高中数学组合课件.ppt
合集下载
人教版高中数学选修三6.2.4 组合数 课件

6.2.4 组合数
课标要求
素养要求
通过研究组合数公式及解决有限制条件 1.能利用计数原理推导组合数公式.
的组合问题,提升逻辑推理及数学运算 2.能解决有限制条件的组合问题.
素养.
新知探究
某校开展秋季运动会招募了20名志愿者,他们的编号分别是1号,2 号,…,19号,20号.若要从中任意选取4人再按编号大小分成两组 去做一些预备服务工作,其中两个编号较小的人在一组,两个标号较 大的在另一组,那么确保5号与14号入选并被分配到同一组的选取方 法有多少种?
一、素养落地 1.通过本节课的学习,进一步提升逻辑推理及数学运算素养. 2.几何中的计算问题:在处理几何问题中的组合应用问题时,应先明确几何中的
点、线、面及构型,明确平面图形和立体图形中的点、线、面之间的关系,将 几何问题抽象成组合问题来解决. 3.分组、分配问题:分组问题和分配问题是有区别的,前者组与组之间只要元素 个数相同,是不可区分的,而后者即使两组元素个数相同,但因元素不同,仍 然是可区分的.
题型一 组合数公式的应用 【例 1】 求值:(1)3C38-2C25;
(2)C338n-n+C32n1+n. 解 (1)3C38-2C25=3×83× ×72× ×61-2×52× ×41=148.
(2)∵00≤ <33n8- ≤n2≤ 1+3nn, ,∴9.5≤n≤10.5. ∵n∈N*,∴n=10, ∴C338n-n+C32n1+n=C2380+C3301=C230+C131=302× ×219+31=466.
①Cnm=Cnn-m;②Cnm+1=Cmn +Cmn -1(其中 n,m∈N*,m≤n).
提示 成立.它们是组合数的两个性质,在计算时可直接应用.
2.组合数公式的两种形式在应用中如何选择? 提示 在具体选择公式时要根据题目的特点正确选择.公式 Cnm=AAmnmm常用于 n 为具体正 整数的题目,一般偏向于组合数的计算.公式 Cnm=(n-mn)!!·m!常用于 n 为字母的 题目,一般偏向于不等式的求解或恒等式的证明.
课标要求
素养要求
通过研究组合数公式及解决有限制条件 1.能利用计数原理推导组合数公式.
的组合问题,提升逻辑推理及数学运算 2.能解决有限制条件的组合问题.
素养.
新知探究
某校开展秋季运动会招募了20名志愿者,他们的编号分别是1号,2 号,…,19号,20号.若要从中任意选取4人再按编号大小分成两组 去做一些预备服务工作,其中两个编号较小的人在一组,两个标号较 大的在另一组,那么确保5号与14号入选并被分配到同一组的选取方 法有多少种?
一、素养落地 1.通过本节课的学习,进一步提升逻辑推理及数学运算素养. 2.几何中的计算问题:在处理几何问题中的组合应用问题时,应先明确几何中的
点、线、面及构型,明确平面图形和立体图形中的点、线、面之间的关系,将 几何问题抽象成组合问题来解决. 3.分组、分配问题:分组问题和分配问题是有区别的,前者组与组之间只要元素 个数相同,是不可区分的,而后者即使两组元素个数相同,但因元素不同,仍 然是可区分的.
题型一 组合数公式的应用 【例 1】 求值:(1)3C38-2C25;
(2)C338n-n+C32n1+n. 解 (1)3C38-2C25=3×83× ×72× ×61-2×52× ×41=148.
(2)∵00≤ <33n8- ≤n2≤ 1+3nn, ,∴9.5≤n≤10.5. ∵n∈N*,∴n=10, ∴C338n-n+C32n1+n=C2380+C3301=C230+C131=302× ×219+31=466.
①Cnm=Cnn-m;②Cnm+1=Cmn +Cmn -1(其中 n,m∈N*,m≤n).
