts对话框如图4.2.。
从中选择Simple单线图,从Date in Chart Are 栏中选择Values of individual cases,即输出的线图中横坐标显示变量中按照时间顺序排列的个体序列号,纵坐标显示时间序列的变量数据。
统计学中基于Excel的时间序列指标分析方法

办公自动化杂志0概述所谓时间序列(Time Series)是指把反映某一现象的同一指标在不同时间上的取值按照时间的先后顺序排列,以此形成的一个动态数列。
时间序列分析也是一种应用非常广泛的数量分析方法,对数据进行时间序列分析是为了发现随时间变化的数据中具有的某种规律性,并能使用此规律性规则来预测未来可能发生的情况,也就是对处于不断发展变化的社会经济现象从动态的角度进行分析。
Excel 作为一个入门级的工具,同时又足以满足统计学教学的需要,对于还未接触过数据分析软件的学生来说是非常理想的工具。
本文将以我国2010年至2019年的国内生产总值的数据作为分析数据。
通过查询国家统计局官网所公布的次级资料,得到我国2010年至2019年的国内生产总值的数据,分别为:412119.3亿元、487940.2亿元、538580.0亿元、592963.2亿元、643563.1亿元、688858.2亿元、746395.1亿元、832035.9亿元、919281.1亿元,在进行分析之前先把数据输入Excel 工作表A1:B11单元格中。
1时间序列指标分析指标分析法是指通过计算一系列的时间序列分析指标,再进行对比分析,以此来描述现象的发展变化状况和发展变化程度的一种适用于时间序列分析的方法,其中根据反映现象的是绝对水平还是相对水平可以再分为水平分析指标和速度分析指标,这两种方法各有不同的特点和作用,各揭示不同的经济问题和状况,可根据研究目的分别采用或综合运用。
以下将利用我国2010年至2019年国内生产总值数据,采用指标分析法计算分析我国2010年至2019年国内生产总值的发展变化状况和程度。
1.1水平分析指标发展水平是指时间数列中各具体数值,一般用表示。
2010年至2019年的发展水平可直接得出,即是这十年的国内生产总值。
平均发展水平是不同时间上发展水平的平均数,平均发展水平指标可以消除不同时间上数量的差异,说明现象在一段时期的一般水平。
spss时间序列分析教程

3.3时间序列分析3.3.1时间序列概述1.基本概念(1)一般概念:系统中某一变量的观测值按时间顺序(时间间隔相同)排列成一个数值序列,展示研究对象在一定时期内的变动过程,从中寻找和分析事物的变化特征、发展趋势和规律。
它是系统中某一变量受其它各种因素影响的总结果。
(2)研究实质:通过处理预测目标本身的时间序列数据,获得事物随时间过程的演变特性与规律,进而预测事物的未来发展。
它不研究事物之间相互依存的因果关系。
(3)假设基础:惯性原则。
即在一定条件下,被预测事物的过去变化趋势会延续到未来。
暗示着历史数据存在着某些信息,利用它们可以解释与预测时间序列的现在和未来。
近大远小原理(时间越近的数据影响力越大)和无季节性、无趋势性、线性、常数方差等。
(4)研究意义:许多经济、金融、商业等方面的数据都是时间序列数据。
时间序列的预测和评估技术相对完善,其预测情景相对明确。
尤其关注预测目标可用数据的数量和质量,即时间序列的长度和预测的频率。
2.变动特点(1)趋势性:某个变量随着时间进展或自变量变化,呈现一种比较缓慢而长期的持续上升、下降、停留的同性质变动趋向,但变动幅度可能不等。
(2)周期性:某因素由于外部影响随着自然季节的交替出现高峰与低谷的规律。
(3)随机性:个别为随机变动,整体呈统计规律。
(4)综合性:实际变化情况一般是几种变动的叠加或组合。
预测时一般设法过滤除去不规则变动,突出反映趋势性和周期性变动。
3.特征识别认识时间序列所具有的变动特征,以便在系统预测时选择采用不同的方法。
(1)随机性:均匀分布、无规则分布,可能符合某统计分布。
(用因变量的散点图和直方图及其包含的正态分布检验随机性,大多数服从正态分布。
)(2)平稳性:样本序列的自相关函数在某一固定水平线附近摆动,即方差和数学期望稳定为常数。
样本序列的自相关函数只是时间间隔的函数,与时间起点无关。
