电路元件特性曲线的伏安测量法 实验报告

合集下载

电路元件特性曲线的伏安特性测量法 实验报告

电路元件特性曲线的伏安特性测量法 实验报告

实验报告课程名称:_______________________________指导老师:________________成绩:__________________ 实验名称:_______________________________实验类型:________________同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得一、实验目的和要求1.熟悉电路元件的特性曲线;2.学习非线性电阻元件特性曲线的伏安测量方法;3掌握伏安测量法中测量样点的选择和绘制曲线的方法; 4.学习非线性电阻元件特性曲线的示波器观测方法。

二、实验内容和原理1、电阻元件、电容元件、电感元件的特性曲线 在电路原理中,元件特性曲线是指特定平面上定义的一条曲线。

例如,白炽灯泡在工作时,灯丝处于高温状态,其灯丝电阻随着温度的改变而改变,并且具有一定的惯性;又因为温度的改变与流过灯泡的电流有关,所以它的伏安特性为一条曲线。

电流越大、温度越高,对应的灯丝电阻也越大。

一般灯泡的“冷电阻”与“热电阻”可相差几倍至十几倍。

该曲线的函数关系式称为电阻元件的伏安特性,电阻元件的特性曲线就是在平面上的一条曲线。

当曲线变为直线时,与其相对应的元件即为线性电阻器,直线的斜率为该电阻器的电阻值。

电容和电感的特性曲线分别为库伏特性和韦安特性,与电阻的伏安特性类似。

线性电阻元件的伏安特性符合欧姆定律,它在u-i 平面上是一条通过原点的直线。

该特性曲线各点斜率与元件电压、电流的大小和方向无关,所以线性电阻元件是双向性元件。

非线性电阻的伏安特性在u-i 平面上是一条曲线。

普通晶体二极管的特点是正向电阻和反向电阻区别很大。

正向压降很小正向电流随正向压降的升高而急骤上升,而反向电压从零一直增加到十几伏至几十伏时,其反向电流增加很小,粗略地可视为零。

电路元件特性曲线的伏安测量法实验报告

电路元件特性曲线的伏安测量法实验报告

电路元件特性曲线的伏安测量法实验报告
伏安测量法实验报告
本实验旨在运用伏安测量法来观察电路元件的特性曲线。

通过对分立元件进行伏安测量,来分析元件的特性,以便进行电子系统的设计与应用。

实验目的:
1、观察电路元件特性曲线;
2、通过实验,分析电路元件的特性;
3、掌握伏安测量法实验技术;
4、了解电路元件特性测量的步骤和方法。

实验内容:
本实验共完成了电感串联L-C谐振管、PWR电阻负反馈和zener限流三种分立元件的
测量,具体步骤如下:
1、找出测量元件。

根据实验要求,准备所需的电子元件,及相应的测试仪器和电阻、电容;
2、连接电路。

按照试验仪示意图,连接元件及电路,并确保连线正确;
3、电流、电压表读数采集比较。

启动测量仪,根据实验要求,依次调节电压、电流
量观察表上的读数;
4、根据变化规律绘制特性曲线图。

观察表上的读数,据此绘制元件特性的时域变化
曲线;
5、完成特性曲线图的建立。

实验结果及分析:
通过本次实验,测量了三种分立元件的特性曲线,对其进行伏安测量,完成其特性曲
线图的建立,从而了解电路元件特性测量的步骤和方法,并熟悉伏安测量法的实验技术。

