伏安特性曲线的测量实验报告

合集下载

二极管的伏安特性曲线实验报告

二极管的伏安特性曲线实验报告

二极管的伏安特性曲线实验报告实验报告实验名称:二极管的伏安特性曲线实验实验目的:1. 理解半导体材料的特性2. 理解二极管的基本结构和工作原理3. 掌握二极管的伏安特性曲线及其应用实验原理:二极管是一种半导体元器件,由p型半导体和n型半导体构成。

p型半导体具有正电荷载流子(空穴),n型半导体具有负电荷载流子(电子)。

当p型半导体接触n型半导体时,形成p-n结,随着外加正向电压的增加,p-n结区域中的空穴和电子被推向p区和n区,p-n结中的电阻变小,形成导通状态;当外加反向电压增加时,p-n结中的电阻增大,形成截止状态。

实验步骤:1. 将二极管连接在电路实验板上,通过万用表测量二极管的端子正向电压和反向电压;2. 在电源电压恒定条件下,分别改变二极管的正向电压和反向电压,记录相应的电路电流值;3. 根据实验数据,绘制二极管的伏安特性曲线图。

实验结果:通过实验数据,绘制出了二极管的伏安特性曲线,曲线呈现出明显的“S”型。

当正向电压为0.6-0.7V时,二极管开始导通,电路电流急剧增加;反向电压逐渐增加时,电路电流基本保持稳定。

二极管的正向导通电压和反向击穿电压分别为0.6-0.7V和80-100V。

实验分析:由伏安特性曲线可知,当二极管处于正向电压时,p-n结中的空穴和电子呈现出向前方向移动的趋势,形成电流;而当二极管处于反向电压时,p-n结中的电费载流子被压缩,在p-n结中形成尖锐的电场,电子与空穴受到强烈的吸引而向内流动,从而产生少量的逆向电流。

实验结论:通过本次实验,我们得到了二极管的伏安特性曲线图,理解并掌握了二极管的基本结构和工作原理,这对我们深入理解半导体材料和电子元器件的特性及其应用具有重要意义。

测伏安特性实验报告

测伏安特性实验报告

测伏安特性实验报告实验目的1. 了解伏安特性的基本概念2. 学习使用伏安表进行电压电流测量3. 掌握绘制伏安特性曲线的方法实验器材1. 直流电源2. 可调电阻箱3. 伏安表4. 电线实验原理伏安特性曲线描述了电阻器或其他电子器件的电压与电流之间的关系。

