实验二:电路元件特性曲线的伏安测量法和示波器观测法
电路元件伏安特性的测量(实验报告答案)

电路元件伏安特性的测量(实验报告答案)实验一电路元件伏安特性的测量一、实验目的1.学习测量电阻元件伏安特性的方法;2.掌握线性电阻、非线性电阻元件伏安特性的逐点测试法;3.掌握直流稳压电源和直流电压表、直流电流表的使用方法。
二、实验原理在任何时刻,线性电阻元件两端的电压与电流的关系,符合欧姆定律。
任何一个二端电阻元件的特性可用该元件上的端电压U与通过该元件的电流I之间的函数关系式I=f(U)来表示,即用I-U平面上的一条曲线来表征,这条曲线称为电阻元件的伏安特性曲线。
根据伏安特性的不同,电阻元件分为两大类:线性电阻和非线性电阻。
线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示。
该直线的斜率只由电阻元件的电阻值R决定,其阻值R为常数,与元件两端的电压U和通过该元件的电流I无关;非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线,其阻值R不是常数,即在不同的电压作用下,电阻值是不同的。
常见的非线性电阻如白炽灯丝、普通二极管、稳压二极管等,它们的伏安特性曲线如图1-1(b)、(c)、(d)所示。
在图1-1中,U >0的部分为正向特性,U<0的部分为反向特性。
(a)线性电阻(b)白炽灯丝绘制伏安特性曲线通常采用逐点测试法,电阻元件在不同的端电压U 作用下,测量出相应的电流I ,然后逐点绘制出伏安特性曲线I =f (U ),根据伏安特性曲线便可计算出电阻元件的阻值。
三、实验设备与器件1.直流稳压电源 1 台2.直流电压表 1 块3.直流电流表 1 块4.万用表 1 块5.白炽灯泡 1 只6. 二极管 1 只7.稳压二极管 1 只8.电阻元件 2 只四、实验内容1.测定线性电阻的伏安特性按图1-2接线。
调节直流稳压电源的输出电压U ,从0伏开始缓慢地增加(不得超过10V ),在表1-1中记下相应的电压表和电流表的读数。
2将图1-2中的1kΩ线性电阻R 换成一只12V ,0.1A 的灯泡,重复1的步骤,在表1-2中记下相应的电压表和电流表的读数。
电路元件特性曲线的伏安测量法实验报告

电路元件特性曲线的伏安测量法实验报告
伏安测量法实验报告
本实验旨在运用伏安测量法来观察电路元件的特性曲线。
通过对分立元件进行伏安测量,来分析元件的特性,以便进行电子系统的设计与应用。
实验目的:
1、观察电路元件特性曲线;
2、通过实验,分析电路元件的特性;
3、掌握伏安测量法实验技术;
4、了解电路元件特性测量的步骤和方法。
实验内容:
本实验共完成了电感串联L-C谐振管、PWR电阻负反馈和zener限流三种分立元件的
测量,具体步骤如下:
1、找出测量元件。
根据实验要求,准备所需的电子元件,及相应的测试仪器和电阻、电容;
2、连接电路。
按照试验仪示意图,连接元件及电路,并确保连线正确;
3、电流、电压表读数采集比较。
启动测量仪,根据实验要求,依次调节电压、电流
量观察表上的读数;
4、根据变化规律绘制特性曲线图。
观察表上的读数,据此绘制元件特性的时域变化
曲线;
5、完成特性曲线图的建立。
实验结果及分析:
通过本次实验,测量了三种分立元件的特性曲线,对其进行伏安测量,完成其特性曲
线图的建立,从而了解电路元件特性测量的步骤和方法,并熟悉伏安测量法的实验技术。
结论:。
电路元件特性曲线的伏安测量法和示波器观测法实验报告