提示 成立.它们是组合数的两个性质,在计算时可直接应用.
2.组合数公式的两种形式在应用中如何选择? 提示 在具体选择公式时要根据题目的特点正确选择.公式 Cnm=AAmnmm常用于 n 为具体正 整数的题目,一般偏向于组合数的计算.公式 Cnm=(n-mn)!!·m!常用于 n 为字母的 题目,一般偏向于不等式的求解或恒等式的证明.
人教A版高中数学选择性必修第三册6.2.3_组合课件

解析答案
类型二 组合的列举问题 例2 从5个不同元素a,b,c,d,e中取出2个,列出所有组合为_a_b_,__a_c_,_ _a_d_,__a_e_,__b_c_,__b_d_,__b_e_,__cd_,__c_e_,__d_e_. 解析 要想列出所有组合,做到不重不漏,先将元素按照一定顺序排好, 然后按顺序用图示的方法将各个组合逐个地标示出来.如图所示.
类型三 组合数公式及应用 角度1 有关组合数的计算与证明 例 3 (1)计算 C410-C37·A33; 解 原式=C410-A37=140××39××28××17-7×6×5=210-210=0. (2)证明:mCnm=nCmn--11. 解 mCmn =m·m!nn! -m!=m-n1·n!-n1-!m! =n·m-1n!-1n-!m!=nCmn--11.
反思与感悟 解析答案
跟踪训练 3 (1)计算 C34+C35+C36+…+C32 015的值为( C )
A.C42 015 C.C42 016-1
B.C52 015 D.C52 015-1
解析 C34+C35+C36+…+C32 015 =C44+C34+C35+C36+…+C32 015-C44
解析答案
返回
达标检测
1234
1.下列问题中,组合问题的个数是( B ) ①从全班50人中选出5人组成班委会;②从全班50人中选出5人分别担负班
长、副班长、团支部书记、学习委员、生活委员;③从1,2,3,…,9中任
取出两个数求积;④从1,2,3,…,9中任取出两个数求差或商.
A.1
B.2 C.3 D.4
=C45+C35+…+C32 015-1=…=C42 015+C32 015-1=C42 016-1
(2)计算:C37+C47+C58+C89=_2_1_0__.
类型二 组合的列举问题 例2 从5个不同元素a,b,c,d,e中取出2个,列出所有组合为_a_b_,__a_c_,_ _a_d_,__a_e_,__b_c_,__b_d_,__b_e_,__cd_,__c_e_,__d_e_. 解析 要想列出所有组合,做到不重不漏,先将元素按照一定顺序排好, 然后按顺序用图示的方法将各个组合逐个地标示出来.如图所示.
类型三 组合数公式及应用 角度1 有关组合数的计算与证明 例 3 (1)计算 C410-C37·A33; 解 原式=C410-A37=140××39××28××17-7×6×5=210-210=0. (2)证明:mCnm=nCmn--11. 解 mCmn =m·m!nn! -m!=m-n1·n!-n1-!m! =n·m-1n!-1n-!m!=nCmn--11.
反思与感悟 解析答案
跟踪训练 3 (1)计算 C34+C35+C36+…+C32 015的值为( C )
A.C42 015 C.C42 016-1
B.C52 015 D.C52 015-1
解析 C34+C35+C36+…+C32 015 =C44+C34+C35+C36+…+C32 015-C44
解析答案
返回
达标检测
1234
1.下列问题中,组合问题的个数是( B ) ①从全班50人中选出5人组成班委会;②从全班50人中选出5人分别担负班
长、副班长、团支部书记、学习委员、生活委员;③从1,2,3,…,9中任
取出两个数求积;④从1,2,3,…,9中任取出两个数求差或商.
A.1
B.2 C.3 D.4
=C45+C35+…+C32 015-1=…=C42 015+C32 015-1=C42 016-1
(2)计算:C37+C47+C58+C89=_2_1_0__.