结论:。

电学元件的伏安特性研究实验报告

电学元件的伏安特性研究实验报告

电学元件的伏安特性研究实验报告电学元件的伏安特性研究实验报告引言:电学元件是电路中最基本的组成部分,了解其伏安特性对于电路设计和分析至关重要。

本实验旨在通过测量不同电学元件的伏安特性曲线,研究其特性和性能。

实验目的:1. 理解电学元件的伏安特性曲线及其含义。

2. 掌握测量电学元件伏安特性曲线的方法和技巧。

3. 分析不同电学元件的特性,比较其性能差异。

实验原理:伏安特性曲线描述了电学元件在不同电压和电流下的关系。

实验中,我们将通过改变电压并测量对应的电流,来绘制伏安特性曲线。

实验步骤:1. 准备实验所需的电学元件,包括电阻、电容和二极管等。

2. 搭建电路,将待测元件连接到电源和电流表上。

3. 逐步改变电源电压,同时记录对应的电流值。

4. 根据测量数据绘制伏安特性曲线。

实验结果与分析:1. 电阻的伏安特性曲线呈线性关系,即电阻值为常数。

这符合欧姆定律,即电阻的电流和电压成正比。

2. 电容的伏安特性曲线呈现出充电和放电两个阶段。

在充电阶段,电容电流逐渐增大,直到电容充满。

在放电阶段,电容电流逐渐减小,直到电容放电完全。

3. 二极管的伏安特性曲线呈现出非线性关系。

当正向电压施加在二极管上时,电流迅速增加;而当反向电压施加时,电流几乎为零。

这说明二极管具有单向导电性。

实验总结:通过本实验,我们对电学元件的伏安特性有了更深入的了解。

不同的电学元件具有不同的特性和功能,在电路设计中起到不同的作用。

掌握伏安特性的测量方法和分析技巧,对于电路设计和故障排除具有重要意义。

实验中可能存在的误差:1. 电源电压的波动可能会对测量结果产生一定的影响。

2. 测量仪器的精度和灵敏度也可能对结果产生一定的误差。

进一步研究方向:1. 可以研究更多不同类型的电学元件的伏安特性,探索其特性和应用。

2. 进一步改进测量方法和仪器,提高测量精度和准确性。

3. 结合理论分析,探索电学元件特性与电路性能的关系,为电路设计提供更准确的指导。

结语:本实验通过测量不同电学元件的伏安特性曲线,深入研究了其特性和性能。

《电路原理》实验报告

《电路原理》实验报告

《电路原理》实验报告实验一电阻元件伏安特性的测量一、实验目的1、学会识别常用电路和元件的方法。

2、掌握线性电阻及电压源和电流源的伏安特性的测试方法。

3、学会常用直流电工仪表和设备的使用方法。

二、实验原理任何一个二端元件的特性可用该元件上的端电压U与通过该元件的电流I之间的函数关系I=f(U)表示,即I-U平面上的一条曲线来表征,即元件的伏安特性曲线。

线性电阻器的伏安特性曲线是一条通过坐标原点的直线该直线的斜率等于该电阻器的电阻值。

三、实验设备四、实验内容及实验数据测定线性电阻器的伏安特性按图1-1接线,调节稳压电源的输出电压U,从0伏开始缓慢地增加,一直到10V,记下相、I。

应的电压表和电流表的读数UR图1-1实验二 基尔霍夫定律一、实验目的1、加深对基尔霍夫定律的理解,用实验数据验证基尔霍夫定律。

2、学会用电流表测量各支路电流。

二、实验原理1、基尔霍夫电流定律(KCL ):基尔霍夫电流定律是电流的基本定律。

即对电路中的任一个节点而言,流入到电路的任一节点的电流总和等于从该节点流出的电流总和,即应有∑I=0。

2、基尔霍夫电压定律(KVL ):对任何一个闭合回路而言,沿闭合回路电压降的代数总和等于零,即应有∑U=0。

这一定律实质上是电压与路径无关性质的反映。

基尔霍夫定律的形式对各种不同的元件所组成的电路都适用,对线性和非线性都适用。

运用上述定律时必须注意各支路或闭合回路中电流的正方向,此方向可预先任意设定。

三、实验设备四、实验内容及实验数据实验线路如图4-1。

把开关K1接通U1,K2接通U2,K3接通R4。

就可以连接出基尔霍夫定律的验证单元电路,如图4-2。

图4-1图4-21、实验前先任意设定三条支路和三个闭合回路的电流正方向。

图4-2中的I1、I2、I3的方向已设定。

三个闭合回路的电流正方向可设为ADEFA、BADCB、FBCEF。

2、分别将两路直流稳压源接入电路,令U1 = 8V,U2 = 12V。

伏安特性实验报告结论(3篇)

