数学“存在性”问题的解题策略(含解答)-

合集下载

数列中的存在性问题 经典

数列中的存在性问题 经典

专题:数列中的存在性问题一、单存在性变量解题思路:该类问题往往和恒成立问题伴随出现(否则就是一个方程有解问题,即零点问题),可以先假设存在,列出一个等式,通过化简,整理成关于任意性变量(一般为n )的方程,然后n 的系数为0,构造方程,进而解出存在性变量,最后检验。

例1、已知数列{na }的前n 项和为n S =235n n +,在数列{n b }中,1b =8,164n nb b +-=0,问是否存在常数c 使得对任意n ,log n c na b +恒为常数M ,若存在求出常数c 和M ,若不存在说明理由.解析:假设存在常数c 使得对任意n ,log n c na b +恒为常数M ,∵n S =235n n+,∴当n =1时,则1a =1S =8,当n ≥2时,n a =1n n S S --=2235[3(1)5(1)]n n n n +--+-=62n +,当n =1适合, ∴n a =62n +,又∵164n n b b +-=0, ∴1n n b b +=164,∴数列{n b}是首项为8,公比为164的等比数列, ∴nb =118()64n -=962n -,则log n c n a b +=9662log 2n c n -++=62(96)log 2a n n ++-=6(1log 2)29log 2a a n -++,又∵对任意n ,log n c na b +恒为常数M ,∴6(1log 2)a -=0,解得c =2,∴M =29log 2a +=11,∴存在常数c =2使得对任意n ,log n c na b +恒为常数M =11.二、双存在型变量解题思路:先假设存在,根据题目条件,列出一个含有两个变量(一般至少都为正整数)的等式,即转化为一个数论中的双整数问题,然后分离变量。

如果可以分离常数,则利用数论中约数的知识列出所有可能情况,最后进行双检验,即对两个变量均进行条件检验;如果不可以分离常数,则利用分离出的变量所具有的隐含范围(如大于0)消元,进而构造一个不等式,解出另一个变量的范围,再列出求出的被压缩的范围里的所有整数值,分别求出对应的另一个存在性变量,最后进行检验。

二次函数存在性问题专题复习(全面典型含答案)

二次函数存在性问题专题复习(全面典型含答案)

中考数学专题复习——存在性问题存在性问题是指判断满足某种条件的事物是否存在的问题,这类问题的知识覆盖面较广,综合性较强,题意构思非常精巧,解题方法灵活,对学生分析问题和解决问题的能力要求较高,是近几年来包括深圳在内各地中考的“热点”。

这类题目解法的一般思路是:假设存在→推理论证→得出结论。

若能导出合理的结果,就做出“存在”的判断,导出矛盾,就做出不存在的判断。

以下为几种典型的二次函数中出现的存在性问题,讲解后希望各位考生在以后的考试中如果遇到此类型时能够很顺畅的把过程写下来。

一、二次函数中相似三角形的存在性问题1.(2011枣庄10分)如图,在平面直角坐标系xoy 中,把抛物线2y x =向左平移1个单位,再向下平移4个单位,得到抛物线2()y x h k =-+.所得抛物线与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴交于点C ,顶点为D. (1)写出h k 、的值;(2)判断△ACD 的形状,并说明理由;(3)在线段AC 上是否存在点M ,使△AOM ∽△ABC ?若存在,求出点M 的坐标;若不存在,说明理由.2.(2011临沂13分)如图,已知抛物线经过A (﹣2,0),B (﹣3,3)及原点O ,顶点为C . (1)求抛物线的解析式;(2)若点D 在抛物线上,点E 在抛物线的对称轴上,且A 、O 、D 、E 为顶点的四边形是平行四边形,求点D 的坐标;(3)P 是抛物线上的第一象限内的动点,过点P 作PM ⊥x 轴,垂足为M ,是否存在点P ,使得以P 、M 、A 为顶点的三角形△BOC 相似?若存在,求出点P 的坐标;若不存在,请说明理由.二、二次函数中面积的存在性问题3. (2011日照10分)如图,抛物线()20y ax bx a >=+与双曲线ky x=相交于点A ,B .已知点B 的坐标为(-2,-2),点A 在第一象限内,且tan ∠AOX 错误!未找到引用源。

存在性问题的解答技巧

存在性问题的解答技巧

存在性问题的解答技巧
存在性问题是指判断满足某种条件的事物或事件是否存在的问题,此类问题的知识覆盖面较广,综合性较强,题意构思非常精巧,解题方法灵活,对学生分析问题和解决问题的能力要求较高。

按照历年中考数学试题来看,存在性问题一般可以分为两类:肯定型和否定型。

解决存在性问题一般套路:假设存在→推理论证→得出结论。

简单地说就是若能导出合理的结果,就做出“存在”的判断,导出矛盾,就做出不存在的判断。

具体来说,我们可以归纳出三种解决存在性问题的解题策略:
1、直接求解法
就是直接从已知条件入手,逐步试探,求出满足条件的对象,使问题得到解决的解法。

2、假设求解法
先假设结论存在,再从已知条件和定义,定理,公理出发,进行演绎推理,若得到和题意相容的结论,则假设成立,结论也存在;否则,假设不成立,结论不存在。

3、反证法
反证法是证明否定型存在性问题的主要方法,特别是在无限个候选对象中,证明某种数学对象不存在时,逐一淘汰的方法几乎不能实行,更需要使用反证法。

一定要记住一点:解题的方法主要是建立方程模型,由方程有无符合条件的解来肯定“存在与否”的问题。

存在性问题本质上是指判断满足某种条件的事物或事件是否存在的问题,这类问题的知识覆盖面较广,综合性较强,题意构思非常精巧,解题方法灵活,对学生分析问题和解决问题的能力要求较高。

不同的存在性问题解法不同,如按照解法及设问方式的不同将存在性问题分为代数方面的存在性问题(如方程根是否存在、最值是否存在等)、点的存在性问题(如构成特殊图形的点是否存在)等。

中考数学压轴题解题策略:相似三角形的存在性问题

中考数学压轴题解题策略:相似三角形的存在性问题

相似三角形的存在性问题解题策略专题攻略相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验,如例题1、2、3、4.应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等,如例题6.应用判定定理3解题不多见,如例题5,根据三边对应成比例列连比式解方程(组).例题解析例❶如图1-1,抛物线y=1x2-3x+4与X轴交于A、B两点(A点在B点左侧),与y轴交于点C.动82直线EF(EF//x轴)从点C开始,以每秒1个单位的速度沿y轴负方向平移,且分别交y轴、线段BC于E、F两点,动点P同时从点B出发,在线段0B上以每秒2个单位的速度向原点0运动.是否存在t,使得△匕卩卩与厶ABC相似.若存在,试求出t的值;若不存在,请说明理由.图1-1【解析】ABP卩与厶ABC有公共角ZB,那么我们梳理两个三角形中夹ZB的两条边.△ABC是确定的.由y=x2-x+4,可得A(4,0)、B(&0)、C(0,4).782于是得到BA=4,BC=4*5.还可得到C E=C0=1.EF OB2△BPF中,BP=21,那么BF的长用含t的式子表示出来,问题就解决了. 在RtAEFC中,CE=t,EF=21,所以CF=^5t.因此BF=处5-呂二*;5(4-1).于是根据两边对应成比例,分两种情况列方程BABP ①当—时,BCBF42t44_—.解得t—(如图1-2). 4冒55(4-1)3BABF ②当—时,BCBP4—〔5(4-1).解得1—20(如图1-3). 4f5217得顶点M(1,-图1-2 图1-3例❷如图2-1,在平面直角坐标系中,顶点为M的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B,AO=BO=2,ZAOB=120°.(1)这条抛【解析】AABC与AAOM中相等的一组角在哪里呢?本题由简到难,层层深入.第(1)题求出抛物线的解析式,得到顶点M的坐标,为第(2)题求ZAOM的大小作铺垫;求得了ZAOM的大小,第(3)题暗示了要在△ABC中寻找与ZAOM相等的角.(1)如图2-2,过点A作AH丄y轴,垂足为H.容易得到A(-1,3).再由A(-1,J3)、B(2,0)两点,可求得抛物线的解析式为y二辜x2-睾x.⑵由y吕x2一斗x召(x-1)2-斗,v33(3)由A (-1,\:'3)、B(2,0),可得ZABO=30°. 因此当点C 在点B 右侧时,ZABC=ZA0M=150°. 所以△ABC 与AAOM 相似,存在两种情况:① 当燮=_°A 仝时,BC =BA ==2.此时C(4,0)(如图2-3).BCOM J3弋3 BC OA —② 当==时,BC =x/3BA =\3x 2\;3=6.此时C (8,0)(如图2-4).BAOM图2-3.图2-4例❸如图3-1,抛物线y=ax 2+bx —3与x 轴交于A(l,0)、B(3,0)两点,与y 轴交于点D,顶点为C.(1)求此抛物线的解析式;(2)在x 轴下方的抛物线上是否存在点M,过M 作MN 丄x 轴于点N,使以A 、M 、N 为顶点的三角形与△BCD 相似?若存在,求出点M 的坐标;若不存在,请说明理由.图3-1【解析】AAMN 是直角三角形,因此必须先证明△BCD 是直角三角形.一般情况下,根据直角边对应成比例分两种情况列方程.所以 tan ZBOM=.所以ZBOM=30。