在伏安特性曲线中,横轴表示电流,纵轴表示电压。

通过绘制伏安特性曲线,可以了解电阻器或电子器件的性能特点,包括线性范围、最大工作电压、最大工作电流等。

实验步骤1. 按照电路图连接实验器材,将直流电源与伏安表通过可调电阻箱连接。

2. 将可调电阻箱的电阻设为最大值,打开直流电源,调节电压使其达到所需电压范围。

3. 逐步减小可调电阻箱的电阻值,记录电压与电流的数值。

4. 根据记录的数值,绘制伏安特性曲线。

实验结果根据实验步骤记录的数据,绘制了如下的伏安特性曲线。

![伏安特性曲线](通过观察伏安特性曲线,可以得到以下结论:1. 电阻器的电流与电压呈线性关系。

2. 当电阻器电压超过一定范围时,电流的变化几乎不可感知。

3. 电阻器具有一定的最大工作电压和最大工作电流。

实验分析根据实验结果可以发现,伏安特性曲线能够直观地反映电阻器的性能特点。

在伏安特性曲线中,线性范围表示了电阻器的稳定性和精度,而最大工作电压和最大工作电流则代表了电阻器的安全工作范围。

通过实验,我们可以选择适合实际应用的电阻器,以保证电路的正常工作。

实验总结通过本次实验,我们了解了伏安特性的基本概念,并学会了使用伏安表进行电压电流测量。

我们还通过绘制伏安特性曲线,了解了电阻器的性能特点。

实验过程中,我们注意到了电阻器的线性范围、最大工作电压和最大工作电流的重要性,这些都是选择合适电阻器的关键因素。

我们应该在实际应用中综合考虑这些因素,以确保电路的正常工作和安全性。

参考文献1. 张华著.《电工技术基础实验指导书》.清华大学出版社,2010.2. 郑炳智编著.《电工基础与电子技术实验教程》.电子工业出版社,2013.。

电阻伏安特性曲线实验报告

电阻伏安特性曲线实验报告

电阻伏安特性曲线实验报告电阻伏安特性曲线实验报告引言电阻是电路中最基本的元件之一,电阻伏安特性曲线则是描述电阻器在电流和电压之间的关系的重要工具。

本实验旨在通过测量不同电阻下的电流和电压,绘制电阻伏安特性曲线,并探讨电阻器的基本特性。

实验步骤1. 实验器材准备:准备好电源、电阻箱、电流表、电压表等实验仪器。

2. 搭建电路:将电源的正极与电阻箱相连,再将电阻箱与电流表相连,最后将电流表与电压表相连,形成一个简单的串联电路。

3. 调节电阻箱:根据实验要求,依次选取不同的电阻值,将电阻箱调节到相应的数值。

4. 测量电流和电压:在每个电阻值下,分别测量电流表和电压表的读数,并记录下来。

5. 绘制电阻伏安特性曲线:根据测得的电流和电压数据,绘制电阻伏安特性曲线。

实验结果与分析在实验过程中,我们选取了几个不同的电阻值进行测量,并记录下了相应的电流和电压数据。

通过这些数据,我们绘制了电阻伏安特性曲线。

从曲线可以看出,电阻和电流之间呈线性关系,即符合欧姆定律。

根据欧姆定律,电阻的阻值等于通过它的电流与电压之比。

因此,我们可以通过测量电流和电压,计算出电阻的阻值。

此外,从曲线的斜率可以得出电阻的阻值。

斜率越大,说明电阻越小;斜率越小,说明电阻越大。

这与我们在电路中常见的情况相符:电阻越小,通过的电流越大。

实验误差的讨论在实验中,我们可能会遇到一些误差,影响实验结果的准确性。

以下是一些可能的误差来源和讨论:1. 仪器误差:电流表和电压表有一定的测量误差,这可能会导致实际测量值与理论值之间存在一定的差异。

为了减小仪器误差,我们可以使用更精确的测量仪器。

2. 电源波动:电源的电压可能存在一定的波动,这也会对实验结果产生影响。

为了减小电源波动带来的误差,我们可以使用稳压电源或者进行多次测量取平均值。

3. 电阻内部结构:电阻器内部结构的不完美也可能导致实验结果的误差。

例如,电阻器的接触不良、温度变化等因素都可能影响电阻的阻值。

电阻伏安特性曲线实验报告

电阻伏安特性曲线实验报告

电阻伏安特性曲线实验报告
《电阻伏安特性曲线实验报告》
实验目的:
通过实验,了解电阻的伏安特性曲线,掌握电阻的电压-电流关系,研究电阻的电阻率和温度的关系。

实验仪器和材料:
1. 电源
2. 电阻
3. 电流表
4. 电压表
5. 电阻丝
6. 温度计
7. 实验台
8. 电源线
9. 电阻丝连接线
10. 温度计连接线
实验步骤:
1. 将实验台连接电源,将电流表和电压表连接到电路中。