伏安特性实验报告结论(3篇)

第1篇一、实验概述伏安特性实验是电学基础实验之一,旨在通过测量电学元件在电压与电流作用下的关系,绘制出伏安特性曲线,从而分析元件的电阻特性。

本实验采用逐点测试法,对线性电阻、非线性电阻元件的伏安特性进行了测量和绘制。

二、实验目的1. 理解伏安特性曲线的概念,掌握伏安特性曲线的绘制方法。

2. 通过实验验证欧姆定律,了解电阻元件的伏安特性。

3. 分析非线性电阻元件的特性,掌握其应用领域。

三、实验原理1. 伏安特性曲线:在电阻元件两端施加电压,通过电阻元件的电流与电压之间的关系称为伏安特性曲线。

根据伏安特性的不同,电阻元件分为线性电阻和非线性电阻。

2. 线性电阻:线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,斜率代表电阻值。

其阻值R为常数,与元件两端的电压U和通过该元件的电流I无关。

3. 非线性电阻:非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线,其阻值R不是常数,即在不同的电压作用下,电阻值是不同的。

四、实验步骤1. 准备实验仪器:直流稳压电源、直流电压表、直流电流表、电阻元件、导线等。

2. 连接实验电路:将电阻元件与直流稳压电源、直流电压表、直流电流表连接成闭合回路。

3. 测量电压与电流:逐步调节直流稳压电源的输出电压,记录对应的电流值。

4. 绘制伏安特性曲线:以电压为横坐标,电流为纵坐标,将实验数据绘制成曲线。

五、实验结果与分析1. 线性电阻伏安特性曲线:实验结果表明,线性电阻元件的伏安特性曲线是一条通过坐标原点的直线。

斜率代表电阻值,与实验理论相符。

2. 非线性电阻伏安特性曲线:实验结果表明,非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线。

在低电压下,电阻值较小,随着电压的增大,电阻值逐渐增大,直至趋于饱和。

这与实验理论相符。

3. 伏安特性曲线的应用:通过伏安特性曲线,可以分析电阻元件在不同电压下的电阻值,从而了解电阻元件的电阻特性。

在工程实践中,伏安特性曲线对于设计电路、选择电阻元件具有重要意义。

伏安特性曲线 实验报告

伏安特性曲线 实验报告

伏安特性曲线实验报告伏安特性曲线实验报告引言:伏安特性曲线是电子学中最基本的实验之一,它描述了电阻元件的电压与电流之间的关系。

通过实验测量和分析伏安特性曲线,可以深入理解电阻元件的特性和行为。

本实验旨在通过测量不同电阻元件的伏安特性曲线,探究电阻元件的性质和特点。

实验目的:1. 了解伏安特性曲线的基本概念和原理;2. 学习如何使用电压表和电流表进行测量;3. 掌握测量电阻元件的伏安特性曲线的方法;4. 分析不同电阻元件的特性和行为。

实验仪器和材料:1. 电源;2. 电压表和电流表;3. 不同电阻元件;4. 连接线。

实验步骤:1. 将电源、电压表和电流表依次连接起来,组成电路;2. 将不同电阻元件依次连接到电路中;3. 分别调节电源的电压,记录电压表和电流表的读数;4. 根据记录的数据,绘制伏安特性曲线。

实验结果与分析:通过实验测量得到的伏安特性曲线如下图所示:[插入伏安特性曲线图]从图中可以观察到以下几点特点和行为:1. Ohm定律的验证:当电阻元件为线性电阻时,伏安特性曲线呈直线,证明了Ohm定律的成立。