课程名称:电路与模拟电子技术实验指导老师:孙晖成绩:__________________实验名称:电路元件特性曲线的伏安测量法和示波器观测法实验类型:______ _同组学生姓名:__________一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的和要求1、熟悉电路元件的特性曲线2、学习非线性电阻元件的特性曲线的伏安测量法3、掌握伏安测量法中测量样点的选择和绘制曲线的方法4、学习非线性电阻元件特性曲线的示波器观测方法5、设计实验方案,用示波器观测电容的特性曲线。
二、实验内容和原理1、在电路原理中,元件特性曲线是指特定平面上的定义的一条线,其函数关系式称为元件的伏安特性曲线。
电阻元件的伏安特性曲线是在U-I平面上的一条曲线,当曲线为直线时,对应的元件是线性元件,斜率为电阻值。
线性电阻的伏安特性曲线符合欧姆定律,在U-I平面内是过原点的直线,与电压、电流无关;非线性元件在U-I内是一条曲线。
2、普通警惕二极管的特点是正反向电阻差别很大,正向压降很小,正向电流随着正向压降的上升而急骤上升,而反向电压从零一直增加到十几伏到几十伏时,其反向电流增加很小,粗略地可视为零。
可见,二极管具有单向导电性,如果反响电压加的过高,超过管子的极限值,会导致管子击穿损坏。
3、稳压二极管是一种特殊的半导体二极管,其正向特性与普通二极管类似,但其反向特性则与普通二极管不同。
在反向电压开始增加时,其反向电流几乎为零,但当反向电压增加到一定数值时(称为管子的稳压值)。
电流将突然增加,以后它的端电压将维持恒定,不再随外加的反向电压升高而增大。
这两种二极管的特性属于单调型,电压与电流之间为单调函数。
二极管的特性参数有开启电压U th、导通电压U on,反向电流I R、反向击穿电压U Br以及最大整流电流I F。
电路元件伏安特性实验报告

电路元件伏安特性实验报告电路元件伏安特性实验报告引言:电路元件的伏安特性是研究电路中电流与电压之间关系的重要实验。
通过对电路元件的伏安特性进行实验研究,可以深入理解电路中的电流流动规律,探索电阻、电容、电感等元件的特性,为电路设计和应用提供理论依据。
本次实验主要研究了电阻、电容和二极管的伏安特性,并进行了数据分析和讨论。
一、电阻的伏安特性实验1. 实验目的:研究电阻的伏安特性,了解电阻的电流与电压关系。
2. 实验器材:电阻箱、直流电源、电流表、电压表、导线等。
3. 实验步骤:(1)将电阻箱连接到直流电源的正负极,将电流表和电压表分别与电阻箱相连。
(2)依次调整电阻箱的阻值,记录不同电阻下的电流和电压值。
(3)根据记录的数据绘制伏安特性曲线。
4. 实验结果与分析:通过实验数据绘制的伏安特性曲线,可以清晰地看出电阻的特性。
根据欧姆定律,电阻的电流与电压成正比,即I=U/R,其中I为电流,U为电压,R为电阻。
实验数据与理论公式相符,验证了欧姆定律的正确性。
二、电容的伏安特性实验1. 实验目的:研究电容的伏安特性,了解电容的电流与电压关系。
2. 实验器材:电容器、直流电源、电流表、电压表、导线等。
3. 实验步骤:(1)将电容器连接到直流电源的正负极,将电流表和电压表分别与电容器相连。
(2)依次调整直流电源的电压,记录不同电压下的电流值。
(3)根据记录的数据绘制伏安特性曲线。
4. 实验结果与分析:通过实验数据绘制的伏安特性曲线,可以观察到电容的特性。
根据电容的定义,电容器的电流与电压存在一定的滞后关系。
在直流电路中,电容器对电流的阻碍作用随着电压的增加而减小,电流逐渐趋于稳定。
实验结果与理论预期相符,验证了电容特性的准确性。
三、二极管的伏安特性实验1. 实验目的:研究二极管的伏安特性,了解二极管的电流与电压关系。
2. 实验器材:二极管、直流电源、电流表、电压表、导线等。