其具有对称性,能反映平稳序列的周期性变化。
特征识别利用自相关函数ACF:ρk=γk/γ0其中γk是y t的k阶自协方差,且ρ0=1、-1<ρk<1。
如何用eviews分析时间序列课程

如何用eviews分析时间序列课程时间序列分析是一种常用的数据分析方法,通过对一系列时间上连续测量的数据进行观察、描述和分析,可以发现其中的规律和趋势,从而预测未来的发展走势。
Eviews是一种专业的时间序列分析软件,具有强大的数据处理和统计分析功能。
本文将介绍如何使用Eviews进行时间序列分析。
首先,打开Eviews软件,并导入需要分析的时间序列数据。
在Eviews的工作区中,选择“File”菜单下的“Open”选项,然后选择需要导入的数据文件,点击“Open”按钮导入数据。
导入数据后,可以在Eviews的对象浏览器中看到导入的数据对象。
接下来,对时间序列数据进行初步的观察和描述分析。
在对象浏览器中,选择需要分析的数据对象,右键点击并选择“Open as Group”选项,将数据对象打开为一个分析组。
然后,在Eviews的对象浏览器中,选择分析组,在右侧窗口中可以看到该组中包含的所有时间序列数据。
可以通过列出每个时间序列的统计概要、绘制时间序列图、查看自相关和偏自相关等方式对数据进行初步的观察和描述分析。
接下来,进行时间序列模型的构建和估计。
在Eviews的操作菜单中,选择“Quick”菜单下的“Estimate Equation”选项,打开方程估计窗口。
在方程估计窗口中,选择需要构建的时间序列模型类型,如AR、MA、ARMA等。
然后,在“Dependent Variable”栏目中选择需要分析的时间序列数据,将其作为因变量。
在“Independent Variables”栏目中选择需要作为自变量的时间序列数据,可以根据需求选择多个自变量。
点击“OK”按钮,Eviews将根据所选择的时间序列模型类型和数据进行模型的估计。
估计完成后,可以查看估计结果。
在方程估计窗口中,可以看到估计结果的统计指标、系数估计值、显著性水平等信息。
可以根据需要查看和分析各个系数的显著性水平、置信区间等信息,判断模型的有效性和可靠性。
时间序列预测建模方法教程

时间序列预测建模方法教程时间序列预测是一种常用的统计模型技术,用于预测未来一定时间范围内的数据走势。
它在各个领域都有广泛应用,例如股市预测、销售量预测、气象预测等。
在本文中,我们将介绍几种常用的时间序列预测建模方法,并对其原理和应用进行详细讲解。
一、移动平均法移动平均法是一种简单的时间序列预测方法,它通过计算连续一段时间内的观测值的平均值来进行预测。
这种方法适用于数据波动较小、无明显趋势和季节性变化的情况。
具体来说,移动平均法分为简单移动平均法和加权移动平均法两种。
简单移动平均法是对过去几个观测值进行简单平均,而加权移动平均法则对不同观测值赋予不同的权重。
二、指数平滑法指数平滑法是一种通过给予最近观测值较高的权重来预测未来值的方法。
它适用于数据趋势性较强的情况,能够较好地捕捉到趋势的变化。
指数平滑法通过赋予最近观测值较高的权重,对过去一段时间内的观测值进行加权平均,得到对未来值的预测结果。
指数平滑法有简单指数平滑法、二次指数平滑法和三次指数平滑法等多种变体,可以根据实际情况选择合适的方法。
三、回归分析法回归分析法是一种通过建立时间序列与其他变量之间的关系来进行预测的方法。
它适用于数据受多个因素影响的情况,能够考虑到多个变量之间的相互作用。
回归分析法通过建立回归模型,利用历史观测值和其他变量的值来预测未来值。
在建立回归模型时,可以使用线性回归、多项式回归、岭回归等不同的方法,并根据模型的拟合程度选择最佳的回归模型。
四、季节分解法季节分解法是一种将时间序列数据分解成趋势、季节和残差三个部分,并分别对其进行预测的方法。
这种方法适用于存在明显季节性变化的数据,可以将季节性变化与趋势性变化分开考虑,提高预测的准确性。
季节分解法首先通过滞后平均法或移动平均法去除季节性,在剩下的趋势性变化部分上建立模型,然后再加上季节性变化进行预测。
最后,将趋势和季节性预测结果相加得到最终的预测值。
五、ARIMA模型ARIMA(自回归积分滑动平均)模型是一种广泛应用于时间序列预测的统计模型。