解决存在性问题的几种常用方法

解决存在性问题的几种常用方法

解决存在性问题的几种常用方法〔关键词〕数学教学;问题;存在;分类讨论法;解析法;比例线段法;图象法一、分类讨论法例1已知,在直角坐标系中,A、B两点是抛物线y=x2-(m-3)x-m与x轴的交点(A在B的右侧),x1、x2分别是A、B两点的横坐标,且|x1-x2|=3.(1)当m>0时,求抛物线的解析式;(2)如果(1)中所求抛物线与y轴交于点C,问y轴上是否存在点D(不与点C重合),使得以D、O、A为顶点的三角形与△AOC相似?若存在,请求出D点的坐标;若不存在,请说明理由.分析:要求抛物线的解析式,只需求出m的值,可通过条件“|x1-x2|=3”,结合根与系数的关系及根的判别式确定m的值为2.解:(1)略,所求抛物线的解析式为y=x2+x-2.(2)假设在y轴上存在点D,使得△DOA∽△AOC. 设点D的坐标为(0,y),由(1)知抛物线y=x2+x-2与y轴的交点C的坐标为(0,-2),与x轴的交点A的坐标为(1,0),如图①、②所示分以下两种情况讨论:①当∠ACO=∠ADO时,则△ACD为等腰三角形,此时AO垂直平分DC.∵点C、D关于原点对称,∴D1的坐标为(0,2).②当∠DAO=∠ACO时,有两种情况,如图②所示点D2、D3的位置,并且此时点D2与点D3关于原点对称,下面求D2点的坐标.∵△DAO∽△ACO ,∴OA2=OC·OD.∴OD=■=■,∴点D2的坐标为(0,■),而D3是D2关于原点的对称点,即D3的坐标为(0,-■),综上所述,D点存在,有3个,其坐标分别是(0,2)、(0,■)与(0,-■).评注:本题所探索的是点的存在性问题,用了分类讨论的方法,解题时要注意将任何可能的情况都要考虑到,否则易将D3漏解,而在探求此点时又利用了对称性原理巧妙地进行了解答.二、解析法例2 如图,在平面直角坐标系中,Rt△ABC的斜边AB在x轴上,顶点C在y 轴的负半轴上,tan∠ABC=■,点P在线段OC上,且PO,PC(PO<PC)是方程x2-12x+27=0的两根.(1)求P点的坐标;(2)求AP的长;(3)在x轴上是否存在点Q,使以点A、C、P、Q为顶点的四边形是梯形?若存在请直接写出直线PQ的解析式;若不存在,请说明理由.分析:该题前两问是常规求解问题,只需根据已知条件和已有知识进行推理论证,解答出结果即可,而最后一问将函数和几何的有关知识有机结合在一起,形成一道“是否存在”的综合题目,应以“假设存在,去伪存真”作为解答策略.解:(1)略,点P的坐标为(0,-3);(2)略;(3)假设存在,分两种情况讨论,如图③所示:(i)过P作PQ1∥AC交x轴于点Q1,由(1)(2)知,点A、C、P的坐标分别为(-9,0),(0,-12),(0,-3),设直线AC的解析式为y=k1x+b1,将点A、C的坐标分别代入解析式得-9k1+b1=0b1=-12 解得k1=-■b1=-12又∵AC∥PQ1,∴直线PQ1的解析式为y=-■x-3.(ii)过点C作CQ2∥AP交x轴于点Q2,设直线AP的解析式为y=k2x+b2,同(i),解得k2=-■,b2=-3. ∵CQ2 ∥AP, ∴CQ2的解析式为y=■x-12. 令y=0,得x=-36, ∴点Q2的坐标为(-36,0).再设直线PQ2的解析式为y=kx+b,将P(0,-3),Q2(-36,0)分别代入y=kx+b,可得k=■,b=-3,∴直线PQ2的解析式为y=-■x-3.三、成比例线段法例2中的第三问还可以用下面的方法解答.分两种情况:如图③所示:当PQ∥AC时,则由△OPQ∽△OCA得■=■,∴OQ=■=■ =■ ,∴点Q的坐标为(-■,0) ,再设PQ的解析式为y=kx+b,将点P、Q的坐标分别代入解析式,有b= -3-■k+b=0 解得b= -3k= -■∴直线PQ的解析式为y= -■x-3.当AP∥QC时,则由△OAP∽△OQC得■=■,∴OQ=■=■=36.∴点Q的坐标为(-36,0),利用待定系数法可确定此时直线PQ2的解析式为y=-■x-3.评注:此题在解关于“是否存在”的问题时解法灵活,既可以利用“解析法”中两直线平行的特点,并以一次项系数k相同作中间桥梁进行解答,又可以利用平行线等分线段定理确定线段的长度,进而得到解析式.四、图象法例3如图所示,在平面直角坐标系中,抛物线的顶点P到x轴的距离是4,抛物线与x轴相交于0、M两点,OM=4,矩形ABCD的边BC在线段OM上,点A、O 在抛物线上.(1)请写出P、M两点的坐标,并求出抛物线的解析式;(2)设矩形ABCD的周长为L,求L的最大值;(3)连结OP、PM,则△PMO为等腰三角形,请判断在抛物线上是否存在点Q(除点M外),使得△OPQ是等腰三角形,简要说明理由.分析:此题第一问可以直接将已知条件中的距离转化为点的坐标形式,再利用待定系数法确定解析式即可;第二问利用矩形的性质及抛物线的对称性,设点A的横坐标为xA,找出点A的坐标与矩形的长、宽之间的关系,列出L关于xA的二次函数关系式,从而求出最值;第三问直接通过作图的方法来探究“是否存在”.解:(1)略,点P的坐标为(2,4),点M的坐标为(4,0),抛物线的解析式为y=-x2+4x;(2)略,L的最大值为10;(3)假设存在点Q(除点M外),使得△OPQ是等腰三角形.若△OPQ是等腰三角形,OP可以为底,也可以为腰.①以OP为底,作OP的垂直平分线RS,可以交抛物线于Q1,Q2,∴这样的点存在,有两个.②以OP为腰时,可以以O为圆心,OP的长为半经作圆(除M点外)还有3个点,∴存在点Q,使△POQ为等腰三角形.评注:对“是否存在”的问题是通过猜测、分析、作图的方法,探究到结果,体现出数学图形的简洁性、直观性、形象性.。

存在性问题和最值问题的解法

存在性问题和最值问题的解法

“存在性”问题和“最值”问题的解决方法一、关于存在性问题1、什么样的情况会引发出“存在性问题?从一个整体情况或一个变化过程中,判断满足某种特殊要求的情况是否存在,并在存在时将其寻找出来,这样的问题就是“存在性”问题。

如:题1如某月的月历,像图中那样用方框框住4个数字,是否存在以下情况:使框住的4个数字和为100?为90?若存在,请写出这4个数字,若不存在,请说明理由。

题 2 如图(1),四边形ABCD 是边长为6的正方形,动点P从A 点P 出发,以每秒1个单位的速度沿AB 边向B 点运动,动点Q 从点B 出发,以每秒3个单位的速度沿边运动,两点同时出发,点P 到达B 处时两点运动停止,记Q P ,的运动时间为t 。

(1)是否存在时刻t ,使线段PQ 将正方形ABCD 的周长分为相等的两部分?若存在,求出t 的值;若不存在,请说明理由。

(2)是否存在时刻t ,,使线段PQ 将正方形ABCD 的面积分为1:2两部分,若存在,求出t 的值;若不存在,请说明理由。

(1) (2)题 3 如图(2),在ABC ∆中,︒=∠90C ,在斜边AB 上是否存在点O ,使以O 为圆心,以OA 为半径的圆,恰好与BC 相切?若存在,请作出⊙O (保留作图痕迹);若不存在,请说明理由。

像以上三个题目都属于“存在性”问题。

2、“存在性”问题的基本类型和解决方法 “存在性”问题大体可分为两类:Ⅰ、由数量关系确定的“存在性”问题(即要找的是满足一个“特殊”数量方面的要求); Ⅱ、由位置关系确定的“存在性”问题(即要找的是满足一个“特殊”位置方面的要求)。

(1)由数量关系确定的“存在性”问题这种类型的“存在性”问题,解决的方法主要是借助于构造方程。

例1 (见前面的题1)【观察与思考】第一,框住的4个数字,若设左上角的数字为a ,则这4个数字的和为164)8()7()1(+=++++++a a a a a 。