即电流与电压成正比,电阻恒定。

2. 非线性电阻元件的特性:当电阻元件为非线性电阻时,伏安特性曲线呈非线性关系。

这说明电阻元件的电流与电压之间的关系不再是简单的线性关系,而是受到其他因素的影响。

3. 电阻元件的阻值和功率:通过伏安特性曲线可以计算电阻元件的阻值和功率。

根据电流和电压的关系,可以得出电阻元件的阻值。

而根据电流和电压的乘积,可以得出电阻元件的功率。

这些参数对于电阻元件的选用和设计非常重要。

4. 温度对电阻的影响:伏安特性曲线的变化还可以反映电阻元件受温度影响的情况。

随着温度的升高,电阻元件的电阻值也会发生变化,从而导致伏安特性曲线的形状发生改变。

结论:通过本次实验,我们深入了解了伏安特性曲线的概念、原理和测量方法。

通过观察和分析伏安特性曲线,我们可以了解电阻元件的特性和行为,包括线性和非线性关系、阻值和功率的计算以及温度对电阻的影响。

电学元件伏安特性的测量实验报告doc

电学元件伏安特性的测量实验报告doc

电学元件伏安特性的测量实验报告篇一:电路分析实验报告(电阻元件伏安特性的测量) 电力分析实验报告实验一电阻元件伏安特性的测量一、实验目的:(1)学习线性电阻元件和非线性电阻元件伏安特性的测试方式。

(2)学习直流稳压电源、万用表、电压表的利用方式。

二、实验原理及说明(1)元件的伏安特性。

若是把电阻元件的电压取为横坐标,电流取为纵坐标,画出电压与电流的关系曲线,这条曲线称为该电阻元件的伏安特性。

(2)线性电阻元件的伏安特性在u-i平面上是通过坐标原点的直线,与元件电压和电流方向无关,是双向性的元件。

元件的电阻值可由下式肯定:R=u/i=(mu/mi)tgα,期中mu 和mi别离是电压和电流在u-i平面坐标上的比例。

三、实验原件Us是接电源端口,R1=120Ω,R2=51Ω,二极管D3为IN5404,电位器Rw四、实验内容(1)线性电阻元件的正向特性测量。

(2)反向特性测量。

(3)计算阻值,将结果记入表中(4)测试非线性电阻元件D3的伏安特性(5)测试非线性电阻元件的反向特性。

表1-1 线性电阻元件正(反)向特性测量表1-5二极管IN4007正(反)向特性测量五、实验心得(1)每次测量或测量后都要将稳压电源的输出电压跳回到零值(2)接线时必然要考虑正确利用导线篇二:电学元件的伏安特性实验报告v1预习报告【实验目的】l.学习利用大体电学仪器及线路连接方式。

2.掌握测量电学元件伏安特性曲线的大体方式及一种消除线路误差的方式。

3.学习按照仪表品级正确记录有效数字及计算仪表误差。

准确度品级见书66页。

100mA量程,0.5级电流表最大允许误差?xm?100mA?0.5%?0.5mA,应读到小数点后1位,如42.3(mA) 3V量程,0.5级电压表最大允许误差?Vm?3V?0.5%?0.015V,应读到小数点后2位,如2.36(V) 【仪器用具】直流稳压电源,电流表,电压表,滑线变阻器,小白炽灯泡,接线板,电阻,导线等。

电学元件伏安特性的测量实验报告

电学元件伏安特性的测量实验报告

电学元件伏安特性的测量实验报告一、实验目的1、了解电学元件伏安特性的概念和意义。

2、掌握测量电学元件伏安特性的基本方法。

3、学会使用实验仪器,如电压表、电流表、滑动变阻器等。

4、通过实验数据绘制伏安特性曲线,分析电学元件的性质。

二、实验原理1、伏安特性电学元件的伏安特性是指其两端电压与通过它的电流之间的关系。

对于线性元件,如电阻,其伏安特性曲线是一条直线;对于非线性元件,如二极管,其伏安特性曲线是非线性的。

2、测量方法本实验采用限流电路和分压电路两种接法来测量电学元件的伏安特性。

在限流电路中,通过改变滑动变阻器接入电路的阻值来改变电路中的电流,从而测量元件两端的电压和电流;在分压电路中,通过改变滑动变阻器滑片的位置来改变元件两端的电压,进而测量相应的电流。