3. 实验步骤:(1)将二极管连接到直流电源的正负极,将电流表和电压表分别与二极管相连。
伏安特性曲线 实验报告

伏安特性曲线实验报告伏安特性曲线实验报告引言:伏安特性曲线是电子学中最基本的实验之一,它描述了电阻元件的电压与电流之间的关系。
通过实验测量和分析伏安特性曲线,可以深入理解电阻元件的特性和行为。
本实验旨在通过测量不同电阻元件的伏安特性曲线,探究电阻元件的性质和特点。
实验目的:1. 了解伏安特性曲线的基本概念和原理;2. 学习如何使用电压表和电流表进行测量;3. 掌握测量电阻元件的伏安特性曲线的方法;4. 分析不同电阻元件的特性和行为。
实验仪器和材料:1. 电源;2. 电压表和电流表;3. 不同电阻元件;4. 连接线。
实验步骤:1. 将电源、电压表和电流表依次连接起来,组成电路;2. 将不同电阻元件依次连接到电路中;3. 分别调节电源的电压,记录电压表和电流表的读数;4. 根据记录的数据,绘制伏安特性曲线。
实验结果与分析:通过实验测量得到的伏安特性曲线如下图所示:[插入伏安特性曲线图]从图中可以观察到以下几点特点和行为:1. Ohm定律的验证:当电阻元件为线性电阻时,伏安特性曲线呈直线,证明了Ohm定律的成立。
即电流与电压成正比,电阻恒定。
2. 非线性电阻元件的特性:当电阻元件为非线性电阻时,伏安特性曲线呈非线性关系。
这说明电阻元件的电流与电压之间的关系不再是简单的线性关系,而是受到其他因素的影响。
3. 电阻元件的阻值和功率:通过伏安特性曲线可以计算电阻元件的阻值和功率。
根据电流和电压的关系,可以得出电阻元件的阻值。
而根据电流和电压的乘积,可以得出电阻元件的功率。
这些参数对于电阻元件的选用和设计非常重要。
4. 温度对电阻的影响:伏安特性曲线的变化还可以反映电阻元件受温度影响的情况。
随着温度的升高,电阻元件的电阻值也会发生变化,从而导致伏安特性曲线的形状发生改变。
结论:通过本次实验,我们深入了解了伏安特性曲线的概念、原理和测量方法。
通过观察和分析伏安特性曲线,我们可以了解电阻元件的特性和行为,包括线性和非线性关系、阻值和功率的计算以及温度对电阻的影响。
伏安特性曲线的测量实验报告

竭诚为您提供优质文档/双击可除伏安特性曲线的测量实验报告篇一:电路元件伏安特性的测量(实验报告答案)实验一电路元件伏安特性的测量一、实验目的1.学习测量电阻元件伏安特性的方法;2.掌握线性电阻、非线性电阻元件伏安特性的逐点测试法;3.掌握直流稳压电源和直流电压表、直流电流表的使用方法。
二、实验原理在任何时刻,线性电阻元件两端的电压与电流的关系,符合欧姆定律。
任何一个二端电阻元件的特性可用该元件上的端电压u与通过该元件的电流I之间的函数关系式I=f(u)来表示,即用I-u平面上的一条曲线来表征,这条曲线称为电阻元件的伏安特性曲线。
根据伏安特性的不同,电阻元件分为两大类:线性电阻和非线性电阻。
线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示。
该直线的斜率只由电阻元件的电阻值R决定,其阻值R为常数,与元件两端的电压u和通过该元件的电流I无关;非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线,其阻值R不是常数,即在不同的电压作用下,电阻值是不同的。
常见的非线性电阻如白炽灯丝、普通二极管、稳压二极管等,它们的伏安特性曲线如图1-1(b)、(c)、(d)所示。
在图1-1中,u>0的部分为正向特性,u<0的部分为反向特性。
(a)线性电阻(b)白炽灯丝绘制伏安特性曲线通常采用逐点测试法,电阻元件在不同的端电压u作用下,测量出相应的电流I,然后逐点绘制出伏安特性曲线I=f(u),根据伏安特性曲线便可计算出电阻元件的阻值。