高中数学选修2-3优质课件:组合与组合数公式

第十五页,编辑于星期一:点 三十六分。
解:(1)从 10 名教师中选 2 名去参加会议的选法种数为 C210= 120××19=45. (2)可把问题分两类情况: 第 1 类,选出的 2 名是男教师有 C62种选法; 第 2 类,选出的 2 名是女教师有 C42种选法. 根据分类加法计数原理,共有 C62+C42=15+6=21 种不同的 选法.
由此可得所有的组合为 ab,ac,ad,ae,bc,bd,be,cd,ce,de.
第六页,编辑于星期一:点 三十六分。
与组合数有关的计算
[例 2] (1)计算:C140-C37·A33; (2)已知C15m-C16m=107Cm7 ,求 C8m+C58-m. [解] (1)原式=C140-A73=140××39××28××17-7×6×5=210 -210=0. (2)原式=m!55!-m!-m!66!-m! =7×71-0×m7!!m!,
第十页,编辑于星期一:点 三十六分。
解:(1)原式=C38+C2100×1=83× ×72× ×61+1020××199=56+4 950 =5 006. (2)原方程可变形为CC53nn- -31+1=159,Cn5-1=154Cn3-3, 即n-1n-2n5-!3n-4n-5 =154·n-3n3-!4n-5,化简整理,得 n2-3n-54=0.解此 二次方程,得 n=9 或 n=-6(不合题意,舍去),所以 n=9 为所求.
)
A.4 或 9
B.4
C.9
D.其他
解析:当 x=3x-8 时,解得 x=4;当 28-x=3x-8
时,解得 x=9.
答案:A
第十八页,编辑于星期一:点 三十六分。
2.某班级要从 4 名男生、2 名女生中选派 4 人参加某次社区服
解:(1)从 10 名教师中选 2 名去参加会议的选法种数为 C210= 120××19=45. (2)可把问题分两类情况: 第 1 类,选出的 2 名是男教师有 C62种选法; 第 2 类,选出的 2 名是女教师有 C42种选法. 根据分类加法计数原理,共有 C62+C42=15+6=21 种不同的 选法.
由此可得所有的组合为 ab,ac,ad,ae,bc,bd,be,cd,ce,de.
第六页,编辑于星期一:点 三十六分。
与组合数有关的计算
[例 2] (1)计算:C140-C37·A33; (2)已知C15m-C16m=107Cm7 ,求 C8m+C58-m. [解] (1)原式=C140-A73=140××39××28××17-7×6×5=210 -210=0. (2)原式=m!55!-m!-m!66!-m! =7×71-0×m7!!m!,
第十页,编辑于星期一:点 三十六分。
解:(1)原式=C38+C2100×1=83× ×72× ×61+1020××199=56+4 950 =5 006. (2)原方程可变形为CC53nn- -31+1=159,Cn5-1=154Cn3-3, 即n-1n-2n5-!3n-4n-5 =154·n-3n3-!4n-5,化简整理,得 n2-3n-54=0.解此 二次方程,得 n=9 或 n=-6(不合题意,舍去),所以 n=9 为所求.
)
A.4 或 9
B.4
C.9
D.其他
解析:当 x=3x-8 时,解得 x=4;当 28-x=3x-8
时,解得 x=9.
答案:A
第十八页,编辑于星期一:点 三十六分。
2.某班级要从 4 名男生、2 名女生中选派 4 人参加某次社区服
高中数学 1.2.2.1 组合与组合数公式课件 新人教A版选修23

2.题(2)证明的关键是什么?
第十九页,共43页。
【探究提示】1.选用组合数公式的乘积式,
即
Cmn
A mn A mm
n(n-1)(n-2)…(n-m 1) . m!
2. 有关组合数恒等式的证明,关键是化简,应先考虑利用组合数
的阶乘( jiē chénɡ)式形式作答.
第二十页,共43页。
【自主(zìzhǔ)解答】(1)原C式140-=A37=140392-8717×6×5 =210-210=0.
【证明】右边=
n n-m
Cm n-1
n n-m
n-1! m! n-1-m
!
n!
m!n-m
!
Cnm
,
左边= Cmn ,所以左边=右边,所以原式成立.
第二十二页,共43页。
【方法技巧】关于组合数公式的选取技巧
(1)涉及具体数字的可以直接用
n n-m
Cm n-1
n n-m
n-1! m! n-1-m !
第十三页,共43页。
知识点2 组合数与组合数公式 1.组合数公式的两种形式的适用范围
形式
适用范围
乘积式
含具体数字的组合数的求值
要注阶意乘性式质(xìngzhì)含字母的组合的数顺的用有、关逆变用形、变及形证用明.顺用是将一
个组合数拆成两Cmn个1 ;C逆nm用 则Cnm是-1“合二为一”;变形式
=
(2)
C18 20
C220
20 19 21
190.
答案:190
(3)
C399
C929=C1300
100 99 98 3 21
161
700.
答案:161 700
人教版数学高二《组合与组合数公式》 名师课件

高中数学
(2)原方程可化为Cx+3x-2=110Ax+33, 即Cx+35=110Ax+33,8分 ∴5!x+x-32!!=x1+0·x3!!, ∴120x-1 2!=10·xx-11·x-2!, ∴x2-x-12=0,10分 解得x=4或x=-3, 经检验:x=4是原方程的解.12分
高中数学
• [题后感悟] 含有组合数的方程或不等式的 解法:
=2×6+52× ×41=32.
高中数学
(3)方法一:原式=Cn+1n·Cn1=
n+1! n!
·n=
n+1·n! n!
·n
=(n+1)n=n2+n.
方法二:原式=(Cnn+Cnn-1)·Cnn-1=(1+Cn1)·Cn1=(1+ n)n=n2+n.
高中数学
(1)已知C15m-C16m=107C7m,求C8m. (2)解方程:Cx+2x-2+Cx+2x-3=110Ax+33.
• (2)从1,2,3,…,9九个数字中任取3个,然后
把这三个数字相加得到一个和,这样的和共有
多少个?
高中数学
• 解答本题主要是分清取出的这m个(2个或3 个)是进行排列还是组合,即确定是与顺序 有关还是无关.
高中数学
• [解题过程] (1)当取出3个数字后,如果改变 三个数字的顺序,会得到不同的三位数,此问 题不但与取出元素有关,而且与元素的安排顺 序有关,是排列问题.
高中数学
练考题、验能力、轻巧夺冠
高中数学
• ②五个队进行单循环比赛的分组情况;
• ③由1,2,3组成两位数的不同方法数;
• ④由1,2,3组成无重复数字的两位数.
• A.①③
B.②④
• C.①②
高中数学D.①②④
• 2.如果Cn2=28,则n的值为( )
(2)原方程可化为Cx+3x-2=110Ax+33, 即Cx+35=110Ax+33,8分 ∴5!x+x-32!!=x1+0·x3!!, ∴120x-1 2!=10·xx-11·x-2!, ∴x2-x-12=0,10分 解得x=4或x=-3, 经检验:x=4是原方程的解.12分
高中数学
• [题后感悟] 含有组合数的方程或不等式的 解法:
=2×6+52× ×41=32.
高中数学
(3)方法一:原式=Cn+1n·Cn1=
n+1! n!
·n=
n+1·n! n!
·n
=(n+1)n=n2+n.
方法二:原式=(Cnn+Cnn-1)·Cnn-1=(1+Cn1)·Cn1=(1+ n)n=n2+n.
高中数学
(1)已知C15m-C16m=107C7m,求C8m. (2)解方程:Cx+2x-2+Cx+2x-3=110Ax+33.
• (2)从1,2,3,…,9九个数字中任取3个,然后
把这三个数字相加得到一个和,这样的和共有
多少个?
高中数学
• 解答本题主要是分清取出的这m个(2个或3 个)是进行排列还是组合,即确定是与顺序 有关还是无关.
高中数学
• [解题过程] (1)当取出3个数字后,如果改变 三个数字的顺序,会得到不同的三位数,此问 题不但与取出元素有关,而且与元素的安排顺 序有关,是排列问题.
高中数学
练考题、验能力、轻巧夺冠
高中数学
• ②五个队进行单循环比赛的分组情况;
• ③由1,2,3组成两位数的不同方法数;
• ④由1,2,3组成无重复数字的两位数.
• A.①③
B.②④
• C.①②
高中数学D.①②④
• 2.如果Cn2=28,则n的值为( )
高中数学排列组合的应用-ppt课件(课堂教学)

2、什么叫做从n个不同元素中取出m个元素的排列数?
从n个不同的元素中取出m(m≤n)个元素的所有排列的个
数,叫做从n个不同元素中取出m个元素的排列数.
用符号 Anm 表示
3、排列数的两个公式是什么?
Am n(n 1)(n 2)(n m 1)
n
Anm
(n
n! m)! (n,m∈学校N课堂*,m≤n)
⑵间接计算法
先抛开限制条件,计算出所有可能的排列数,再从 中减去不合题意的排列数,特别要注意:不能遗漏,也 不能重复. 即排除法.
搞清限制条件的真正含义,做针对性文章!
学校课堂
11
例2:七个家庭一起外出旅游,若其中四家是一 个男孩,三家是一个女孩,现将这七个小孩站 成一排照相留念。
若三个女孩要站在一起,有多少种不同的排法?
分析:可看作甲固定,其学余校课全堂 排列 A66 720
5
(4)7位同学站成一排,甲、乙只能站在 两端的排法共有多少种?
解:将问题分步
第一步:甲乙站两端有A22 种
第二步:其余5名同学全排列有A55 种
共有A22 A55=2400种
答:共有2400种不同的排列方法。
学校课堂
6
(5)7位同学站成一排,甲、乙不能站在 排头和排尾的排法共有多少种?
若三个女孩互不相邻,有多少种不同的排法?
插空法
解:先把四个男孩排成一排有A44种排法,在每一排 列中有五个空档(包括两端),再把三个女孩插入
空档中有A53种方法,所以共有: A44 A53 1440 (种)
排法。
学校课堂
15
例2:七个家庭一起外出旅游,若其中四家是一个男孩, 三家是一个女孩,现将这七个小孩站成一排照相留念。
数学:1.2.2《组合》PPT课件(新人教A版-选修2-3)

小结:至多至少问题常用分类的或排除法. 小结:至多至少问题常用分类的或排除法.
从数字1,2,5,7中任选两个 例2 从数字 中任选两个 (1) 可以得到多少个不同的和 6个 可以得到多少个不同的和? (2)可以得到多少个不同的差 12个 可以得到多少个不同的差? 可以得到多少个不同的差 有不同的英文书5本 不同的中文书 不同的中文书7本 练习 有不同的英文书 本,不同的中文书 本, 从中选出两本书. 从中选出两本书 (1)若其中一本为中文书 一本为英文书 若其中一本为中文书,一本为英文书 若其中一本为中文书 一本为英文书. 问共有多少种选法? 问共有多少种选法 35种 (2)若不限条件 问共有多少种选法 若不限条件,问共有多少种选法 若不限条件 问共有多少种选法? 66种
练一练
1.写出从 写出从a,b,c,d 四个元素中任取三个元素的所有 写出从 组合
c a b b c c d d d
abc , abd , acd ,bcd .
组合 abc abd acd bcd abc acb abd adb
排列 bac bca bad bda cad cda cbd cdb cab cba dab dba dac dca dbc dcb
3 4 3
4
3
43 34 33
3
概念讲解
组合数公式
排列与组合是有区别的,但它们又有联系. 排列与组合是有区别的,但它们又有联系. 一般地,求从n个不同元素中取出 个不同元素中取出m个元素的 一般地,求从 个不同元素中取出 个元素的 排列数,可以分为以下2步 排列数,可以分为以下 步: 先求出从这n个不同元素中取出 个不同元素中取出m个 第1步,先求出从这 个不同元素中取出 个 m 元素的组合数 C. n 2步 求每一个组合中m个元素的全排列数 第2步,求每一个组合中m个元素的全排列数 An . m m m An = Cn ⋅ Am 根据分步计数原理,得到: 根据分步计数原理,得到:
1.2组合与组合数公式-高中数学人教A版选修2-3课件(共30张PPT)

(4)先从四个盒子中任取两个有 C42种,问题转化为:“4 个球,
两个盒子,每盒必放球,有几种放法?”从放球数目看,可分为
(3,1),(2,2)两类.第一类:可从 4 个球中先选 3 个,然后放入指
定的一个盒子中即可,有 C34·C12种放法;第二类:有 C24种放法.因
此共有 C34·C12+C24=14(种).由分步乘法计数原理得“恰有两个盒
有向线段共有多少条?
A120 =45
变式(书本第27页A组)
例2
解:(1)C1300 161700 (2)C21 C928 9506
直接法 间接法
例2
变式:抽取的3件中至多1件是次品,抽法有多少种? (只需列出式子,不用计算结果)
组合数的两个性质(书本第25页阅读材料)
(1)Cnm
C n-m n
第2步,求每一个组合中m 个元素的全排列数 Anm .
根据分步计数原理,得到:Anm Cnm Amm
因此:Cnm
Anm Amm
nn 1n 2n m 1
m!
这里 m、n N *,且 m n ,这个公式叫做
组合数公式.
组合数公式:
Cnm
Anm Amm
n(n 1)(n 2) m!
(n m 1)
排列
组合 联系
组合是选择的 结果,排列是 选择后再排序 的结果
组合的概念 组合数的概念及性质
(1)共有多少种做法? (2)恰有一个盒子不放球,有多少种放法? (3)恰有一个盒内放2个球,有多少种放法? (4)恰有两个盒子不放球,有多少种放法?
解析 (1)一个球一个球的放到盒子里去,每只球都可有 4 种
独立的放法,由分步乘法计数原理知,放法共有 44=256(种).
两个盒子,每盒必放球,有几种放法?”从放球数目看,可分为
(3,1),(2,2)两类.第一类:可从 4 个球中先选 3 个,然后放入指
定的一个盒子中即可,有 C34·C12种放法;第二类:有 C24种放法.因
此共有 C34·C12+C24=14(种).由分步乘法计数原理得“恰有两个盒
有向线段共有多少条?
A120 =45
变式(书本第27页A组)
例2
解:(1)C1300 161700 (2)C21 C928 9506
直接法 间接法
例2
变式:抽取的3件中至多1件是次品,抽法有多少种? (只需列出式子,不用计算结果)
组合数的两个性质(书本第25页阅读材料)
(1)Cnm
C n-m n
第2步,求每一个组合中m 个元素的全排列数 Anm .
根据分步计数原理,得到:Anm Cnm Amm
因此:Cnm
Anm Amm
nn 1n 2n m 1
m!
这里 m、n N *,且 m n ,这个公式叫做
组合数公式.
组合数公式:
Cnm
Anm Amm
n(n 1)(n 2) m!
(n m 1)
排列
组合 联系
组合是选择的 结果,排列是 选择后再排序 的结果
组合的概念 组合数的概念及性质
(1)共有多少种做法? (2)恰有一个盒子不放球,有多少种放法? (3)恰有一个盒内放2个球,有多少种放法? (4)恰有两个盒子不放球,有多少种放法?
解析 (1)一个球一个球的放到盒子里去,每只球都可有 4 种
独立的放法,由分步乘法计数原理知,放法共有 44=256(种).