时间序列分析教程(四)AR与MA模型详细分析(公式推导慎入)

时间序列分析教程(四)AR与MA模型详细分析(公式推导慎入)时间序列分析中,AR模型(Autoregressive Model)和MA模型(Moving Average Model)是两种常用的模型类型。
本教程将详细介绍AR和MA模型的公式推导,让读者更好地理解其原理和应用。
首先,我们先来解释AR和MA模型的概念。
AR模型是一种基于时间序列过去的值来预测未来值的模型。
AR模型的基本思想是当前值与过去若干个时间点的值相关,即当前值是过去值的加权和。
AR模型的表示形式为AR(p),其中p表示过去时间点的数量。
MA模型是一种基于时间序列过去的误差项来预测未来值的模型。
MA 模型的基本思想是当前值与过去若干个时间点的误差项相关,即当前值是过去误差的加权和。
MA模型的表示形式为MA(q),其中q表示过去误差的数量。
下面我们将对AR和MA模型的公式进行推导。
一、AR模型的公式推导假设我们有一个时间序列{Y_t},其中Y_t表示时间点t的值。
AR(p)模型的一般形式为:Y_t=c+ϕ₁Y_(t-1)+ϕ₂Y_(t-2)+...+ϕ_pY_(t-p)+ε_t其中c是常数项,ϕ₁、ϕ₂、..、ϕ_p是过去时间点的权重系数,ε_t 是一个白噪声误差项。
为了方便推导,我们将AR(p)模型简化为AR(1)模型,即只考虑过去一个时间点的值。
即:Y_t=c+ϕY_(t-1)+ε_t我们首先假设时间序列{Y_t}是平稳的,即均值和方差不随时间变化。
然后,我们将AR(1)模型代入Y_(t-1)的表达式中,得到:Y_t=c+ϕ(c+ϕY_(t-2)+ε_(t-1))+ε_t展开后整理得:Y_t=c(1+ϕ)+ϕ²Y_(t-2)+ϕε_(t-1)+ε_t再次代入Y_(t-2)的表达式中,得到:Y_t=c(1+ϕ+ϕ²)+ϕ³Y_(t-3)+ϕ²ε_(t-2)+ϕε_(t-1)+ε_t以此类推,我们可以得到AR(1)模型的一般表达式:Y_t=c(1+ϕ+ϕ²+...+ϕ^p-1)+ϕ^pY_(t-p)+ϕ^(p-1)ε_(t-p+1)+...+ϕ²ε_(t-2)+ϕε_(t-1)+ε_t其中,c(1+ϕ+ϕ²+...+ϕ^p-1)是常数项,ϕ^pY_(t-p)是过去p个时间点的加权和,ϕ^(p-1)ε_(t-p+1)、..、ϕ²ε_(t-2)、ϕε_(t-1)和ε_t是误差项。
数据分析中时间序列模型的使用教程与应用研究

数据分析中时间序列模型的使用教程与应用研究时间序列模型是数据分析中常用的一种模型,用于对时间相关性的数据进行建模和预测。
它能帮助我们理解数据的趋势、周期性和季节性,并预测未来的走势。
本文将介绍时间序列模型的基本概念、常见的几种模型,以及其在实际应用中的研究和案例。
1. 时间序列模型的基本概念时间序列是按照时间顺序排列的一系列数据点的集合。
时间序列模型假设数据点之间存在时间相关性,即过去的数据可以影响未来的数据。
它通常包含三个主要成分:趋势(Trend)、季节性(Seasonality)和随机性(Residual)。
趋势指数据的长期走势,季节性指数据在特定时间内的循环模式,而随机性指数据中无法归因于趋势和季节性的部分。
2. 常见的时间序列模型(1)移动平均模型(Moving Average, MA)移动平均模型基于数据点的线性组合来预测未来的数据。
它假设未来的数据点与过去一段时间内的数据有相关性,并基于此建立模型进行预测。
移动平均模型常用于平滑数据、去除噪音和预测短期趋势。
(2)自回归模型(Autoregressive, AR)自回归模型基于过去的数据点建立预测模型,即假设未来的数据点与过去的数据点的线性组合有相关性。
自回归模型可根据过去的数据点预测未来的数据点,并且可以用于捕捉数据的长期趋势。
(3)自回归移动平均模型(Autoregressive Moving Average, ARMA)自回归移动平均模型是自回归模型和移动平均模型的结合,综合考虑了过去数据点的趋势和噪音,可以更准确地预测未来的数据点。
