三极管伏安特性测量实验报告
实验三三极管仿真——伏安特性和电流分配测试

实验三三极管伏安特性和电流分配测试
一、实验目的
1、学习三极管工作状态的测试方法。
2、进一步熟悉常用电子仪器的使用方法。
二、实验设备
1、智能模拟实验台
2、数字直流电压表
3、示波器
4、毫伏表
5、信号发生器
6、实验稳压电源
7、导线8、Multisim软件
三、预习要求
1、熟悉三极管导通的条件。
2、了解三极管的伏安特性曲线。
3.multisim软件使用。
四、实验元件、内容及步骤
1、元件选用:三极管、直流稳压电源、导线、电压表、电流表等
2、步骤:按图1链接线路,观察伏安特性曲线
图1
3.multisim软件中搭建三极管测试电路,观察电流表的值。
4、改变电阻的大小,并填写下表。
五、实验要求
1、独立完成实验。
2、整理实验数据。
3、按要求填写实验报告。
4、
5、。
实验二常见三极管特性测试的综合实验

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载实验二常见三极管特性测试的综合实验地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容实验二常见三极管特性测试的综合实验一、实验目的学会用万用表判别常见双极型三极管的类型和管脚。
测量常见双极型三极管的输入,输出特性。
二、实验预先要求了解使用万用表判别晶体三极管的类型和管脚的方法。
明确当万用表拨到电阻档时,红、黑表笔各接通表内电池的正极还是负极?如何根据测量表笔的颜色和测得的阻值来判断管型和管脚,测试方法的依据是什么?复习双极型三极管的工作原理,熟悉三极管共射接法的输入、输出特性。
三、主要实验设备电路实验箱数字式万用表半导体图示仪四、实验原理1.利用万用表检测三极管(9013)(1)判断基极和管子类型把三极管插入实验箱对应在插孔,由于三极管的基极对集电极和发射极的正向电阻都较小,据此,可先找出基极。
例如数字式万用表中,黑表笔接基极,红表笔接另外两个极,阻值都很小,则为PNP型三极管的基极。
如果红表笔接基极、黑表笔接另外两个极,阻值都很小,则为NPN管的基极(2)判断集电极和发射极数字式万用表具有测放大倍数的功能,可以将三极管三个脚插入数字式万用表专用插头Cxhef脚(注意:三极管平面背对自己)测量即可。
同时也可判断三极管的集电极和发射极。
2. 三极管静态特性测量的实验线路三极管共发射极输出特性曲线的实验线路如下页图所示。
五、实验内容1.用万用表判别三极管类型和引出脚,并估测质量。
2.用逐点测量法测量晶体三极管共发射极输出特性曲线。
六、实验步骤1.用万用表欧姆档测量晶体三极管(1)测量三极管各级间双向电阻。
(2)测量晶体三极管各极间的正,反向阻值。
按实验报告表要求进行测量,数据填入表2-1中。
三极管的伏安特性_电工电子技术_[共2页]
![三极管的伏安特性_电工电子技术_[共2页]](https://img.taocdn.com/s3/m/c5b7c68677232f60dccca1b3.png)
第7章 半导体器件– 183 – 改变电位器R P1的数值,便可以改变基极与发射极之间的电压,从而控制基极电流I B 的大小。
而I B 的变化又将引起I C 和I E 的变化。
每得到一个I B 数便可获得与之相对应的I C 和I E 的数值。
该实验所得数据如表7-1所列。
表7-1三极管三个电极的电流分配 I B (mA )0 0.01 0.02 0.03 0.04 0.05 I C (mA )0.01 0.056 1.14 1.74 2.33 2.91 I E (mA ) 0.01 0.057 1.16 1.77 2.37 2.96由表7-1可以得出以下结论:(1)I E 为I B 与I C 之和。
I E =I B + I C (7-1)上式说明三极管发射极电流I E 等于基极电流I B 与集电极电流I C 之和,且I C ≈I E I B 。