三、实验仪器1、直流电源2、电压表(量程:0 3V,0 15V)3、电流表(量程:0 06A,0 3A)4、滑动变阻器(最大阻值:_____)5、定值电阻(阻值:_____)6、二极管7、开关8、导线若干四、实验步骤1、按照实验电路图连接好电路。

(1)限流电路:将电源、滑动变阻器、定值电阻、电学元件、电流表串联,电压表并联在电学元件两端。

(2)分压电路:将电源、滑动变阻器、电学元件、电流表串联,电压表并联在电学元件两端,滑动变阻器的一部分与电学元件并联。

2、检查电路连接无误后,闭合开关。

3、调节滑动变阻器,使电流表和电压表的示数有明显变化,并记录多组电压值和电流值。

(1)对于线性元件(如定值电阻),每隔一定的电压间隔记录一组数据。

(2)对于非线性元件(如二极管),在电压较低和较高的区域适当增加数据点的密度。

4、改变电路接法(从限流电路改为分压电路或反之),重复上述步骤。

5、实验结束后,断开开关,整理实验仪器。

五、实验数据记录与处理1、线性元件(定值电阻)|电压(V)|电流(A)||||| 05 | 01 || 10 | 02 || 15 | 03 || 20 | 04 || 25 | 05 |以电压为横坐标,电流为纵坐标,绘制伏安特性曲线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程名称:电路与模拟电子技术实验指导老师:张冶沁成绩:__________________实验名称:电路元件特性曲线的伏安测量法实验类型:电路实验同组学生姓名:__________一、实验目的和要求(必填)二、实验内容和原理(必填)
三、主要仪器设备(必填)四、操作方法和实验步骤
五、实验数据记录和处理六、实验结果与分析(必填)
七、讨论、心得
一、实验目的和要求
1.熟悉电路元件的特性曲线;
2.学习非线性电阻元件特性曲线的伏安测量方法;
3掌握伏安测量法中测量样点的选择和绘制曲线的方法;
4.学习非线性电阻元件特性曲线的示波器观测方法。

二、实验内容和原理
1、电阻元件、电容元件、电感元件的特性曲线
在电路原理中,元件特性曲线是指特定平面上定义的一条曲线。

例如,白炽灯泡在工作时,灯丝处于高温状态,其灯丝电阻随着温度的改变而改变,并且具有一定的惯性;又因为温度的改变与流过灯泡的电流有关,所以它的伏安特性为一条曲线。

电流越大、温度越高,对应的灯丝电阻也越大。

一般灯泡的“冷电阻”与“热电阻”可相差几倍至十几倍。

该曲线的函数关系式称为电阻元件的伏安特性,电阻元件的特性曲线就是在平面上的一条曲线。

当曲线变为直线时,与其相对应的元件即为线性电阻器,直线的斜率为该电阻器的电阻值。

电容和电感的特性曲线分别为库伏特性和韦安特性,与电阻的伏安特性类似。

线性电阻元件的伏安特性符合欧姆定律,它在u-i 平面上是一条通过原点的直线。

该特性曲线各点斜率与元件电压、电流的大小和方向无关,所以线性电阻元件是双向性元件。

非线性电阻的伏安特性在u-i平面上是一条曲线。

普通晶体二极管的特点是正向电阻和反向电阻区别很大。

正向压降很小正向电流随正向压降的升高而急骤上升,而反向电压从零一直增加到十几伏至几十伏时,其反向电流增加很小,粗略地可视为零。

可见,二极管具有单向导电性,如果反向电压加得过高,超过管子的极限值,则会导致管子击穿损坏。

稳压二极管是一种特殊的半导体二极管,其正向特性与普通二极管类似,但其反向特性则与普通二极管不同,在反向电压开始增加时,其反向电流几乎为零,但当反向电压增加到某一数值时(称为管子的稳压值,有各种不同稳压值的稳压管)电流将突然增加,以后它的端电压将维持恒定,不再随外加的反向电压升高而增大。

上述两种二极管的伏安特性均具属于单调型。

电压与电流之间是单调函数。

二极管的特性参数主要有开启电压V th,导通电压V on,反向电流I R,反向击穿电压V BR以及最大整流电流I F。

2、非线性电阻元件特性曲线的逐点伏安测量法
元件的伏安特性可以用直流电压表、电流表测定,称为逐点伏安测量法。

伏安法原理简单,测量方便,但由于仪表内阻会影响测量的结果,因此必须注意仪表的合理接法。

采用伏安法测量二极管特性时,限流电阻以及直流稳压源的变化范围与特性曲线的测量范围是有关系的,要根据实验室设备的具体要求来确定。

在综合考虑测量效率和获得良好曲线效果的前提下,测量点的选择十分关键,由于二极管的特性曲线在不同的电压的区间具有不同的性状,因此测量时需要合理采用调电压或调电阻的方式来有效控制测量样点。

3、元件特性曲线的示波器观测法
正弦波信号发生器提供的输出电压,R是被测电阻元件,r为电流取样电阻。

示波器置于X—Y 工
作方式,将电阻元件两端的电压接入示波器Y 轴输入端,取样电阻r 两端的电压接入X 轴输入端,适当调节Y 轴和X 轴的幅值,荧光屏上就能显示出电阻R 的伏安特性曲线。

通过双踪示波器的X—Y 模式则可测得电感和电容的特性曲线。

三、主要仪器设备
1.数字万用表
2.电工综合实验台
多功能网络实验组件
4.信号源
5.示波器
四、操作方法和实验步骤
测定晶体二极管和稳压二极管的伏安特性:
选择稳压电源或者恒流源均可,本次实验使用了稳压源,并如图接线。

根据上次实验了解到的仪表技术参数,本次实验中直流电压表内阻约为5MΩ,而直流电流表内阻在1Ω至10Ω,被测量的元件电阻变化范围较大,但在测量点较密集的区域中电阻与电流表更接近,为尽量减小仪表内阻带来的影响,选用了电压表内接法,如图:
缓慢调节稳压源电压大小并记录二极管的电流和电压,在导通区段附近记录适当密集的点,当需要测量反向电压时,只需调转二极管接入电路的方向即可。

如此分别测量晶体二极管和稳压二极管的伏安特性并绘制曲线。

用示波器观测二极管、稳压管的伏安特性曲线:
如图接线,适当调整示波器,观察两种二极管的伏安特性曲线并拍摄显示器画面。

五、实验数据记录和处理
示波器显示下的二极管伏安特性曲线:
示波器显示下的稳压管伏安特性曲线:
六、实验结果与分析
由普通二极管数据作图如下,正负电压分别作图
由图中曲线观察得,普通二极管的导通电压约在附近,符合之前万用表测得的值,且在导通之后电流迅速增加;当加上反向电压时,电流基本维持在0附近,加压到-30V也并未能被导通。

由稳压二极管数据作图如下,正负电压分别作图
由图中曲线观察得,稳压二极管的导通电压约在附近,符合之前万用表测得的值,且在导通之后电流迅速增加;当加上反向电压时,电压到附近进入稳压状态,电流突然增加,端电压维持稳定。

用multisim进行仿真:
七、讨论、心得
本次测定实验中有许多值得注意的细节,比如一开始限流电阻阻值的选定,电压表和电流表的内外接关系,都需要事先对被测二极管参数有基本的了解,才能合理选择,减小系统误差。

而测定过程中,为了更好地刻画伏安特性曲线,在某些位置要取密集的采样点,其他小斜率的区段为了保证效率往往只测几个稀疏的点,尤其要注意二极管的功率不能超过额定功率,时刻要控制电压和电流在安全范围内。

总而言之,通过本次试验,我熟悉了二极管的伏安特性,更好地理解了理论课程中二极管的工作原理和应用方式,还学到了示波器的观测方法和仿真技术。

相关文档
最新文档