三、实验设备与器件1.直流稳压电源1台2.直流电压表1块3.直流电流表1块4.万用表1块5.白炽灯泡1只6.二极管1只7.稳压二极管1只8.电阻元件2只四、实验内容1.测定线性电阻的伏安特性按图1-2接线。
调节直流稳压电源的输出电压u,从0伏开始缓慢地增加(不得超过10V),在表1-1中记下相应的电压表和电流表的读数。
2将图1-2中的1kΩ线性电阻R换成一只12V,0.1A的灯泡,重复1的步骤,在表1-2中记下相应的电压表和电流表的读数。
伏安特性实验报告

伏安特性实验报告篇一:电路元件伏安特性的测量(实验报告答案)实验一电路元件伏安特性的测量一、实验目的1.学习测量电阻元件伏安特性的方法;2.掌握线性电阻、非线性电阻元件伏安特性的逐点测试法; 3.掌握直流稳压电源和直流电压表、直流电流表的使用方法。
二、实验原理在任何时刻,线性电阻元件两端的电压与电流的关系,符合欧姆定律。
任何一个二端电阻元件的特性可用该元件上的端电压U与通过该元件的电流I之间的函数关系式I=f(U)来表示,即用I-U平面上的一条曲线来表征,这条曲线称为电阻元件的伏安特性曲线。
根据伏安特性的不同,电阻元件分为两大类:线性电阻和非线性电阻。
线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示。
该直线的斜率只由电阻元件的电阻值R决定,其阻值R为常数,与元件两端的电压U和通过该元件的电流I无关;非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线,其阻值R不是常数,即在不同的电压作用下,电阻值是不同的。
常见的非线性电阻如白炽灯丝、普通二极管、稳压二极管等,它们的伏安特性曲线如图1-1(b)、(c)、(d)所示。
在图1-1中,U >0的部分为正向特性,U<0的部分为反向特性。
(a)线性电阻 (b)白炽灯丝绘制伏安特性曲线通常采用逐点测试法,电阻元件在不同的端电压U作用下,测量出相应的电流I,然后逐点绘制出伏安特性曲线I=f(U),根据伏安特性曲线便可计算出电阻元件的阻值。
三、实验设备与器件1.直流稳压电源 1 台2.直流电压表1 块3.直流电流表1 块4.万用表 1 块5.白炽灯泡 1 只6. 二极管1 只7.稳压二极管1 只 8.电阻元件 2 只四、实验内容1.测定线性电阻的伏安特性按图1-2接线。
调节直流稳压电源的输出电压U,从0伏开始缓慢地增加(不得超过10V),在表1-1中记下相应的电压表和电流表的读数。
2将图1-2中的1kΩ线性电阻R换成一只12V,0.1A的灯泡,重复1的步骤,在表1-2中记下相应的电压表和电流表的读数。
《电学元件伏安特性的测量》实验报告附页

《电学元件伏安特性的测量》实验报告附页《电学元件伏安特性的测量》实验报告(数据附页)⼀、半定量观察分压电路的调节特点⼆、⽤两种线路测电阻的对⽐研究电流表准确度等级,量程I m=5mA,R I=±Ω电压表准确度等级,量程U m=,R V=±Ω;量程U m=3V,R V=±Ω由于正向⼆极管的电阻很⼩,采⽤外接法的数据;反向电阻很⼤,采⽤内接法的数据。
四、戴维南定理的实验验证1. 将9V 电源的输出端接到四端⽹络的输⼊端上,组成⼀个有源⼆端⽹络,e e修正后的结果:取第⼆组和第七组数据计算得到: E e = R e =Ω由作图可得: E e = R e =Ω2.⽤原电路和等效电路分别加在相同负载上,测量外电路的电压和电流值。
3.理论计算。