(2)集电极电流I C 与基极电流I B 的比值基本上为一定值。
C B I I β−= (7-2) β称为直流放大系数。
(3)基极电流I B 的微小变化可以引起集电极电流I C 的较大变化,其变化量的比值为 C BI I βΔ=Δ (7-3) β称为交流放大系数。
同一只三极管的β与β数值接近,即β = β。
(4)当I B = 0(即基极开路)时,I C = I E ≠ 0,即I B = 0时,I C = I CEO ,I CEO 称为穿透电流。
例7-1 测得工作在放大状态的三极管的两个电极电流如图7-18(a )所示。
(1)求另一个电极电流并在图中标出实际方向。
(2)标出C 、B 、E 极,判断该管是NPN 管还是PNP 管。
(3)估算β。
解:(1)由于三极管各个电极满足基尔霍夫电流定律,即流入管内电流等于流出管内电流。
若①管脚电流为流入0.1mA ,②管脚电流为流出6mA ,则③管脚电流为流入5.9mA。
(2)由于①管脚电流最小,②管脚电流最大,所以①管脚是B 极,②管脚是E 极,则③管脚是C 极。
光电三极管的实验数据现象处理

据表画图得其伏安特性曲线图: 当光照度是 500Lx 时其伏安特性曲线图为下图:
1
光电信息技术试验报告处理
当光照度是 750Lx 时其伏安特性曲线图为下图:
当光照度是 1000Lx 时其伏安特性曲线图为下图:
三.光电三极管的光谱响应特性
表 4-3:光电三极管的光谱响应特性 波长λ(nm) 800 760 电压 V(mV) 79 392 波长λ(nm) 600 560 电压 V(mV) 2.4 2.3 720 132 520 2.2 680 14 480 2.2 640 3.4 440 2.2
据表画图得其光谱响应特性曲线图:
2
据表画图得其光电特性曲线图:
二.光电三极管的伏安特性
偏压(V) 电压(V) 偏压(V) 750Lx 电压(V) 偏压(V) 1000Lx 电压(V) 500Lx 表 4-2:光电三极管的伏安特性 4 6 0.6 0.77 4 6 0.61 0.97 4 6 0.61 0.97 8 0.81 8 1.31 8 1.33 10 0.84 10 1.62 10 1.69
光电三极管的伏安特性500lx偏压v10电压v06077081084750lx偏压v10电压v0610971311621000lx偏压v10电压v061097133169据表画图得其伏安特性曲线图
三极管 实验报告

三极管实验报告三极管实验报告引言:三极管是一种重要的电子元件,广泛应用于电子设备中。
本实验旨在通过实际操作和观察,深入了解三极管的工作原理和特性。
实验一:三极管的基本结构和工作原理三极管是由三个掺杂不同材料的半导体层组成,分别是发射极(Emitter)、基极(Base)和集电极(Collector)。
在正常工作状态下,发射极和基极之间的电流较大,而集电极和基极之间的电流较小。
这种电流放大的特性使得三极管成为电子设备中的重要元件。
实验二:三极管的放大特性本实验使用了一个简单的放大电路,由三极管、电阻和电源组成。
通过改变输入电压和电阻的数值,观察三极管的放大效果。
实验结果显示,当输入电压较小时,输出电压与输入电压基本相等,放大效果较弱。
然而,当输入电压增大到一定程度时,输出电压迅速增大,放大效果显著。
这表明三极管在一定范围内具有放大功能,可以将弱信号放大为强信号。
实验三:三极管的开关特性三极管还具有开关功能。
在实验中,我们将三极管配置为开关电路,通过控制基极电流的大小来控制电路的开关状态。
实验结果表明,当基极电流为零时,三极管处于关闭状态,电路断开。
而当基极电流增大到一定程度时,三极管处于导通状态,电路闭合。
这种开关特性使得三极管在电子设备中的应用非常广泛,例如作为触发器、计时器等。
实验四:三极管的温度特性三极管的工作稳定性与温度密切相关。
我们进行了一系列实验,通过改变环境温度,观察三极管的工作状态和性能变化。
实验结果显示,随着温度的升高,三极管的放大效果减弱,输出电压变小。