2. 将电阻丝连接到电路中,并通过调节电源的电压,记录不同电流下的电压值。

3. 测量不同温度下电阻丝的电阻值,并记录下来。

实验结果:
根据实验数据,绘制电阻的伏安特性曲线图,可以看出电阻的电压-电流关系是
线性的。

同时,根据不同温度下的电阻值,可以得出电阻率随温度变化的规律。

实验结论:
通过本次实验,我们深入了解了电阻的伏安特性曲线,掌握了电阻的电压-电流关系,研究了电阻的电阻率和温度的关系。

这对于我们理解电阻的特性和应用
具有重要意义。

总结:
电阻伏安特性曲线实验为我们提供了实验数据和图表,使我们更加直观地了解
了电阻的特性。

通过这次实验,我们不仅掌握了实验操作技能,还对电阻的特
性有了更深入的认识。

希望通过这次实验,能够对电阻的伏安特性曲线有更清
晰的认识,为今后的学习和研究提供基础。

二极管伏安特性曲线实验报告

二极管伏安特性曲线实验报告

二极管伏安特性曲线实验报告二极管伏安特性曲线实验报告引言:二极管是一种常见的电子元件,它具有非线性的伏安特性。

通过研究二极管的伏安特性曲线,可以更好地理解二极管的工作原理和特性。

本实验旨在通过实验测量,绘制二极管的伏安特性曲线,并分析其特点和应用。

实验过程:1. 实验器材准备:本实验所需的器材有:二极管、直流电源、电阻、万用表、导线等。

2. 实验步骤:(1)将二极管连接到电路中,注意极性的正确连接。

(2)将直流电源接入电路,调节电压为适当的范围,如0-10V。

(3)通过万用表测量电压和电流的数值,并记录下来。

(4)调节直流电源的电压,重复步骤(3),得到不同电压下的电流数值。

(5)根据测量数据,绘制二极管的伏安特性曲线。

实验结果:根据实验测量的数据,我们得到了二极管的伏安特性曲线。

在实验中,我们发现了以下几个重要的特点:1. 正向特性:当二极管的正向电压增加时,电流呈指数增长。

这是因为在正向电压作用下,二极管的P区域和N区域之间的势垒逐渐减小,导致电子和空穴的扩散增加,形成电流。

当正向电压超过二极管的导通电压时,电流急剧增加,二极管进入导通状态。

2. 反向特性:当二极管的反向电压增加时,电流基本保持为零,直到达到反向击穿电压。

反向击穿电压是指当反向电压达到一定程度时,势垒电场足以使电子和空穴发生碰撞,形成电流。

在反向击穿电压下,二极管的电流急剧增加,导致二极管受损。

3. 饱和电流和饱和电压:在正向特性中,当二极管的正向电压继续增大时,电流并不会无限增加,而是趋于饱和。

饱和电流是指当正向电压增大到一定程度时,二极管的电流达到最大值并趋于稳定。

饱和电压是指在饱和状态下,二极管的电压维持在一个相对稳定的值。

实验分析:通过实验测量得到的二极管的伏安特性曲线,我们可以进一步分析其特点和应用。

1. 整流器:二极管的正向特性使其成为一种理想的整流器。

在交流电路中,通过使用二极管,可以将交流电信号转换为直流电信号。

伏安特性实验报告

伏安特性实验报告

伏安特性实验报告引言伏安特性是电阻器、电容器和电感器三种被动元件的重要特性之一,通过伏安特性实验可以了解元件在不同电流和电压下的响应。

本实验旨在通过测量电阻器、电容器和电感器的伏安特性曲线,通过数据分析提取元件的相关参数,并验证实验结果与理论结果的符合性。

实验装置本实验中所使用的实验装置如下:- 直流电源:用于提供稳定的直流电压供电;- 可调直流电源:用于提供不同电流供电; - 电流表:用于测量电流的大小; - 电压表:用于测量元件两端的电压; - 节点线:用于连接电路中的各个元件。

实验步骤1.首先,将直流电源接入实验电路,并调节电压值为初始值;2.将电流表和电压表分别连接到电路中待测元件的两端;3.逐步调节可调直流电源的电流输出值,记录相应的电压和电流数值;4.将记录的电压和电流数值整理成数据表格;5.根据实验数据,绘制伏安特性曲线图;6.根据伏安特性曲线图,计算并比较元件的电阻、电容和电感等参数。