%6.17%7.10.30034.2951.14917.19932.61621213212321的相对误差为的相对误差为与实验值⽐较e e e e R E R R R R R R VR R ER E V E R R R Ω=++==+==Ω=Ω=Ω=4.讨论。
等效电动势的误差不是很⼤,⽽等效电阻却很⼤。
原因是多⽅⾯的。
但我认为最⼤的原因应该是作图本⾝。
所有数据的点都集中在⼀个很⼩的区域,点很难描精确,直线的绘制也显得过于粗糙,⼈为的误差很⼤。
如果对数据进⾏拟合,可以得到I=+,于是得到E e=,R e=Ω,前者误差为%,后者误差为%,效果⽐直接读图好,因为消除了读图时⼈为的误差。
另外⼀点,仪表读数也是造成误差⼤的⼀个原因。
⽐如电流表没有完全指向0,电压表不⾜⼀格的部分读得很不准等等。
总的讲,实验数值和理论还是有⼀定偏差,不能很好的证明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本科实验报告
课程名称: 《电工电子实习Ⅰ》 姓 名: 陈铖 学 院: 电气工程学院 系
: 电子信息工程
专 业: 电子信息工程 学 号: 04 指导教师: 熊素铭
2014年 10 月 12 日
实验报告
课程名称:《电路与电子技术实验》指导老师:熊素铭
成绩:________________________
实验名称:电路元件特性曲线的伏安测量法和示波器观测法 实验类型:电路实验 同组学生姓名:无 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、 实验目的和要求
1. 熟悉电路元件的特性曲线;
2. 学习非线性电阻元件特性曲线的伏安测量方法;
3. 掌握伏安测量法中测量样点的选择和绘制曲线的方法;
4. 学习非线性电阻元件特性曲线的示波器观测方法。
二、 实验内容和原理
实验内容:
1. 测定并绘制二极管的伏安特性曲线;
2. 测定并绘制稳压二极管的伏安特性曲线;
3. 基于Multisim 进行相应的仿真实验。
3. 按书P199 图7-3-9中的左图用示波器观测二极管的伏安特性曲线。
4. 同上用示波器观测稳压二极管的伏安特性曲线。
实验原理:
1. 元件的特性曲线
电路元件的电阻会随温度变化而变化,线性元件的特性曲线呈直线,非线性电路元件特性曲线呈曲线。
普通二极管的特点是,正向电阻很小,反向很大;稳压二极管的正向电阻与普通二极管一样,反向电阻一开始很大,当电压达到一定值迅速减小,根据这个理论基础,用伏安法测量以上两种二极
专业:电子信息工程 姓名:陈铖 学号:04
日期:2014年10月11日
地点:东3-206-E-7
管的特性曲线。
3.元件特性曲线的示波器观测法
在实验室中,可利用信号发生器作为电源,并用示波器观测元件特性曲线的y-t,y-x图形。
三、主要仪器设备
1.数字万能表一只
2.电工综合实验台一台
3.DG07多功能网络实验组件一组
4.信号发生器一台
5.示波器一台
四、操作方法和实验步骤
1.测定并绘制普通二极管与稳压伏安特性曲线
按4.1所示电路连接各元件。
普通二极管选择型号为【1.5A 100V】(最大工作电流,最高反向电压),按如下要求取点:
正向伏安特性曲线:
(0~0.5V) 3点;(0.5~0.6V) 5点;(0.6~100mA附近电压) 5点;
反向伏安特性曲线:5点(反向电压最大值至少大于20V);
注:要求测量最大电流在100mA 附近,不小于90mA。
稳压二极管选择型号为【5V 1W】(反向稳定电压、最大耗散功率),按如下要求取点:
正向伏安特性曲线:
(0~0.7V) 3点;(0.7~0.8V) 5点;(0.8~100mA附近电压) 5点;
反向伏安特性曲线:
(0~4.7V) 3点;(4.7~100mA附近电压) 7点;
注:要求测量最大电流在100mA 附近,不小于90mA。
记录各点对应的电压电流值,绘制出相应的伏安特性曲线(附录手绘曲线)。
图4.1特性曲线测量电路
2.用示波器观测普通二极管和稳压二极管的伏安特性曲线
按图4.2所示电路连接示波器,信号发生器等原件,注意原件的良好接触否则信号波动很大。
普通二极管:
信号发生器取f=1KHZ,正弦信号峰峰值5V,图中R=1KΩ为限流电阻,观察示波器X-Y图像和Y-T图像。
稳压二极管:
信号发生器取f=1KHZ,正弦信号峰峰值>=10V,图中R=1KΩ为限流电阻,观察示波器X-Y图像和Y-T图像。
图4.2 示波器观测法连接电路
五、实验数据记录和处理
3.稳压二极管正向电流电压
5. 普通二极管示波器Y-T曲线
图5.1 普通二极管示波器Y-T曲线【multisim(左)实验拍照(右)】
6. 普通二极管示波器Y-X曲线
图5.2 普通二极管示波器Y-X曲线【multisim(左)实验拍照(右)】
7.稳压二极管示波器Y-T曲线
图5.3 稳压二极管示波器Y-T曲线【multisim(左)实验拍照(右)】
8.稳压二极管示波器Y-X曲线
图5.4 稳压二极管示波器Y-T曲线【multisim(左)实验拍照(右)】
六、实验结果与分析(必填)
根据测量数据手绘普通二极管和稳压二极管的伏安特性曲线【详见附录】
示波器模拟结果以及实验照片也已在上边展示。
实验结果预实验预期符合:
对于普通二极管,正向电压从零增至一定值时,电流先为零,待电压增至0.5V左右,电流随电压增加而迅速增加。
而对于反向电压而言,只要电压不高于击穿电压,电流恒为零。
这是因为普通二极管正向电压很小反向电压很大导致。
对于稳压二极管,正向电压类似于普通二极管,电流先为零,待电压增至0.6V左右,电流随电压增加而迅速增加。
而对于反向电压,一开始电流为零,待电压增至一定值,其电流迅速增大,且端电压稳定在一定值。
这正是稳压二极管的特别之处。
七、讨论、心得
心得体会:
1.在做实验之前,一定要确保自己实验台上的元件没有损坏,我在做用示波器观察的实验中,第
一次做发现CH1为正弦图像,CH2为一条与横轴重合的直线,后经万用表测量发现二极管开路,第二次做的时候发现CH1和CH2完全重合,后经万用表检测发现而二极管短路。
最后第三次提前测了二极管发现元件正常,才做实验结果与预期相符。
所以做实验时千万不能着急。
2.由于机器较为灵敏,做实验时一定要注意导线与导线的接触,我在做实验时,开始的时候大手
大脚做的比较粗糙,结果信号很不稳定,上下波动很大。
3.显示出波形后要调好每一横格,每一竖格的大小,电压以1V~5V为佳,时间以100µs~300µs
为佳我一开始的时候电压选了20mv,J结果波形非常乱。
注意事项:
伏安法测量注意事项
1. 测量过程建议预先调试一边,也就是说事先调节电源及分压电阻或分流电阻,使得流过被测元
件的电流能满足要求的测量范围。
调节过程,注意电压表、电流表的量程选择,特别是电流表的量程选择。
2. 绘制曲线需要足够多的测量点,通常测量数据之间的间隔是均匀的,但当数据曲线出现剧烈变
化时,应增加测量的密度,以免遗漏某些特征。
应根据曲线的性质适当安排测量点。
直线段测点少,率变化较大处,增加测点。
测点安排得越多、越合理,测量得到的特性曲线越接近实际情况。
示波器使用注意事项
1. 绝对不能将电压源接到示波器的任何接地端;
2. 绝对不能直接接220V交流电;
3. 不要将两个通道的接地线连在电路的不同位置,以免造成短路。
函数信号发生器使用注意事项
1.不要让输出端短路。
思考题
1.稳压电源小于15V,限流电阻100欧姆左右,电流表量程200mA。