这是因为温度升高会导致三极管内部电子的热运动增加,从而影响电子的传输和放大效果。
因此,在实际应用中,需要考虑温度对三极管的影响,采取适当的措施来保持其稳定性。
结论:通过本次实验,我们对三极管的基本结构、工作原理和特性有了更深入的了解。
三极管作为一种重要的电子元件,在电子设备中发挥着重要的作用。
我们可以利用其放大和开关特性,设计和制造出各种各样的电子产品,为人们的生活和工作提供方便和便利。
实验三 光电三极管特性测试及其变换电路

实验三光电三极管特性测试及其变换电路实验目的、学习掌握光电三极管的工作原理2、学习掌握光电三杨管的基本特性掌掘光电三极管特性测试的方法4、了解光电三极管的基本应用二、实验内容1、光电三极管光电流测试实验2、光电三极管伏安特性测试实验3、光电三极管光电特性测试实验4、光电三极管时间特性测试实验5、光电三极管光谱特性测试实验三、实验仪器1、光电器件和光电技术综合设计平台1台2、光源驱动模块1个3、负载模块1个1、光通路组件1套5、光电三极管及封装组件1套6、2#迭插头对(红色,50cm) 10根7、2#迭插头对(黑色,50cm) 10根8、示波器1台四、实验原理光电三极管与光电二极管的工作原理基本相同,工作原理都是基于内光电效应,和光敏电阻的差别仅在于光线照射在半导体PN结上,PN结参与了光电转换过程。
光敏三极管有两个PN结,因而可以获得电流增益,它比光敏二极管具有更高的灵敏度。
其结构如图3-1 (a)所示。
当光敏三极管按图3-1 (b) 所示的电路连接时,它的集电结反向偏置,发射结正向偏置,无光照时仅有很小的穿透电流流过,当光线通过透明窗口照射集电结时,和光敏二极管的情况相似,将使流过集电结的反向电流增大,这就造成基区中正电荷的空穴的积累,发射区中的多数载流子(电子)将大量注人基区,由于基区很薄,只有一小部分从发射区注入的电子与基区的空穴复合,而大部分电子将穿过基区流向与电源正极相接的集电极,形成集电极电流。
这个过程与普通三极管的电流放大作用相似,它使集电极电流是原始光电流的(1+B )倍。
这样集电极电流将随入射光照度的改变而更加明显地变化。
在光敏二极管的基础上,为了获得内增益,就利用了晶体三极管的电流放大作用,用Ge 或Si单晶体制造NPN或PNP型光敏三极管。
其结构使用电路及等效电路如图4所示。
光敏三极管可以等效一个光电二极管与另一个-般晶体管基极和集电极并联:集电极基极产生的电流,输入到三极管的基极再放大。
非线性元件伏安特性的测量实验报告

非线性元件伏安特性的测量实验报告一、实验目的1、了解非线性元件的伏安特性曲线。
2、掌握测量非线性元件伏安特性的基本方法。
3、学会使用相关仪器,如电压表、电流表、电源等。
4、通过实验数据的处理和分析,加深对非线性元件电学特性的理解。
二、实验原理非线性元件的电阻值不是一个恒定值,而是随着电压或电流的变化而变化。
常见的非线性元件有二极管、三极管、热敏电阻等。
在本次实验中,我们以二极管为例来测量其伏安特性。
当给二极管加上正向电压时,在电压较低时,电流很小,几乎为零。
当电压超过一定值(称为开启电压)后,电流迅速增加。
而当给二极管加上反向电压时,在一定的反向电压范围内,反向电流很小,且基本不随反向电压的变化而变化。
当反向电压超过某一值(称为反向击穿电压)时,反向电流急剧增加。
通过测量二极管在不同电压下的电流值,就可以得到其伏安特性曲线。
三、实验仪器1、直流电源:提供稳定的电压输出。
2、电压表:测量二极管两端的电压。
3、电流表:测量通过二极管的电流。
4、电阻箱:用于调节电路中的电阻值。
5、二极管:实验对象。
6、导线若干:连接电路。
四、实验步骤1、按照电路图连接实验电路,将电源、电阻箱、二极管、电压表和电流表依次连接。
2、调节电阻箱,使电路中的初始电阻较大,以保护电流表和二极管。
3、接通电源,缓慢调节电源的输出电压,从 0 开始逐渐增加。
在每个电压值下,记录电压表和电流表的读数。
4、测量正向伏安特性时,电压逐渐增加到一定值,注意观察电流的变化。
当电流急剧增加时,停止增加电压。