实验数据下表为本实验测量得到的电压和电流数值数据:电流(A)电压(V)0.1 0.50.2 1.00.3 2.00.4 2.50.5 3.0数据分析通过实验数据得到的伏安特性曲线如下图所示:伏安特性曲线伏安特性曲线从曲线图中可以看出,电阻器的伏安特性曲线为一条直线,表明电阻值恒定;电容器的伏安特性曲线为一条指数函数曲线,表明电容器在电流变化过程中的响应比较迟滞;电感器的伏安特性曲线为一条指数函数曲线,表明电感器在电流变化过程中的响应比较迅速。

根据伏安特性曲线的斜率,可以计算出电阻器的电阻值为5Ω;根据曲线在0电流时的截距,可以计算出电容器和电感器的初始电压值。

结论通过本次实验,我们成功地测量并绘制了电阻器、电容器和电感器的伏安特性曲线,并通过数据分析得到了元件的相关参数。

实验结果与理论结果基本符合,验证了伏安特性理论的准确性和实验方法的可靠性。

参考文献[1] 张宇. 电子实验(第3版). 北京:高等教育出版社,2008.。

二极管伏安特性曲线测量实验报告

二极管伏安特性曲线测量实验报告

二极管伏安特性曲线测量实验报告二极管伏安特性曲线测量实验报告一、实验题目:二极管伏安特性曲线测量二、实验目的:1、先搭接一个调压电路,实现电压1-5V连续可调2、在面包板上搭接一个测量二极管伏安特性曲线的电路3、测量二极管正向和反向的伏安特性,将所测的电流和电压列表记录好。

4、用e_cel或matlab画二极管的伏安特性曲线三、实验摘要:1、在面包板上搭接一个测量二极管伏安特性曲线的电路2、测量二极管正向和反向的伏安特性,将所测的电流和电压列表记录好四、实验仪器:1、示波器2、函数发生器3、数字万用表4、面包板,稳压二极管,100欧电阻,电位器,导线,可调直流电压源五、实验原理:示波器是可以直接观察电信号的波形的一种用途广泛的电子测量仪器,可以测电压的大小、信号的周期、相位差等。

一切可以转化为电压的电学量和非电学量,都可以用示波器来观察和测量。

设计一个测量二极管两端电压和电流的电路。

通过万用表测量出数据,画出伏安特性曲线并验证。

用函数信号发生器产生一个信号,测量二极管两端的信号。

原理图:六、实验步骤及数据为防止电流过高烧毁电路,使用了一个100欧姆的保护电阻。

用万用表测量不同阻值下二极管两端的电压和通过二极管的电流值,观察并记录数据。

为保证精确度,多测量几组数据绘制的二极管伏安特性曲线:用函数信号发生器产生一个信号,加在保护电阻和二极管两端,在示波器的CH1通道显示输入信号的波形。

原理图:波形图:七、实验总结:刚开始接的时候不知道是原件问题还是线路问题还是什么,用万用表测电压时一直没有示数,在面包板上拆了又装了好久都还是不行,这里就浪费了好多时间,最后换了面包板又换了原件换了电源才终于测了出来。

所以在装电路的时候一定要细心还有要弄清原理图的工作原理才能真正做好一个实验。

还有本实验在测电流时记得先将电阻断开再用万用表测,以免烧表。

伏安特性实验报告总结

伏安特性实验报告总结

伏安特性实验报告总结伏安特性实验报告总结引言:伏安特性实验是电学实验中的基础实验之一,通过测量电阻器上的电压和电流,得到伏安特性曲线,从而研究电阻器的电阻、电流和电压之间的关系。

本文将对伏安特性实验进行总结,包括实验目的、实验原理、实验步骤、实验结果及分析。

实验目的:本次实验的目的是通过测量电阻器上的电压和电流,绘制伏安特性曲线,并从中计算出电阻器的电阻值。

通过这个实验,我们可以加深对电阻器的了解,掌握电流和电压之间的关系,以及电阻的计算方法。

实验原理:伏安特性实验是基于欧姆定律的基本原理进行的。

根据欧姆定律,电阻器上的电流与电压成正比,即I=V/R,其中I为电流,V为电压,R为电阻。

根据这个关系,我们可以通过测量电阻器上的电压和电流,得到它们之间的关系曲线。

实验步骤:1. 准备实验仪器和材料:电阻器、电源、电流表、电压表、导线等。

2. 搭建实验电路:将电阻器连接到电源的正负极,电流表和电压表分别与电阻器相连。

3. 调节电源电压:根据实验要求,调节电源的电压值,通常从小到大逐渐增加。

4. 测量电流和电压:在每个电压值下,测量电阻器上的电流和电压,并记录下来。

5. 绘制伏安特性曲线:根据测量结果,绘制伏安特性曲线。

实验结果及分析:根据实验步骤,我们进行了一系列的测量,并得到了一组电流和电压的数据。

根据这些数据,我们可以绘制出伏安特性曲线。

通过观察伏安特性曲线,我们可以得到以下结论:1. 伏安特性曲线呈线性关系:在一定范围内,电流和电压之间呈线性关系,符合欧姆定律。

2. 电阻的计算:通过伏安特性曲线,我们可以计算出电阻器的电阻值。

根据欧姆定律的公式R=V/I,我们可以根据给定的电压和电流值,计算出电阻的数值。

3. 电阻的变化:通过改变电源的电压,我们可以改变电阻器上的电流和电压值,从而改变电阻的大小。

在实验过程中,我们还发现了一些可能的误差来源,如电压表和电流表的精度限制,导线和接触点的电阻等。

为了提高实验的准确性,我们可以采取一些措施,如使用更精确的仪器、保持良好的接触等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

竭诚为您提供优质文档/双击可除伏安特性曲线的测量实验报告
篇一:电路元件伏安特性的测量(实验报告答案)
实验一电路元件伏安特性的测量
一、实验目的
1.学习测量电阻元件伏安特性的方法;
2.掌握线性电阻、非线性电阻元件伏安特性的逐点测试法;3.掌握直流稳压电源和直流电压表、直流电流表的使用方法。

二、实验原理
在任何时刻,线性电阻元件两端的电压与电流的关系,符合欧姆定律。

任何一个二端电阻元件的特性可用该元件上的端电压u与通过该元件的电流I之间的函数关系式I=f(u)来表示,即用I-u平面上的一条曲线来表征,这条曲线称为电阻元件的伏安特性曲线。

根据伏安特性的不同,电阻元件分为两大类:线性电阻和非线性电阻。

线性电阻元件的伏
安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示。

该直线的斜率只由电阻元件的电阻值R决定,其阻值R为常数,与元件两端的电压u和通过该元件的电流I无关;非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线,其阻值R不是常数,即在不同的电压作用下,电阻值是不同的。

常见的非线性电阻如白炽灯丝、普通二极管、稳压二极管等,它们的伏安特性曲线如图1-1(b)、(c)、(d)所示。

在图1-1中,u>0的部分为正向特性,u<0的部分为反向特性。

(a)线性电阻(b)白炽灯丝
绘制伏安特性曲线通常采用逐点测试法,电阻元件在不同的端电压u作用下,测量出相应的电流I,然后逐点绘制出伏安特性曲线I=f(u),根据伏安特性曲线便可计算出电阻元件的阻值。

三、实验设备与器件
1.直流稳压电源1台
2.直流电压表1块
3.直流电流表1块
4.万用表1块
5.白炽灯泡1只
6.二极管1只
7.稳压二极管1只
8.电阻元件2只
四、实验内容
1.测定线性电阻的伏安特性按图1-2接线。

调节直流稳压电源的输出电压u,从0伏开始缓慢地增加(不得超过10V),在表1-1中记下相应的电压表和电流表的读数。

2
将图1-2中的1kΩ线性电阻R换成一只12V,0.1A的灯泡,重复1的步骤,
在表1-2中记下相应的电压表和电流表的读数。

3
按图1-3接线,R为限流电阻,取200Ω,二极管的型号为1n4007。

测二极
管的正向特性时,其正向电流不得超过35mA,二极管D的正向压降uD+可在0~0.75V之间取值。

特别是在0.5~0.75之间更应取几个测量点。

测反向特性时,将直流稳压电源的输出端正、负连线互换,调节直流稳压输出电压u,从0伏开始缓慢地增加,其反向施压uD-可达-30V,数据分别记入表1-3和表1-4。

表1-3测定二极管的正向特性
4.测定稳压二极(1)正向特性实验
将图1-3中的二极管1n4007换成稳压二极管2cw51,重复实验内容3中的正向测量。

uZ+为2cw51的正向施压,数据记入表1-5。

(2)反向特性实验
将图1-3中的稳压二极管2cw51反接,测量2cw51的反向特性。

稳压电源的输出电压u从0~20V缓慢地增加,测量2cw51二端的反向施压uZ-及电流I,由uZ-可看出其稳
压特性。

数据记入表1-6。

五、实验预习
1.实验注意事项
(1)测量时,可调直流稳压电源的输出电压由0缓慢逐渐增加,应时刻注意电压表和电流表,不能超过规定值。

(2)直流稳压电源输出端切勿碰线短路。

(3)测量中,随时注意电流表读数,及时更换电流表量程,勿使仪表超量程,注意仪表的正负极性。

2.预习思考题
(1)线性电阻与非线性电阻的伏安特性有何区别?它们的电阻值与通过的电流有无关系?
答:线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,电压与电流的关系,符合欧姆定律。

线性电阻元件的阻值R为常数,与元件两端的电压u和通过该元件的电流I无关。

非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线,其阻值R不是常数,即在不同的电压作用下,电阻值是不同的。

(2)请举例说明哪些元件是线性电阻,哪些元件是非线性电阻,它们的伏安特性曲线是什么形状?
答:电阻器是线性电阻,其伏安特性曲线的形状见图1-1(a)所示。

白炽灯丝、普通二极管、稳压二极管等是非线性电阻,它们的伏安特性曲线如图1-1(b)、(c)、(d)所示。

(3)设某电阻元件的伏安特性函数式为I=f(u),如何用逐点测试法绘制出伏安特性曲线。

答:在平面内绘制xoy直角坐标系,以x轴为电压u,y 轴为电流I,计算出电流I和电压u的数据,根据数据类型,合理地绘制伏安特性曲线。

六、实验报告
1.根据实验数据,分别在方格纸上绘制出各个电阻的伏安特性曲线(其中二极管和稳压管的正、反向特性均要求画在同一张图中,正、反向电压可取为不同的比例尺)。

2.根据线性电阻的伏安特性曲线,计算其电阻值,并与实际电阻值比较。

3.必要的误差分析。

4.实验总结及体会。

篇二:二极管伏安特性曲线测量实验报告
二极管伏安特性曲线测量实验报告
一、实验题目:
二极管伏安特性曲线测量
二、实验目的:
1、先搭接一个调压电路,实现电压1-5V连续可调
2、在面包板上搭接一个测量二极管伏安特性曲线的电路
3、测量二极管正向和反向的伏安特性,将所测的电流
和电压列表记录好。

4、用excel或matlab画二极管的伏安特性曲线
三、实验摘要:
1、在面包板上搭接一个测量二极管伏安特性曲线的电路
2、测量二极管正向和反向的伏安特性,将所测的电流和电压列表记录好
四、实验仪器:
1、示波器
2、函数发生器
3、数字万用表
4、面包板,稳压二极管,100欧电阻,电位器,导线,可调直流电压源
五、实验原理:
示波器是可以直接观察电信号的波形的一种用途广泛
的电子测量仪器,可以测电压的大小、信号的周期、相位差等。

一切可以转化为电压的电学量和非电学量,都可以用示波器来观察和测量。

设计一个测量二极管两端电压和电流的电路。

通过万用表测量出数据,画出伏安特性曲线并验证。

用函数信号发生器产生一个信号,测量二极管两端的信号。

原理图:
六、实验步骤及数据
为防止电流过高烧毁电路,使用了一个100欧姆的保护电阻。

用万用表测量不同阻值下二极管两端的电压和通过二。

相关文档
最新文档