(4)季节性自回归移动平均模型(Seasonal Autoregressive Moving Average, SARMA)季节性自回归移动平均模型是对ARMA模型的一种扩展,考虑了数据中的季节性特征。
它能更好地解释和预测具有季节性趋势的数据。
3. 时间序列模型的应用研究时间序列模型在实际应用中具有广泛的研究和应用价值。
在Eviews中对时间序列进行预测的详细步骤

在Eviews中对时间序列进行预测的详细步骤一、输入数据1.1打开Eviews6.0,按照如图所示打开工作表创建框。
1.2在右上角的data specification框中输入起止年份(start data和end data)1.3输入数据:在输入框中输入data gdp(本文采用的数据为1990—2012年的GDP值)。
当然,data后面可以输入任何你想要定义的“英文名字”输入data gdp后注意按回车键,弹出表格窗口后在其中输入数据(也可复制进去数据:ctrl+v键)二、平稳性检验2.1在打开的数据窗口中点击View→Correlogram(1)在弹出的窗口中直接点OK即可↓2.2自相关图和偏相关图进行分析:最简单粗暴的方法就是看最右边的Prob值(即P值),当这列数据有多数都大于0.05(置信水平)时为白噪声序列=序列是平稳的。
本文中GDP数据P值均小于0.05,则为非白噪声。
需对序列进行差分。
三、取一阶差分3.1在输入框中输入第二列代码,这代表将数据gdp进行一阶差分,一阶差分后的值命名为dgdp.按回车键3.2在dgdp数据的窗口中重复2.1的操作,对序列的平稳性进行检验得到结果如下:惨!还是非白噪声,只能进行二阶差分了!四、取二阶差分4.1如第三列代码所示(记得不能重复命名)4.2对新的序列dgdp2进行平稳性检验,步骤同上,结果如下:MY GOD! 看见了木有,这回是白噪声了,P值多数都大于0.05!五、用最小二乘法对模型进行估计:输入ls dgdp2 c ar(2)(探索性建模)5.1AR(2)模型结果(准确的说这个模型应该是ARIMA的疏系数模型,本文重点不在这!如有需要请私信我!)5.2MA(2)模型结果5.3优化模型:根据AIC和SBC准则选择模型,值越小的拟合效果越好,本文的选择MA(2)模型。
5.4对模型进行检验:View→Residual Tests→Correlogram Q statistics检验结果如下:P值大于0.05,为白噪声序列,则平稳。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
114333 115823 117171 118517 119850 121121 122389 123626 12489
14.39 12.98 11.60 11.45 11.21 9.55 9.42 9.06 9.53
803 896 970 1331 1781 2311 2726 2944 3094
各环比发展速度的平均
平均发展速度 数,说明现象每期变动
的平均程度
平均增长速度
说明现象逐期增长的平 均程度
平均 平均 增长速发 度展速1度 0﹪ 0
平均发展速度的计算
几何平均法(水平法)
基本要求
从最初水平a0出发,每期按一定 的平均发展速度 X G 发展,经过n 个时期后,达到最末水平an,有
排序
2. 相对数时间序列
一系列相对数按时间顺序排列而成
3. 平均数时间序列
一系列平均数按时间顺序排列而成
时间数列常用分析方法
指标 分析法
通过时间数列的分析指标来 揭示现象的发展变化状况和 发展变化程度
构成因素 分析法
通过对影响时间数列的构成 因素进行分解分析,揭示现 象随时间变化而演变的规律
时间序列的构成要素
2. 由影响时间序列的基本因 素作用形成
3. 时间序列的主要构成要素 4. 有线性趋势和非线性趋势
2.季节变动(S)
由于自然季节因素(气候条件)或人文习惯季 节因素(节假日)的印象,时间序列随季节更 替而呈现的周期性变动。周期长度有一年、一 月、一周等。
3.循环变动(C)
时间序列中出现以若干年为周期上升与下降交 替出现的循环往复运动,以若干年、十几年甚 至几十年为周期,且周期长度可变。
对许多模型,一般没有足够的数据来识别循环 周期,故常简化为:y=T+S+I
若再排除I的影响,假设I=0或误差序列的平均 值为0,再简化为:y=T+S