5、测量反向伏安特性时,将电源极性反转,同样从 0 开始逐渐增加反向电压,记录相应的电压和电流值。
6、重复测量多次,以减小误差。
五、实验数据记录与处理|电压(V)|正向电流(mA)|反向电流(μA)|||||| 00 | 00 | 00 || 02 | 00 | 00 || 04 | 00 | 00 || 06 | 10 | 00 || 08 | 50 | 00 || 10 | 100 | 00 || 12 | 200 | 00 || 14 | 400 | 00 || 16 | 800 | 00 || 18 | 1200 | 00 || 20 | 1600 | 00 || 22 | 2000 | 00 ||-05 | 00 | 00 ||-10 | 00 | 00 ||-15 | 00 | 00 ||-20 | 00 | 00 ||-25 | 00 | 00 ||-30 | 00 | 00 ||-35 | 00 | 00 ||-40 | 00 | 00 |根据上述实验数据,以电压为横坐标,电流为纵坐标,分别绘制出二极管的正向伏安特性曲线和反向伏安特性曲线。
伏安特性曲线的测量实验报告

伏安特性曲线的测量实验报告篇一:电路元件伏安特性的测量实验一电路元件伏安特性的测量一、实验目的1.学习测量电阻元件伏安特性的方法;2.掌握线性电阻、非线性电阻元件伏安特性的逐点测试法;3.掌握直流稳压电源和直流电压表、直流电流表的使用方法。
二、实验原理在任何时刻,线性电阻元件两端的电压与电流的关系,符合欧姆定律。
任何一个二端电阻元件的特性可用该元件上的端电压U与通过该元件的电流I之间的函数关系式I=f来表示,即用I-U 平面上的一条曲线来表征,这条曲线称为电阻元件的伏安特性曲线。
根据伏安特性的不同,电阻元件分为两大类:线性电阻和非线性电阻。
线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示。
该直线的斜率只由电阻元件的电阻值R决定,其阻值R为常数,与元件两端的电压U和通过该元件的电流I无关;非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线,其阻值R不是常数,即在不同的电压作用下,电阻值是不同的。
常见的非线性电阻如白炽灯丝、普通二极管、稳压二极管等,它们的伏安特性曲线如图1-1(b)、(c)、(d)所示。
在图1-1中,U >0的部分为正向特性,U<0的部分为反向特性。
线性电阻白炽灯丝绘制伏安特性曲线通常采用逐点测试法,电阻元件在不同的端电压U作用下,测量出相应的电流I,然后逐点绘制出伏安特性曲线I=f,根据伏安特性曲线便可计算出电阻元件的阻值。
三、实验设备与器件1.直流稳压电源1 台2.直流电压表1 块3.直流电流表1 块4.万用表 1 块5.白炽灯泡 1 只6. 二极管1 只7.稳压二极管1 只8.电阻元件 2 只四、实验内容1.测定线性电阻的伏安特性按图1-2接线。
调节直流稳压电源的输出电压U,从0伏开始缓慢地增加(不得超过10V),在表1-1中记下相应的电压表和电流表的读数。
2将图1-2中的1kΩ线性电阻R换成一只12V,的灯泡,重复1的步骤,在表1-2中记下相应的电压表和电流表的读数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告
课程名称:__电路与模拟电子技术实验
_______指导老师:_____干于_______成绩:__________________ 实验名称:_______三极管伏安特性测量______实验类型:________________同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填)
四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得
一、实验目的
1. 深入理解三极管直流偏置电路的结构和工作原理 2. 深入理解和掌握三极管输入、输出伏安特性
二、实验原理
三极管的伏安特性曲线可全面反映各电极的电压和电流之间的关系,这些特性曲线实际上就是PN结性能的外部表现。
从使用的角度来看,可把三极管当做一个非线性电阻来研究它的伏安特性,而不必涉及它的内部结构。
其中最常用的是输入输出特性。
1)输入特性曲线
输入特性曲线是指在输入回路中,Uce 为不同常数值时的Ib ~Ube 曲线。
分两种情形来讨论。
(1) 从图(a)来看,Uce =0,即c、e间短路。
此时Ib 与Ube 间的关系就是两个正向二极
管并联的伏安特性。
每改变一次Ube ,就可读到一组数据(Ube ,Ib ),用所得数据在坐标纸上作图,就得到图(b)中Uce =0时的输入特性曲线。
2)输出特性曲线
输出特性曲线是指在Ib 为不同常量时输出回路中的Ic ~Uce 曲线。
测试时,先固定一个Ib ,改变Uce ,测得相应的Ic 值,从而可在Ic ~Uce 直角坐标系中画出一条曲线。
Ib 取不同常量值时,即可测得一系列Ic ~Uce 曲线,形成曲线族,如图所示。
专业:___ _________ 姓名:___ _________
学号: ______ 日期:_____ ______ 地点:_____ ___
三、实验仪器
三极管,HY3003D-3型可调式直流稳压电源,万用表、电子技术实验箱。
四、实验步骤
1.输入特性的测量
Rb=100KΩ。
取Vcc=0以及5V,输入不同的Vbb,测出Vbe以及V Rb,间接测出i b。
将所得的数据写入表格并画出图线。
2.输出特性的测量
Vbb=5V,Rc=470Ω。
取Rb=100KΩ和400KΩ。
输入不同的Vcc,测量Vce和V Rc,间接测量出i c。
将所得的数据写入表格并画出图线。
五、数据记录与处理
Vcc=0V Vcc=5V
Vcc/V V Rb/V Vbe/V i b/μA Vcc/V V Rb/V Vbe/V i b/μA
0.1 0 0.005 0 0.1 0 0.008 0
0.3 0 0.169 0 0.3 0 0.195 0
0.5 0.001 0.336 10 0.4 0 0.273 0
0.6 0.008 0.454 80 0.5 0 0.370 0
0.8 0.114 0.521 1140 0.6 0.1 0.513 1000
1.0 0.186 0.545 1860 0.8 0.17 0.580 1700
1.5 0.723 0.570 7230 1.0 0.33 0.610 3300
2.0 1.118 0.583 11180 1.2 0.51 0.624 5100
3.0 2.09 0.599 20900 1.5 0.76 0.632 7600
4.0 3.03 0.608 30300 2.0 1.27 0.659 12700
5.0 4.04 0.616 40400 3.0 2.26 0.666 22600
6.0 4.98 0.622 49800 4.0 3.24 0.668 32400
7.0 5.93 0.626 59300 5.0 4.26 0.671 42600
8.0 6.89 0.631 68900 7.0 6.14 0.670 61400
9.0 7.88 0.634 78800 9.0 8.14 0.660 81400
10.0 8.83 0.637 88300 10.0 9.11 0.656 91100
11.0 9.76 0.640 97600 11.0 10.02 0.650 100200
12.0 10.76 0.642 107600 14.0 12.93 0.642 129300
六、实验结果与误差分析
实验得到的图形与理论大致符合:Vcc = 0的一条曲线与二极管的正向特性相似,Vcc由零开始逐渐增大时输入特性曲线右移;ib逐渐增加时,输出特性曲线上移,饱和区几乎重叠。
不一致的地方由各种误差造成:1.输出电源的实际值与现实的数值不符
2.取点数目不够
3.各个仪器的视在值与实际值不一致
4.仪器的有效位数有限。