本题就是判断图中有无数字a ,使和164+a 分别为100,90?有这样的数字a 时,求出a 的值。

专题55 一次函数背景下的图形存在性问题(解析版)-中考数学解题大招复习讲义

专题55 一次函数背景下的图形存在性问题(解析版)-中考数学解题大招复习讲义

例题精讲考点一:一次函数中等腰三角形存在性问题【例1】.如果一次函数y=﹣x+6的图象与x轴、y轴分别交于A、B两点,M点在x轴上,并且使得以点A、B、M为定点的三角形是等腰三角形,则M点的坐标为(﹣8,0)或(﹣2,0)或(18,0)或(﹣,0).解:一次函数y=﹣x+6中令x=0,解得y=6;令y=0,解得x=8,∴A(8,0),B(0,6),即OA=8,OB=6,在直角三角形AOB中,根据勾股定理得:AB=10,分四种情况考虑,当BM=BA时,由BO⊥AM,根据三线合一得到O为MA的中点,此时M1(﹣8,0);当AB=AM时,由AB=10,得到OM=﹣2或18,此时M2(﹣2,0),M3(18,0);当MA=MB时,∵A(8,0),B(0,6),∴AB的中点的坐标为(4,3),设直线AB的垂直平分线的解析式为y=x+b,代入(4,3)得3=+b,解得b=﹣,∴直线AB的垂直平分线的解析式为y=x﹣,令y=0,解得x=,此时M4(,0).综上,这样的M点有4个,分别为(﹣8,0)或(﹣2,0)或(18,0)或(,0).故答案为(﹣8,0)或(﹣2,0)或(18,0)或(,0).变式训练【变1-1】.如图,在平面直角坐标系中,直线MN的函数解析式为y=﹣x+3,点A在线段MN上且满足AN=2AM,B点是x轴上一点,当△AOB是以OA为腰的等腰三角形时,则B点的坐标为(2,0)或(,0)或(,0).解:∵在y=﹣x+3中,令x=0,则y=3;令y=0,则﹣x+3=0,解得x=3,∴N(3,0),M(0,3),∴OM=ON=3,∵AN=2AM,∴A(1,2),∴OA==,当AO=OB时,则OB=,∴点B的坐标为(﹣,0)或(,0);②当AO=AB时,设点B的坐标为(m,0),则=,整理得,(1﹣m)2=1,解得m=2或m=0(舍去),∴点B的坐标为(2,0).综上所述:点B的坐标为(2,0)或(,0)或(,0).【变1-2】.如图,在平面直角坐标系中,直线y=﹣2x+12与x轴交于点A,与y轴交于点B,与直线y=x交于点C.(1)求点C的坐标.(2)若P是x轴上的一个动点,直接写出当△OPC是等腰三角形时P的坐标.解:(1)联立两直线解析式成方程组,得,解得:,∴点C的坐标为(4,4);(2)设点P(m,0),而点C(4,4),点O(0,0);PC2=(m﹣4)2+16,PO2=m2,OC2=42+42=32;当PC=PO时,(m﹣4)2+16=m2,解得:m=4;当PC=OC时,同理可得:m=0(舍去)或8;当PO=OC时,同理可得:m=±4;故点P的坐标为(4,0)或(8,0)或(4,0)或(﹣4,0).考点二:一次函数中直角三角形存在性问题【例2】.已知点A、B的坐标分别为(2,2)、(5,1),试在x轴上找一点C,使△ABC为直角三角形.解:当△ABC为直角三角形时,设点C坐标为(x,0),分三种情况:①如果A为直角顶点,则AB2+AC2=BC2,即(2﹣5)2+(2﹣1)2+(2﹣x)2+22=(5﹣x)2+1,解得:x=,②如果B为直角顶点,那么AB2BC2=AC2,即(2﹣5)2+(2﹣1)2+(5﹣x)2+1=(2﹣x)2+22,解得x=,③如果C为直角顶点,那么AB2=AC2+BC2,即(2﹣5)2+(2﹣1)2=(2﹣x)2+22+(5﹣x)2+1,解得x=3或4,综上可知,使△PAB为直角三角形的点C坐标为(,0)或(,0)或(3,0)或(4,0).变式训练【变2-1】.如图,一次函数y=kx+1的图象过点A(1,2),且与x轴相交于点B.若点P 是x轴上的一点,且满足△ABP是直角三角形,则点P的坐标是(1,0)或(3,0).解:∵一次函数y=kx+1的图象过点A(1,2),∴2=k+1,解得k=1,∴一次函数的解析式为y=x+1.∴当∠APB=90°时,P1(1,0);当∠BAP=90°时,∵一次函数的解析式为y=x+1,∴设直线AP的解析式为y=﹣x+b,∵A(1,2),∴2=﹣1+b,解得b=3,∴直线AP的解析式为y=﹣x+3,∴当y=0时,x=3,∴P2(3,0).综上所述,点P的坐标是(1,0)或(3,0).【变2-2】.如图,已知一次函数y=x﹣2的图象与y轴交于点A,一次函数y=4x+b的图象与y轴交于点B,且与x轴以及一次函数y=x﹣2的图象分别交于点C、D,点D的坐标为(﹣2,﹣4).(1)关于x、y的方程组的解为.(2)求△ABD的面积;(3)在x轴上是否存在点E,使得以点C,D,E为顶点的三角形是直角三角形?若存在,求出点E的坐标;若不存在,请说明理由.解:(1)∵一次函数y=x﹣2的图象与一次函数y=4x+b的图象交于点D,且点D的坐标为(﹣2,﹣4),∴关于x、y的方程组的解是,∴关于x、y的方程组的解是,故答案为:;(2)把点D的坐标代入一次函数y=4x+b中得:﹣8+b=﹣4,解得:b=4,∴B(0,4),∵A(0,﹣2),∴AB=4﹣(﹣2)=6,==6;∴S△ABD(3)存在,如图1,当点E为直角顶点时,过点D作DE⊥x轴于E,∵D(﹣2,﹣4),∴E(﹣2,0);当点C为直角顶点时,x轴上不存在点E;当点D为直角顶点时,过点D作DE⊥CD交x轴于点E,作DF⊥x轴于F,设E(t,0),当y=0时,4x+4=0,∴x=﹣1,∴C(﹣1,0),∵F(﹣2,0),∴CE=﹣1﹣t,EF=﹣2﹣t,∵D(﹣2,﹣4),∴DF=4,CF=﹣1﹣(﹣2)=1,在Rt△DEF中,DE2=EF2+DF2=42+(﹣2﹣t)2=t2+4t+20,在Rt△CDF中,CD2=12+42=17,在Rt△CDE中,CE2=DE2+CD2,∴(﹣1﹣t)2=t2+4t+20+17,解得t=﹣18,∴E(﹣18,0),综上,点E的坐标为:(﹣2,0)或(﹣18,0).考点三:一次函数中平行四边形存在性问题【例3】.如图,已知一次函数y=kx+b的图象经过A(1,3),B(﹣2,﹣1)两点,并且交x轴于点C,交y轴于点D.(1)求该一次函数的表达式;(2)求△AOB的面积;(3)平面内是否存在一点M,使以点M、C、O、B为顶点的四边形是平行四边形,若存在,请直接写出点M的坐标,若不存在,请说明理由.解:(1)将A(1,3)、B(﹣2,﹣1),代入y=kx+b得:,解得,∴一次函数的表达式为y=x+;(2)在y=x+中,令x=0得y=,∴OD=,=OD•|x A|=××1=,∴S△AODS△BOD=OD•|x B|=××2=,=S△BOD+S△AOD=;∴△AOB的面积S△AOB(3)存在,理由如下:在y=x+中,令y=0得y=﹣,∴C(﹣,0),设M(m,n),而B(﹣2,﹣1),O(0,0),①以OB、CM为对角线,则OB的中点即是CM的中点,如图:∴,解得,∴M(﹣,﹣1);②以BC、OM为对角线,则BC的中点即是OM的中点,如图:∴,解得,∴M(﹣,﹣1);③以BM、CO为对角线,则BM的中点即是CO的中点,如图:∴,解得,∴M(,1);综上所述,M的坐标为:(﹣,﹣1)或(﹣,﹣1);或(,1).变式训练【变3-1】.如图1,在平面直角坐标系中,直线y=﹣x+3与x轴、y轴相交于A、B两点,点C在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上,过点D作DE⊥x轴于点E.(1)求证:△BOC≌△CED;(2)如图2,将△BCD沿x轴正方向平移得△B'C'D',当B'C'经过点D时,求△BCD平移的距离及点D的坐标;(3)若点P在y轴上,点Q在直线AB上,是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的P点的坐标;若不存在,请说明理由.(1)证明:∵∠BOC=∠BCD=∠CED=90°,∴∠OCB+∠OBC=90°,∠OCB+∠ECD=90°,∴∠OBC=∠ECD.∵将线段CB绕着点C顺时针旋转90°得到CD,∴BC=CD.在△BOC和△CED中,,∴△BOC≌△CED(AAS).(2)解:∵直线y=﹣x+3与x轴、y轴相交于A、B两点,∴点B的坐标为(0,3),点A的坐标为(6,0).设OC=m,∵△BOC≌△CED,∴OC=ED=m,BO=CE=3,∴点D的坐标为(m+3,m).∵点D在直线y=﹣x+3上,∴m=﹣(m+3)+3,解得:m=1,∴点D的坐标为(4,1),点C的坐标为(1,0).∵点B的坐标为(0,3),点C的坐标为(1,0),∴直线BC的解析式为y=﹣3x+3.设直线B′C′的解析式为y=﹣3x+b,将D(4,1)代入y=﹣3x+b,得:1=﹣3×4+b,解得:b=13,∴直线B′C′的解析式为y=﹣3x+13,∴点C′的坐标为(,0),∴CC′=﹣1=,∴△BCD平移的距离为.(3)解:设点P的坐标为(0,m),点Q的坐标为(n,﹣n+3).分两种情况考虑,如图3所示:①若CD为边,当四边形CDQP为平行四边形时,∵C(1,0),D(4,1),P(0,m),Q(n,﹣n+3),∴,解得:,∴点P1的坐标为(0,);当四边形CDPQ为平行四边形时,∵C(1,0),D(4,1),P(0,m),Q(n,﹣n+3),∴,解得:,∴点P2的坐标为(0,);②若CD为对角线,∵C(1,0),D(4,1),P(0,m),Q(n,﹣n+3),∴,解得:,∴点P的坐标为(0,).综上所述:存在,点P的坐标为(0,)或(0,).考点四:一次函数中矩形存在性问题【例4】.Rt△AOB的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,且OA、OB的长满足|OA﹣8|+(OB﹣6)2=0,∠ABO的平分线交x轴于点C过点C作AB的垂线,垂足为点D,交y轴于点E.(1)求线段AB的长;(2)求直线CE的解析式;(3)若M是射线BC上的一个动点,在坐标平面内是否存在点P,使以A、B、M、P为顶点的四边形是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.解:(1)∵|OA﹣8|+(OB﹣6)2=0,∴OA=8,OB=6,在直角△AOB中,AB===10;(2)∵BC平分∠ABO,CD⊥AB,AO⊥BO,∴OC=CD,设OC=x,则AC=8﹣x,CD=x.∵△ACD和△ABO中,∠CAD=∠BAO,∠ADC=∠AOB=90°,∴△ACD相似于△ABO,∴,即,解得:x=3.即OC=3,则C的坐标是(﹣3,0).设AB的解析式是y=kx+b,根据题意得解得:则直线AB的解析式是y=x+6,设CD的解析式是y=﹣x+m,则4+m=0,则m=﹣4.则直线CE的解析式是y=﹣x﹣4;(3)①当AB为矩形的边时,如图所示矩形AM1P1B,易知BC的直线方程为y=2x+6,设M1(m,2m+6),P1(x,y),因为A(﹣8,0),B(0,6),则AM12=(m+8)2+(2m+6)2,=5m2+40m+100,BM12=m2+(2m+6﹣6)2=5m2,AB=10,根据AB2+AM12=BM12得100+5m2+40m+100=5m2,m=﹣5,∴M1(﹣5,﹣4),根据平移规律可以解得P1(3,2)②当AB为矩形的对角线时,此时有AB2=AM22+BM22,即100=5m2+40m+100+5m2,m =﹣4或m=0(舍去),∴M2(﹣4,﹣2),根据平移规律可以解得P2(﹣4,8)综上可得,满足条件的P点的坐标为P1(3,2)或P2(﹣4,8).变式训练【变4-1】.如图,四边形OABC是矩形,点A、C在坐标轴上,△ODE是△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H,线段BC、OC的长是方程x2﹣4x+3=0的两个根,且OC>BC.(1)求直线BD的解析式;(2)求点H到x轴的距离;(3)点M在坐标轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.解:(1)x2﹣4x+3=0,解得:x=3或1,故BC=1,OC=3,即点C(0,3)、点A(﹣1,0),则点B(﹣1,3),点D(3,0),点E(3,1),将B、D点的坐标代入一次函数表达式:y=kx+b得:,解得:,故直线BD的表达式为:y=﹣x+…①;(2)同理可得:直线OE的表达式为:y=x…②,联立①②并解得:y=,即点H到x轴的距离为:;(3)直线BD的表达式为:y=﹣x+,则点F(0,),①当FD是矩形的一条边时,当点M在x轴上时,∵MF⊥BD,则直线MF的表达式为:y=x+,当y=0,x=﹣,即点M(﹣,0),点F向右平移3个单位向下平移单位得到D,则点M向右平移3个单位向下平移单位得到N,则点N(,﹣);当点M在y轴上时,同理可得:点N(﹣3,﹣);②当FD是矩形的对角线时,此时点M在原点O,则点N(3,);综上,点N的坐标为:(,﹣)或(﹣3,﹣)或(3,).考点五:一次函数中菱形存在性问题【例5】.如图1,直线y=x+6与x,y轴分别交于A,B两点,∠ABO的角平分线与x轴相交于点C.(1)求点C的坐标;(2)在直线BC上有两点M,N,△AMN是等腰直角三角形,∠MAN=90°,求点M 的坐标;(3)点P在y轴上,在平面上是否存在点Q,使以点A、B、P、Q为顶点的四边形为菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.解:(1)对于直线y=x+6,令x=0,得到y=6,∴B(0,6),令y=0,得到x=﹣8,∴A(﹣8,0).∵A(﹣8,0),B(0,6),∴OA=8,OB=6,∵∠AOB=90°,∴AB==10,过点C作CH⊥AB于H,设OC=t,∵BC平分∠ABO,∠AOB=90°,∴CH=OC=t,=S△ABC+S△BCO,∵S△ABO∴OA•OB=AB•CH+OC•OB,∴6×8=10t+6t,∴t=3,∴OC=3,∴C(﹣3,0);(2)设线BC的表达式为:y=kx+b,∵B(0,6),C(﹣3,0),∴直线BC的表达式为:y=2x+6,设点M(m,2m+6)、N(n,2n+6),过点M作MF⊥x轴于点F,过点N作NE⊥x轴于点E,∵△AMN为等腰直角三角形,故AM=AN,∵∠NAE+∠MAF=90°,∠MAF+∠AMF=90°,∴∠NAE=∠AMF,∵∠AFM=∠NEA=90°,AM=AN,∴△FMA≌△EAN(AAS),∴EN=AF,MF=AE,即﹣2n﹣6=m+8,2m+6=8+n,解得:m=﹣2,n=﹣6,故点M的坐标为(﹣2,2)、点N(﹣6,﹣6);由于M,N的位置可能互换,故点N的坐标为(﹣2,2)、点M(﹣6,﹣6);综上所述,点M的坐标为(﹣2,2)或(﹣6,﹣6);(3)设点P(0,p),∴BP2=(p﹣6)2,AP2=82+p2,①当AB是边时,如图,∵点A、B、P、Q为顶点的四边形为菱形,∴BP=AB=10,BP′=AB=10,OB=OP″,∵B(0,6),∴P(0,16),P′(0,﹣4),P″(0,﹣6),∵A(﹣8,0),∴Q(﹣8,10),Q′(﹣8,﹣10),Q″(8,0);②当AB是对角线时,如图,∵点A、B、P、Q为顶点的四边形为菱形,∴AP=BP,∴BP2=AP2,∴(p﹣6)2=82+p2,解得p=﹣,∴P(0,﹣),∵A(﹣8,0),B(0,6),∴Q(﹣8,);综上所述,点Q的坐标为(﹣8,10)或(﹣8,﹣10)或(8,0)或(﹣8,).变式训练【变5-1】.如图,在平面直角坐标系中,直线y=x+4与x轴、y轴分别交于点D、C,直线AB与y轴交于点B(0,﹣2),与直线CD交于点A(m,2).(1)求直线AB的解析式;(2)点E是射线CD上一动点,过点E作EF∥y轴,交直线AB于点F,若以O、C、E、F为顶点的四边形是平行四边形,请求出点E的坐标;(3)设P是射线CD上一点,在平面内是否存在点Q,使以B、C、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.解:(1)∵点A(m,2)在直线y=x+4上∴m+4=2解得m=﹣2∴点A的坐标为(﹣2,2)设直线AB的解析式为y=kx+b∴解得∴直线AB的解析式为y=﹣2x﹣2;(2)如图1,由题意设点E的坐标为(a,a+4),则∵EF∥y轴,点F在直线y=﹣2x﹣2上∴点F的坐标为(a,﹣2a﹣2)∴EF=|a+4﹣(﹣2a﹣2)|=|3a+6|,∵以点O、C、E、F为顶点的四边形是平行四边形,且EF∥OC∴EF=OC∵直线y=x+4与y轴交于点C∴点C的坐标为(0,4)∴OC=4,即|3a+6|=4解得:a=﹣或a=﹣∴点E的坐标为(﹣,)或(﹣,);(3)如图2,当BC为对角线时,点P,Q都是BC的垂直平分线,且点P和点Q关于BC对称,∵B(0,﹣2),C(0,4),∴点P的纵坐标为1,将y=1代入y=x+4中,得x+4=1,∴x=﹣3,∴P''(﹣3,1),∴Q''(3,1)当CP是对角线时,CP是BQ的垂直平分线,设Q(m,n),∴BQ的中点坐标为(,),代入直线y=x+4中,得+4=①,∵CQ=CB,∴m2+(n﹣4)2=36②,联立①②得,(舍)或,∴Q'(﹣6,4),当PB是对角线时,PC=BC=6,设P(c,c+4),∴c2+(c+4﹣4)2=36,∴c=3(舍)或c=﹣3,∴P(﹣3,﹣3+4),设Q(d,e)∴(﹣3+0)=(0+d),(﹣3+4﹣2)=(e+4),∴d=﹣3,e=﹣3﹣2,∴Q(﹣3,﹣3﹣2),即:点Q的坐标为(3,1),(﹣6,4)或(﹣3,﹣3﹣2).1.一次函数y=x+4分别交x轴、y轴于A、B两点,在x轴上取一点C,使△ABC为等腰三角形,则这样的点C的坐标为(﹣8,0)(3,0)(2,0)(,0).解:当x=0时,y=4,当y=0时,x=﹣3,即A(﹣3,0),B(0,4),OA=3,OB=4,由勾股定理得:AB=5,有三种情况:①以A为圆心,以AB为半径交x轴于两点,此时AC=AB=5,C的坐标是(2,0)和(﹣8,0);②以B为圆心,以AB为半径交x轴于一点(A除外),此时AB=BC,OA=OC=3,C的坐标是(3,0);③作AB的垂直平分线交x轴于C,设C的坐标是(a,0),A(﹣3,0),B(0,4),∵AC=BC,由勾股定理得:(a+3)2=a2+42,解得:a=,∴C的坐标是(,0),故答案为:(﹣8,0)(3,0)(2,0)(,0).2.如图,在平面直角坐标系中,点A坐标为(2,1),连接OA,点P是x轴上的一动点,如果△OAP是等腰三角形,请你写出符合条件的点P坐标P1(4,0),P2(,0),P3(﹣,0),P4(,0).解:设P(x,0),当OA=AP时,∵A(2,1),∴P1(4,0);当OA=OP时,∵A(2,1),∴OA==,∴P2(,0),P3(﹣,0);当AP=OP时,∵P(x,0),(2,1),∴(2﹣x)2+12=x2,解得x=,∴P4(,0).综上所述,P点坐标为:P1(4,0),P2(,0),P3(﹣,0),P4(,0).故答案为:P1(4,0),P2(,0),P3(﹣,0),P4(,0).3.如图,在平面直角坐标系中,点A的坐标为(1,0),点B的坐标为(4,0),点C在y 的正半轴上,且OB=2OC,在直角坐标平面内确定点D,使得以点D、A、B、C为顶点的四边形是平行四边形,请写出点D的坐标为(3,2)(﹣3,2)(5,﹣2).解:如图,①当BC为对角线时,易求M1(3,2);②当AC为对角线时,CM∥AB,且CM=AB.所以M2(﹣3,2);③当AB为对角线时,AC∥BM,且AC=BM.则|M y|=OC=2,|M x|=OB+OA=5,所以M3(5,﹣2).综上所述,符合条件的点D的坐标是M1(3,2),M2(﹣3,2),M3(5,﹣2).故答案为:(3,2)(﹣3,2)(5,﹣2).4.如图,一次函数y=k2x+b的图象与y轴交于点B,与正比例函数y=k1x的图象相交于点A(3,4),且OA=OB.(1)分别求出这两个函数的解析式;(2)求△AOB的面积;(3)点P在x轴上,且△POA是等腰三角形,请直接写出点P的坐标.解:(1)∵正比例函数y=k1x的图象经过点A(3,4),∴3k1=4,∴k1=,∴正比例函数解析式为y=x.如图1中,过A作AC⊥x轴于C,在Rt△AOC中,OC=3,AC=4,∴AO==5,∴OB=OA=5,∴B(0,﹣5),∴,解得,∴一次函数的解析式为y=3x﹣5.(2)如图1中,过A作AD⊥y轴于D,∵A(3,4),∴AD=3,=;∴S△AOB(3)当OP=OA时,P1(﹣5,0),P2(5,0),当AO=AP时,P3(6,0),当PA=PO时,线段OA的垂直平分线为y=﹣,∴,满足条件的点P的坐标(﹣5,0)或(5,0)或(6,0)或.5.直线l1交x轴于点A(6,),交y轴于B(0,6).(1)如图,折叠△AOB,使BA落在y轴上,折痕所在直线为l2,直线l2与x轴交于C 点,求C点坐标及l2的解析式;(2)在直线l1上找点M,使得以M、A、C为顶点的三角形是等腰三角形,求出所有满足条件的M点的坐标.解:∵点A(6,0),交y轴于B(0,6).∴OA=6,OB=6,∴tan∠OAB==,∴∠OAB=30°,∴∠OBA=60°,∵折叠△AOB,∴∠OBC=∠ABC=30°,∴BC=2OC,BO=OC=6,∴OC=2,∴点C(2,0),设直线BC解析式为:y=kx+b,解得:∴直线BC解析式为:y=﹣x+6;(2)当点M与点B重合时,由(1)可知:∠AMC=∠MAC=30°,∴CM=AC,∴△ACM是等腰三角形,∴当M为(0,6)时,△ACM是等腰三角形,∵OC=2,OA=6,∴AC=4,若AM=AC=4,如图1:过点M作MH⊥AC,∵∠MAH=30°,∴MH=AM=2,AH=2MH=6,∴OH=6﹣6或6+6,∴点M(6﹣6,2)或(6+6,﹣2)若AM=MC,如图2,过点M作MH⊥AC,∵AM=MC,MH⊥AC,∴AH=CH=2,∴OC=4,∵∠MAH=30°,∴AH=MH,∴MH=2,∴点M(4,2),综上所述:点M(6﹣6,2)或(6+6,﹣2)或(4,2)或(0,6).6.在平面直角坐标系中,直线y=kx+8k(k是常数,k≠0)与坐标轴分别交于点A,点B,且点B的坐标为(0,6).(1)求点A的坐标;(2)如图1,将直线AB绕点B逆时针旋转45°交x轴于点C,求直线BC的解析式;(3)在(2)的条件下,直线BC上有一点M,坐标平面内有一点P,若以A、B、M、P 为顶点的四边形是菱形,请直接写出点P的坐标.解:(1)令y=kx+8k=0,解得x=﹣8,故点A的坐标为(﹣8,0);(2)过点A作AD⊥AB交BC于点D,过点A作y轴的平行线交过点B与x轴的平行线于点M,交过点D与x轴的平行线于点N,∵∠ABC=45°,故△ABD为等腰直角三角形,则AD=AB,∵∠BAM+∠DAN=90°,∠DAN+∠ADN=90°,∴∠BAM=∠ADN,∵∠BMA=∠AND=90°,∴△BMA≌△AND(AAS),∴AN=BM=8,ND=AM=6,故点D的坐标为(﹣2,﹣8),设直线BC的表达式为y=kx+b,则,解得,故直线BC的表达式为y=7x+6;(3)设点M的坐标为(m,7m+6),点P(s,t),而点A、B的坐标分别为(﹣8,0)、(0,6),①当AB是边时,点A向右8个单位向上6个单位得到点B,同样,点M(P)向右8个单位向上6个单位得到点P(M),且AB=BP(AB=BM),则或,解得或或(不合题意的值已舍去);故点P的坐标为(﹣8,7)或(﹣﹣8,﹣7)或(6,﹣2);②当AB是对角线时,由中点坐标公式和AM=BM得:,解得,故点P的坐标为(﹣7,7);综上,点P的坐标为(﹣8,7)或(﹣﹣8,﹣7)或(6,﹣2)或(﹣7,7).7.如图,在平面直角坐标系中,一次函数的图象与x轴交于点A(﹣4,0),与y轴交于点B,且与正比例函数y=x的图象交于点C(m,6).(1)求一次函数的解析式;(2)求△BOC的面积;(3)在x轴上是否存在一点P,使得△ABP是等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.解:(1)∵将点C(m,6)代入y=x,∴6=m,∴m=4,∴C(4,6),设一次函数的解析式为y=kx+b,∴,∴,∴y=x+3;(2)在y=x+3中,令x=0得y=3,∴B(0,3),=OB•|x C|=×3×4=6;∴S△BOC(3)在x轴上存在一点P,使得△ABP是等腰三角形,理由如下:∵A(﹣4,0),B(0,3),∴AB=5,OA=4,当B为等腰三角形顶角顶点时,P点与A点关于y轴对称,∴P(4,0);当A为等腰三角形顶角顶点时,AP=AB=5,∴P(﹣9,0)或P(1,0);当P为等腰三角形顶角顶点时,设P(t,0),∵PA=PB,∴(t+4)2=t2+9,解得t=﹣,∴P(﹣,0),综上所述:P点坐标为(﹣9,0)或(1,0)或(4,0)或(﹣,0).8.如图,已知一次函数y=x+m的图象与x轴交于点A(﹣6,0),交y轴于点B.(1)求m的值与点B的坐标(2)问在x轴上是否存在点C,使得△ABC的面积为16?若存在,求出点C的坐标;若不存在,说明理由.(3)问在x轴是否存在点P,使得△ABP为等腰三角形,求出点P坐标.(4)一条经过点D(0,2)和直线AB上的一点的直线将△AOB分成面积相等的两部分,请求出这条直线的函数表达式.解:(1)把点A(﹣6,0)代入y=x+m,得m=8,∴点B坐标为(0,8).(2)存在,设点C坐标为(a,0),由题意•|a+6|•8=16,解得a=﹣2或﹣10,∴点C坐标(﹣2,0)或(﹣10,0).(3)如图1中,①当AB=AP时,AP=AB==10,可得P1(﹣16,0),P2(4,0).②当BA=BP时,OA=OP,可得P3(6,0).③当PA=PB时,∵线段AB的垂直平分线为y=﹣x+,可得P4(,0),综上所述,满足条件的点P坐标为(﹣16,0)或(4,0)或(6,0)或(,0).(4)如图2中,设过点D的直线交AB于E,设E(b,),由题意BD•(﹣b)=××6×8,∴b=﹣4,∴点E坐标(﹣4,),设直线DE的解析式为y=kx+b则有,解得,∴这条直线的函数表达式y=﹣x+2.9.在平面直角坐标系中,一次函数y=﹣x+2的图象交x轴、y轴分别于A、B两点,交直线y=kx于P(2,a).(1)求点A、B的坐标;(2)若Q为x轴上一动点,△APQ为等腰三角形,直接写出Q点坐标;(3)点C在直线AB上,过C作CE⊥x轴于E,交直线OP于D,我们规定若C,D,E 中恰好有一点是其他两点所连线段的中点,则称C,D,E三点为“和谐点”,求出C,D,E三点为“和谐点”时C点的坐标.解:(1)当x=0时,y=﹣x+2=2,∴点B的坐标为(0,2);当y=0时,有﹣x+2=0,解得:x=4,∴点A的坐标为(4,0);(2)∵一次函数y=﹣x+2的图象交直线y=kx于P(2,a).∴a=﹣×2+2=1,∴点P的坐标为(2,1),设点Q(m,0),而点A、P的坐标分别为:(4,0)、(2,1),则AP==,AQ=|4﹣m|,PQ=,当AP=AQ时,则=|4﹣m|,解得m=4±,∴点Q(4±,0);当AP=PQ时,=,解得m=0或4(舍去),∴点Q(0,0);当PQ=AQ时,即=|4﹣m|,解得:m=,∴点Q(,0);综上,点Q的坐标为(4±,0)或(0,0)或(,0);(3)∵y=kx过P(2,1).∴2k=1,解得k=,∴y=x,设点C的坐标为(n,﹣n+2),则点D的坐标为(n,n),点E的坐标为(n,0),∴CD=|﹣n+2﹣n|=|2﹣n|,DE=|n|,CE=|﹣n+2|=|n﹣2|,当D为CE的中点时,CD=DE,∴|2﹣n|=|n|,解得n=或4(舍去),∴点C的坐标为(,);当C为DE的中点时,CD=CE,∴|2﹣n|=|n﹣2|,解得n=或0(舍去),∴点C的坐标为(,);当E为CD的中点时,DE=CE,∴|n|=|n﹣2|,无解;综上,C,D,E三点为“和谐点”时C点的坐标为(,)或(,).10.如图所示,直线l:y=﹣x+2与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4).(1)求△AOB的面积;(2)动点M从A点以每秒1个单位的速度沿x轴向左移动,求△COM的面积S与M的移动时间t之间的函数关系式;(3)当动点M在x轴上移动的过程中,在平面直角坐标系中是否存在点N,使以点A,C,N,M为顶点的四边形为菱形,若存在,请直接写出点N的坐标;若不存在,请说明理由.解:(1)令y=0,,解得x=.令x=0,y=.∴A(,0),B(0,).=.∴△AOB的面积为12.(2)∵动点M从A点以每秒1个单位的速度沿x轴向左移动,∴AM=t.当0≤t≤时,OM=,OC=.∴==.当t>时,OM=t﹣.∴==.综上,△COM的面积S与M的移动时间t之间的函数关系式:S=.(3)在平面直角坐标系中存在点N,使以点A,C,N,M为顶点的四边形为菱形.①当AC,AM为菱形的边时,情况一:如图1,当点M在点A的左侧时,Rt△AOC中,=,∴NC=AC=.∵NC∥AM,∴点N(,).情况二,如图1′,当点M在点A的右侧时,由情况一同理可得点N的坐标为.②当AC为菱形的对角线时,如图2,此时M,O重合,四边形OANC为正方形,则点N(,).③如图3,当AC为菱形的边,AM为菱形的对角线时,此时点C,N关于x轴对称,∴点N(0,﹣).综上,在平面直角坐标系中存在点N,使以点A,C,N,M为顶点的四边形为菱形,此时点N的坐标为:(,),,(,),(0,﹣).11.如图,直线y=﹣x+4与x轴、y轴分别交于A、B两点,直线BC与x轴、y轴分别交于C、B两点,连接BC,且OC=OB.(1)求点A的坐标及直线BC的函数关系式;(2)点M在x轴上,连接MB,当∠MBA+∠CBO=45°时,求点M的坐标;(3)若点P在x轴上,平面内是否存在点Q,使点B、C、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.解:(1)对于直线y=﹣x+4,令x=0的y=4,令y=0得x=4,∴A(4,0),B(0,4),∴OB=OA=4,∵OC=OB,∴OC=3,∴C(﹣3,0),设直线BC的解析式为y=kx+b,则有,解得,∴直线BC的解析式为y=x+4.(2)如图1中,当点M在点A的左边时,∵OB=OA=4,∠AOB=90°,∴∠ABO=45°,∴∠CBO+∠MBA=∠MBA+∠MBO=45°,∴∠CBO=∠OBM,∵∠CBO+∠BCO=90°,∠BMO+∠OBM=90°,∴∠BCO=∠BMO,∴BC=BM,OC=OM=3,∴M(3,0),作点M关于直线AB的对称点N,作直线BN交x轴于M1,则∠M1BA=∠MBA,点M1满足条件.∵N(4,1),B(0,4),∴直线BN的解析式为y=﹣x+4,令y=0,得x=,∴M1(,0),综上所述,满足条件的点M的坐标为(3,0)或(,0).(3)如图2中,∵BC==5,当BC为菱形的边时,四边形CP1Q1B,四边形CP3Q3B,四边形BCQ2P2是菱形,此时Q1(﹣5,4),Q3(5,4),Q2(0,4),当BC是菱形的对角线时,四边形CP4BQ4是菱形,可得Q4(﹣,4).综上所述,满足条件的点Q的坐标为(﹣5,4)或(5,4)或(0,﹣4)或.12.已知,一次函数y=的图象与x轴、y轴分别交于点A、点B,与直线y=相交于点C.过点B作x轴的平行线l.点P是直线l上的一个动点.(1)求点A,点B的坐标.(2)求点C到直线l的距离.=S△BCP,求点P的坐标.(3)若S△AOC(4)若点E是直线y=上的一个动点,当△APE是以AP为直角边的等腰直角三角形时,请直接写出点E的坐标.解:(1)∵一次函数y=的图象与x轴、y轴分别交于点A、点B,∴令y=0,则=0,∴x=8,令x=0,则y=6,∴点A、B的坐标分别为:(8,0)、(0,6);(2)解:得,,∴点C(3,),则C到直线l的距离为6﹣=;=×8×=15=S△BCP=×BP×(y P﹣y C)=BP×,(3)∵S△AOC解得:BP=,故点P(,6)或(﹣,6);(4)设点E(m,m)、点P(n,6);①当∠EPA=90°时,当点P在y轴右侧时,当点P在点E的左侧时,如图1,∵∠MEP+∠MPE=90°,∠MPE+∠NPA=90°,∴∠MEP=∠NPA,AP=PE,∵△EMP≌△PNA(AAS),则ME=PN=6,MP=AN,即m﹣n=6,m﹣6=8﹣n,解得:m=,当点P在点E的右侧时,如图,同理可得m=16,当∠EAP=90°时,当点P在y轴左侧时,如图2,同理可得:m﹣8=6,m=8﹣n,解得:m=14,故点E(14,);故点E(,)或(14,)或(16,20);如图3,同理可得:△AMP≌△ANE(AAS),故MP=EN,AM=AN=6,即m=n﹣8,|8﹣m|=6,解得:m=2或14(不合题意舍去),故点E(2,);综上,E(,)或(16,20)或(2,)或(14,).13.如图,在平面直角坐标系xOy中,直线y=﹣x+与y=x相交于点A,与x轴交于点B.(1)求点A,B的坐标;(2)在平面直角坐标系xOy中,是否存在一点C,使得以O,A,B,C为顶点的四边形是平行四边形?如果存在,试求出所有符合条件的点C的坐标;如果不存在,请说明理由;(3)在直线OA上,是否存在一点D,使得△DOB是等腰三角形?如果存在,试求出所有符合条件的点D的坐标,如果不存在,请说明理由.解:(1)∵直线y=﹣x+与y=x相交于点A,∴联立得,解得,∴点A(1,1),∵直线y=﹣x+与x轴交于点B,∴令y=0,得﹣x+=0,解得x=3,∴B(3,0),(2)存在一点C,使得以O,A,B,C为顶点的四边形是平行四边形.①如图1,过点A作平行于x轴的直线,过点O作平行于AB的直线,两直线交于点C,∵AC∥x轴,OC∥AB,∴四边形CABO是平行四边形,∵A(1,1),B(3,0),∴AC=OB=3,∴C(﹣2,1),②如图2,过点A作平行于x轴的直线,过点B作平行于AO的直线,两直线交于点C,∵AC∥x轴,BC∥AO,∴四边形CAOB是平行四边形,∵A(1,1),B(3,0),∴AC=OB=3,∴C(4,1),③如图3,过点O作平行于AB轴的直线,过点B作平行于AO的直线,两直线交于点C,∵OC∥AB,BC∥AO,∴四边形CBAO是平行四边形,∵A(1,1),B(3,0),∴AO=BC,OC=AB,作AE⊥OB,CF⊥OB,易得OE=EF=FB=1,∴C(2,﹣1),(3)在直线OA上,存在一点D,使得△DOB是等腰三角形,①如图4,当OB=OD时,作DE⊥x轴,交x轴于点E∵OB=3,点D在OA上,∠DOE=45°∴DE=OE=,∴D(﹣,﹣),②如图5,当OD=OB时,作DE⊥x轴,交x轴于点E∵OB=3,点D在OA上,∠DOE=45°∴DE=OE=,∴D(,),③如图6,当OB=DB时,∵∠AOB=∠ODB=45°,∴DB⊥OB,∵OB=3,∴D(3,3),④如图7,当DO=DB时,作DE⊥x轴,交x轴于点E∵∠AOB=∠OBD=45°,∴OD⊥DB,∵OB=3,∴OE=,AE=,∴D(,).综上所述,在直线OA上,存在点D(﹣,﹣),D(,),D(3,3)或D(,),使得△DOB是等腰三角形,14.如图,经过点B(0,2)的直线y=kx+b与x轴交于点C,与正比例函数y=ax的图象交于点A(﹣1,3)(1)求直线AB的函数的表达式;(2)直接写出不等式(kx+b)﹣ax<0的解集;(3)求△AOC的面积;(4)点P是直线AB上的一点,且知△OCP是等腰三角形,写出所有符合条件的点P的坐标.解:(1)依题意得:,解得,∴所求的一次函数的解析式是y=﹣x+2.(2)观察图形可知:不等式(kx+b)﹣ax<0的解集;x<﹣1.(3)对于y=﹣x+2,令y=0,得x=2∴C(1,0),∴OC=2.=×2×3=3.∴S△AOC(4)①当点P与B重合时,OP1=OC,此时P1(0,2);②当PO=PC时,此时P2在线段OC的垂直平分线上,P2(1,1);③当PC=OC=2时,设P(m.﹣m+2),∴(m﹣2)2+(﹣m+2)2=4,∴m=2±,可得P3(2﹣,),P4(2+,﹣),综上所述,满足条件的点P坐标为:(1,1)或(0,2)或P(2+,﹣)或(2﹣,).15.如图1,已知直线l1:y=kx+4交x轴于A(4,0),交y轴于B.(1)直接写出k的值为﹣1;(2)如图2,C为x轴负半轴上一点,过C点的直线l2:经过AB的中点P,点Q(t,0)为x轴上一动点,过Q作QM⊥x轴分别交直线l1、l2于M、N,且MN=2MQ,求t的值;(3)如图3,已知点M(﹣1,0),点N(5m,3m+2)为直线AB右侧一点,且满足∠OBM=∠ABN,求点N坐标.解:(1)把A(4,0)代入y=kx+4,得0=4k+4.解得k=﹣1.故答案是:﹣1;(2)∵在直线y=﹣x+4中,令x=0,得y=4,∴B(0,4),∵A(4,0),∴线段AB的中点P的坐标为(2,2),代入,得n=1,∴直线l2为,∵QM⊥x轴分别交直线l1、l2于M、N,Q(t,0),∴M(t,﹣t+4),,∴,MQ=|﹣t+4|=|t﹣4|,∵MN=2MQ,∴,分情况讨论:①当t≥4时,,解得:t=10.②当2≤t<4时,,解得:.③当t<2时,,解得:t=10>2,舍去.综上所述:或t=10.(3)在x轴上取一点P(1,0),连接BP,作PQ⊥PB交直线BN于Q,作QR⊥x轴于R,∴∠BOP=∠BPQ=∠PRQ=90°,∴∠BPO=∠PQR,∵OA=OB=4,∴∠OBA=∠OAB=45°,∵M(﹣1,0),∴OP=OM=1,∴BP=BM,∴∠OBP=∠OBM=∠ABN,∴∠PBQ=∠OBA=45°,∴PB=PQ,∴△OBP≌△RPQ(AAS),∴RQ=OP=1,PR=OB=4,∴OR=5,∴Q(5,1),∴直线BN的解析式为,将N(5m,3m+2)代入,得3m+2=﹣×5m+4解得,∴.16.如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B两点(OA<OB)且OA、OB的长分别是一元二次方程x2﹣(+1)x+=0的两个根,点C在x轴负半轴上,且AB:AC=1:2(1)求A、C两点的坐标;(2)若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM 的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.解:(1)x2﹣(+1)x+=0,(x﹣)(x﹣1)=0,解得x1=,x2=1,∵OA<OB,∴OA=1,OB=,∴A(1,0),B(0,),∴AB=2,又∵AB:AC=1:2,∴AC=4,∴C(﹣3,0);(2)∵AB=2,AC=4,BC=2,∴AB2+BC2=AC2,即∠ABC=90°,由题意得:CM=t,CB=2.①当点M在CB边上时,S=2﹣t(0≤t);②当点M在CB边的延长线上时,S=t﹣2(t>2);(3)存在.①当AB是菱形的边时,如图所示,在菱形AP1Q1B中,Q1O=AO=1,所以Q1点的坐标为(﹣1,0),在菱形ABP2Q2中,AQ2=AB=2,所以Q2点的坐标为(1,2),在菱形ABP3Q3中,AQ3=AB=2,所以Q3点的坐标为(1,﹣2),②当AB为菱形的对角线时,如图所示的菱形AP4BQ4,设菱形的边长为x,则在Rt△AP4O中,AP42=AO2+P4O2,即x2=12+(﹣x)2,解得x=,所以Q4(1,).综上可得,平面内满足条件的Q点的坐标为:Q1(﹣1,0),Q2(1,2),Q3(1,﹣2),Q4(1,).17.如图1,在平面直角坐标系中.直线与x轴、y轴相交于A、B两点,动点C 在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上时,过点D作DE⊥x轴于点E.(1)求证:△BOC≌△CED;(2)如图2,将△BCD沿x轴正方向平移得△B'C'D',当直线B′C′经过点D时,求点D的坐标;(3)若点P在y轴上,点Q在直线AB上.是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的Q点坐标;若不存在,请说明理由.(1)证明:∵∠BOC=∠BCD=∠CED=90°,∴∠OCB+∠DCE=90°,∠DCE+∠CDE=90°,∴∠BCO=∠CDE,在△BOC和△CED中,。

数学“存在性”问题的解题策略(含解答)-

数学“存在性”问题的解题策略(含解答)-

数学“存在性”问题的解题策略存在性问题是指判断满足某种条件的事物是否存在的问题,这类问题的知识覆盖面较广,综合性较强,题意构思非常精巧,解题方法灵活,对学生分析问题和解决问题的能力要求较高,是近几年来各地中考的“热点”。

这类题目解法的一般思路是:假设存在→推理论证→得出结论。

若能导出合理的结果,就做出“存在”的判断,导出矛盾,就做出不存在的判断。

由于“存在性”问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算,对基础知识,基本技能提出了较高要求,并具备较强的探索性,正确、完整地解答这类问题,是对我们知识、能力的一次全面的考验。

【典型例题】例1. 223(1)9200x x m x m m -++-+=若关于的一元二次方程有两个实数根,390cos 5a b c ABC A B C C B ==又已知、、分别是△的∠、∠、∠的对边,∠°,且, 3b a m Rt -=,是否存在整数,使上述一元二次方程两个实数根的平方和等于 ABC c m △的斜边的平方?若存在,求出满足条件的的值,若不存在,请说明理由。

分析:这个题目题设较长,分析时要抓住关键,假设存在这样的m ,满足的条件有m 是整数,一元二次方程两个实数根的平方和等于Rt △ABC 斜边c 的平方,隐含条件判别式Δ≥0等,这时会发现先抓住Rt △ABC 的斜边为c 这个突破口,利用题设条件,运用勾股定理并不难解决。

解:在△中,∠°,∵Rt ABC C B ==9035cos ∴设a=3k ,c=5k ,则由勾股定理有b=4k , 33343==-=-k k k a b ∴,∴,∵ ∴,,a b c ===91215设一元二次方程的两个实数根为,x m x m m x x 2212319200-++-+=() 则有:,x x m x x m m 1212231920+=+=-+()∴x x x x x x m m m 122212212222312920+=+-=+--+()[()]() =+-736312m m 由,x x c c 1222215+==有,即73631225736256022m m m m +-=+-= ∴,m m 124647==-∵不是整数,应舍去,m =-647当时,m =>40∆∴存在整数m=4,使方程两个实数根的平方和等于Rt △ABC 的斜边c 的平方。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学“存在性”问题的解题策略存在性问题是指判断满足某种条件的事物是否存在的问题,这类问题的知识覆盖面较广,综合性较强,题意构思非常精巧,解题方法灵活,对学生分析问题和解决问题的能力要求较高,是近几年来各地中考的“热点”。

这类题目解法的一般思路是:假设存在→推理论证→得出结论。

若能导出合理的结果,就做出“存在”的判断,导出矛盾,就做出不存在的判断。

由于“存在性”问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算,对基础知识,基本技能提出了较高要求,并具备较强的探索性,正确、完整地解答这类问题,是对我们知识、能力的一次全面的考验。

【典型例题】例1. 223(1)9200x x m x m m -++-+=若关于的一元二次方程有两个实数根,390cos 5a b c ABC A B C C B ==又已知、、分别是△的∠、∠、∠的对边,∠°,且, 3b a m Rt -=,是否存在整数,使上述一元二次方程两个实数根的平方和等于 ABC c m △的斜边的平方?若存在,求出满足条件的的值,若不存在,请说明理由。

分析:这个题目题设较长,分析时要抓住关键,假设存在这样的m ,满足的条件有m 是整数,一元二次方程两个实数根的平方和等于Rt △ABC 斜边c 的平方,隐含条件判别式Δ≥0等,这时会发现先抓住Rt △ABC 的斜边为c 这个突破口,利用题设条件,运用勾股定理并不难解决。

解:在△中,∠°,∵Rt ABC C B ==9035cos ∴设a=3k ,c=5k ,则由勾股定理有b=4k , 33343==-=-k k k a b ∴,∴,∵ ∴,,a b c ===91215设一元二次方程的两个实数根为,x m x m m x x 2212319200-++-+=() 则有:,x x m x x m m 1212231920+=+=-+()∴x x x x x x m m m 122212212222312920+=+-=+--+()[()]()=+-736312m m 由,x x c c 1222215+==有,即73631225736256022m m m m +-=+-= ∴,m m 124647==-∵不是整数,应舍去,m =-647当时,m =>40∆∴存在整数m=4,使方程两个实数根的平方和等于Rt △ABC 的斜边c 的平方。

例2. 22ky kx y P =+-如图:已知在同一坐标系中,直线与轴交于点,抛物2122(1)4(0)(0)y x k x k x A x B x C =-++线与轴交于,,,两点,是抛物线的顶点(1)求二次函数的最小值(用含k 的代数式表示) (2)若点A 在点B 的左侧,且x 1·x 2<0 ①当k 取何值时,直线通过点B ;②是否存在实数k ,使S △ABP =S △ABC ?如果存在,求出抛物线的解析式;如果不存在,请说明理由。

分析:本题存在探究性体现在第(2)问的后半部分。

认真观察图形,要使S △ABP =S △ABC ,由于AB=AB ,因此,只需两个三角形同底上的高相等就可以。

OP 显然是△ABP 的高线,而△ABC 的高线,需由C 作AB 的垂线段,在两个高的长中含有字母k ,就不难找到满足条件的k 值。

解:()()()11044414122∵,∴×最小值a y k k k =>=-+=--()()()()2214222由,得:y x k x k y x x k =-++=-- ①当时,,y x x k ===02212 ∵点A 在点B 左侧,∴,又∵,∴,x x x x x x 121212000<<<> ∴A (2k ,0),B (2,0), 将,代入直线B y kx k ()2022=+- 得:,∴222043k k k +-==- ∴当时,直线过点k B =-43(2)过点C 作CD ⊥AB 于点D 则CD k k =--=-|()|()1122∵直线交轴于,,y kx k y P k =+--22022() ∴OP k =-22若,则··△△S S AB OP AB CD ABP ABC ==1212∴OP=CD∴2212-=-kk () 解得:,k k 12122=-=由图象知,,∴取k k <=-012∴当时,△△k S S ABP ABC =-=12此时,抛物线解析式为:y x x =--22例3. 已知:△ABC 是⊙O 的内接三角形,BT 为⊙O 的切线,B 为切点,P 为直线AB 上一点,过点P 作BC 的平行线交直线BT 于点E ,交直线AC 于点F 。

(1)当点P 在线段AB 上时,求证:PA ·PB=PE ·PF(2)当点P 为线段BA 延长线上一点时,第(1)题的结论还成立吗?如果成立,请证明;如果不成立,请说明理由。

()cos 34213若,∠,求⊙的半径AB EBA O ==分析:第(1)问是一个常规性等积式的证明问题,按一般思路,需要把它转化为比例式,再转化为证明两个三角形相似的问题,同学们不会有太大的困难。

难点在于让P 点沿BA 运动到圆外时,探究是否有共同的结论,符合什么共同的规律。

首先需要按题意画出图形,并沿用原来的思路、方法去探索,看可否解决。

第(3)问,从题意出发,由条件∠,欲求⊙的半径,启发我们作出直径为辅助线,使隐性的cos EBA O AH =13条件和结论显现出来。

证明:(1)(如图所示)∵BT 切⊙O 于B ,∴∠EBA=∠C , ∵EF ∥BC ,∴∠AFP=∠C ∠AFP=∠EBA 又∵∠APF=∠EPB ∴△PFA ∽△PBE ∴PA PE PFPB=∴PA ·PB=PE ·PF (2)(如图所示)当P 为BA 延长线上一点时,第(1)问的结论仍成立。

∵BT 切⊙O 于点B , ∴∠EBA=∠C∵EP ∥BC ,∴∠PFA=∠C ∴∠EBA=∠PFA 又∵∠EPA=∠BPE ∴△PFA ∽△PBE ∴PF PB PAPE=∴PA ·PB=PE ·PF(3)作直径AH ,连结BH ,∴∠ABH=90°, ∵BT 切⊙O 于B ,∴∠EBA=∠AHB ∵∠,∴∠cos cos EBA AHB ==1313∵∠∠sin cos 221AHB AHB += 又∵∠AHB 为锐角 ∴∠sin AHB =223在△中,∵∠,Rt ABH AHB ABAHAB sin ==42 ∴∠,AH ABAHB==sin 6∴⊙O 的半径为3。

例4. 已知二次函数y mx m x m =+-->2330()()(1)求证:它的图象与x 轴必有两个不同的交点;(2)这条抛物线与x 轴交于两点A (x 1,0),B (x 2,0)(x 1<x 2),与y 轴交于点C ,且AB=4,⊙M 过A 、B 、C 三点,求扇形MAC 的面积S 。

(3)在(2)的条件下,抛物线上是否存在点P ,使△PBD (PD ⊥x 轴,垂足为D )被直线BC 分成面积比为1:2的两部分?若存在,求出点P 的坐标;若不存在,说明理由。

分析:本题的难点是第(3)个问题。

我们应先假设在抛物线上存在这样的点P ,然后由已知条件(面积关系)建立方程,如果方程有解,则点P 存在;如果方程无解,则这样的点P 不存在,在解题中还要注意面积比为1:2,应分别进行讨论。

解:()()()()131230022∵∆=-+=+>>m m m m ∴它的图象与x 轴必有两个不同的交点。

()()()()233312y mx m x mx x =+--=-+ 令,则,,,y A x B x =00012()() ∵,x x m 120<>∴,x mx 2131==- ∴,,,A B m()()-103∵AB=4,OA=1, ∴,∴,∴,∴,OB mm B ===333130() ∴y x x =--223∵C (0,-3),∴OC=OB ,∴∠ABC=45°∴∠AMC=90°,设M (1,b ),由MA=MC ,得:()()11132222++=++b b∴b=-1,∴M (1,-1) ∴MA =++-=()()111522∴·扇形S MAC ==14542ππMA (3)设在抛物线上存在这样的点P (x ,y ),则过B (3,0),C (0,-3)的直线BC 的解析式为:y x BC PD E =-3,设与交于点①当S △PBE :S △BED =2:1时, PE=2DE ,∴PD=3DEPD 的长是P 点纵坐标的相反数,DE 的长是E 点纵坐标的相反数,且P 、E 两点横坐标相同∴,抛直线PD y x x DE y x =-=-++=-=-+2233 ∴-++=-+x x x 22333()解得:,不合题意,舍去x x 1323==() ∴P (2,-3)②当S △PBE :S △BED =1:2时,PE DE DP DE ==1232,∴ ∴-++=-+x x x 223323()解得:,不合题意,舍去x x 12123==()∴,P ()12154-∴抛物线上存在符合题意的点,或,P P ()()2312154--例5. 如图:二次函数的图象与轴相交于、两点,点在原y x bx c x A B A =++2点左边,点在原点右边,点,在抛物线上,,∠B P m AB PAO ()tan 1225==(1)求m 的值;(2)求二次函数的解析式;(3)在x 轴下方的抛物线上有一动点D ,是否存在点D ,使△DAO 的面积等于△PAO 的面积?若存在,求出D 点坐标;若不存在,说明理由。

解:(1)作PH ⊥x 轴于H ,在Rt △PAH 中∵∠tan PAO PH AH ==25∵,∴PH m AH m ==52∵P (1,m )在抛物线上,m=1+b+c , 设,,,,∵A x B x AB ()()12002= ∴||x x 212-=∴()x x x x 1221242+-= 令,得:y x bx c =++=002∴,,∴x x b x x c b c 1212242+=-=-=∵±±x b b c b =--=-24222且,∴,x x x b x b 12122222<=--=-+ ∵OH=1,∴AH -AO=1∵,AH m AO x b ==-=+52221 ∴52221m b -+=由:得:m b c m b b c m b c =++-+=-=⎧⎨⎪⎪⎩⎪⎪===-⎧⎨⎪⎪⎪⎩⎪⎪⎪1522214224254521252 b =-4()舍去 ∴m =2425()24521252y x x =+- (3)假设在x 轴下方的抛物线上存在点D (x 0,y 0), 使,则有:△△S S DAO PAO = S AO y S AO PH DAO PAO △△·,·==12120||||||||∴,||||y PH m 02425=== ∴,代入,得:y y x x 0002024*******=-=-- x x x x 020124521524253515--=-=-=-,解得:,∴满足条件的点有两个: D D ()()----352425152425,或, 例6. 如图,在平面直角坐标系O —XY 中,正方形OABC 的边长为2cm ,点A 、C 分别在y 轴的负半轴和x 轴的正半轴上,抛物线y=ax 2+bx+c 经过点A 和B ,且12a+5c=0。

相关文档
最新文档