2.乘法模型(时间序列的变化在每周期有 与趋势相同的比例时适用)
假定四种变动因素之间存在着交互作用 y=T×S × C × I
同样可简化为: y=T×S × I y=T×S
指增长量与基期水平的比值, 增长速度 说明报告期水平较基期水平
增长的程度
增 速 长 度 报告 基期 期 基水 水 期 平 平 发 速 水 展 度 平 10 ﹪ 0
环比增长速度 定基增长速度
ai 10﹪ 0
a0
a0
时间序列的速度分析
一、发展速度和增长速度 二、平均发展速度和平均增长速度
设时间序列中各 期发展水平为:
a 0 ,a 1 , ,a n 1 ,a n
环比发展速度 定基发展速度
a1 , a2 , , an
a0 a1
an1
a1 , a2 , , an
a0 a0
a0
环比发展速度与定基发展速度的关系:
a1a2an1an a n
a0 a1
an2 an1 a 0
ai ai1 ai a0 ai (i 1,2,n) a0 a0 a0 ai1 ai1
平均增长量 逐期增长量的序时平均数
n
平均增 i长 1(ai量 ai1)ana0
n
n
即:平均增长量逐 逐期 期增 增长 长量 量个 之数 和
累积增长量 观察值个数1
时间序列的速度分析
一、发展速度和增长速度 二、平均发展速度和平均增长速度
发展速度
指报告期水平与基期水平的 比值,说明现象的变动程度
时间序列
(一个例子)
年份
1990 1991 1992 1993 1994 1995 1996 1997 1998
表10- 1 国内生产总值等时间序列
国内生产总值 年末总人口 人口自然增长率 居民消费水平
(亿元)
(万人)
(‰)
(元)
18547.9 21617.8 26638.1 34634.4 46759.4 58478.1 67884.6 74772.4 79552.8
(要点)
1. 构成因素 长期趋势 (Secular trend ) 季节变动 (Seasonal Fluctuation ) 循环波动 (Cyclical Movement ) 不规则波动 (Irregular Variations )
长期趋势(T)
(概念要点)
1. 现象在较长时期内持续发 展变化的一种趋向或状态
a 0 ,a 1 , ,a n 1 ,a n
逐期增长量 a 1 a 0 ,a 2 a 1 , ,a n a n 1
累计增长量 a 1 a 0 ,a 2 a 0 , ,a n a 0
二者的关系:
⒈ a 1 a 0 a 2 a 1 a n a n 1 a n a 0 ⒉ a i a 0 a i 1 a 0 a i a i 1 i 1 , 2 , , n
时间序列分析与预测教程
路漫漫其悠远
少壮不努力,老大徒悲伤
时间序列
(概念要点)
1. 同一现象在不同时间上的相继观察值 排列而成的数列
2. 形式上由现象所属的时间和现象在不 同时间上的观察值两部分组成
3. 排列的时间可以是年份、季度、月份 或其他任何时间形式
两个构成要素: 现象所属的时间 反映现象发展水平的指标数值
时间序列的分类
时间序列
绝对数序列
相对数序列
平均数序列
时期序列 时点序列
时间序列的分类
1. 绝对数时间序列
一系列绝对数按时间顺序排列而成 时间序列中最基本的表现形式 反映现象在不同时间上所达到的绝对水平 分为时期序列和时点序列
• 时期序列:现象在一段时期内总量的排序 • 时点序列:现象在某一瞬间时点上总量的
4.不规则变动(随机变动)(I)
指时间序列由于偶然因素的影响而表现出的不 规则波动。
时间序列分析模型
时间序列是上述四种变动的叠加组合。时间序 列分析对这4类变动的构成形式提出了两种假 设模型:
1.加法模型(时间序列的变化在每个周期内有 相同的大小时较适用)
假定四种变动因素相互独立
y=T+S+C+I
实际工作中,一般用乘法模型对现象进行分析
时间数列常用分析方法
指标 分析法
通过时间数列的分析指标来 揭示现象的发展变化状况和 发展变化程度
构成因素 分析法
通过对影响时间数列的构成 因素进行分解分析,揭示现 象随时间变化而演变的规律
时间序列的水平分析
增长量 指报告期水平与基期水平之差
设时间序列中各 期发展水平为: