全国高考卷文科导数专题汇编(带答案)

全国高考卷文科导数专题汇编(带答案)
全国高考卷文科导数专题汇编(带答案)

导 数 专 题

题型1 根据导数的几何意义研究曲线的切线

1.(2012全国文13)曲线()3ln 1y x x =+在点()1,1处的切线方程为________.

2. (2015全国I 文14)已知函数

()31f x ax x =++的图像在点()()1,1f 处的切线过点()2,7,则

a = .

3. (2015全国II 文16) 已知曲线ln y x x =+在点()11,处的切线与曲线()221y ax a x =+++相切,则a = .

4.(2009,全国卷1) 已知函数42

()36f x x x =-+.. (Ⅰ)讨论()f x 的单调性;

(Ⅱ)设点P 在曲线()y f x =上,若该曲线在点P 处的切线l 通过坐标原点,求l 的方程。

【解】(1)3

'()464(f x x x x x x =-=-

当(,)2x ∈-∞-

和(0,2

x ∈时,'()0f x <;

当(x ∈和)x ∈+∞时,'()0f x >

因此,()f x 在区间(,2-∞-和(0,2

是减函数,

()f x 在区间(2

-

和)+∞是增函数。 (Ⅱ)设点P 的坐标为00(,())x f x ,由l 过原点知,l 的方程为

0'()y f x x = 因此 000()'()f x x f x =,

即 423

0000036(46)0x x x x x -+--= 整理得 22

00(1)(2)0x x +-=

解得 0x = 或 0x =

因此切线l 的方程为 y =- 或 y =。

题型2 判断函数的单调性、极值与最值

5.(2013全国II 文11).已知函数3

2

()f x x ax bx c =+++,下列结论中错误的是( ) . A. 0x R ?∈,0()0f x =

B. 函数()y f x =的图象是中心对称图形

C. 若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞单调递减

D. 若0x 是()f x 的极值点,则0'()0f x =

6.(2013全国I 文20)已知函数()()2e 4x f x ax b x x =+--,曲线()y f x =在点()()

00f ,处的切线方程为44y x =+. (1)求a b ,的值;

(2)讨论()f x 的单调性,并求()f x 的极大值.

7(2013全国II 文21)已知函数2()e x

f x x -=. (1)求()f x 的极小值和极大值;

(2)当曲线()y f x =的切线l 的斜率为负数时,求l 在x 轴上截距的取值范围. 【解】(1)f(x)的定义域为(-∞,+∞),f ′(x)=-e -x

x(x -2).① 当x ∈(-∞,0)或x ∈(2,+∞)时,f ′(x)<0; 当x ∈(0,2)时,f ′(x)>0.

所以f(x)在(-∞,0),(2,+∞)单调递减,在(0,2)单调递增. 故当x =0时,f(x)取得极小值,极小值为f(0)=0;

当x =2时,f(x)取得极大值,极大值为f(2)=4e -2

. (2)设切点为(t ,f(t)),

则l 的方程为y =f ′(t)(x -t)+f(t).

所以l 在x 轴上的截距为m(t)=()2

23'()22

f t t t t t f t t t -

=+=-++--. 由已知和①得t ∈(-∞,0)∪(2,+∞).

令h(x)=2

x x

+

(x ≠0),则当x ∈(0,+∞)时,h(x)的取值范围为[,+∞); 当x ∈(-∞,-2)时,h(x)的取值范围是(-∞,-3).

所以当t ∈(-∞,0)∪(2,+∞)时,m(t)的取值范围是(-∞,0)∪[3,+∞).

综上,l 在x 轴上的截距的取值范围是(-∞,0)∪[3,+∞). 8. (2015全国II 文21)已知函数()()=ln +1f x x a x -.

(1)讨论()f x 的单调性;

(2)当

()f x 有最大值,且最大值大于22a -时,求a 的取值范围.

题型3 函数零点和图像交点个数问题

9.(2011全国文10)在下列区间中,函数()e 43x f x x =+-的零点所在的区间为( ). A.1,04??-

??? B.10,4??

??? C. 11,42??

??? D. 13,24?? ???

10.(2011全国文12)已知函数()y f x =的周期为2,当[1,1]x ∈-时函数2

()f x x =,那么函数()

y f x =的图像与函数lg y x =的图像的交点共有( ).

A.10个

B.9个

C.8个

D.1个

11. (2014全国I 文12)已知函数32

()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是( )

A. (2,)+∞

B. (1,)+∞

C. (,2)-∞-

D. (,1)-∞-

12. (2014新课标Ⅱ文21)已知函数()3232f x x x ax =-++,曲线()y f x =在点()0,2处的切线与

x 轴交点的横坐标为2-.

(1)求a ;(2)求证:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点.

【解】(1)1

,2

00

-2),0(),0,2-()2,0()0(6-3)(∴23-)(223==+′==′+=′++=a a f k B x A a

f a x x x f ax x x x f AB 所以即

则轴交点为,切线与设切点, (2)

仅有一个交点

与时,当所以图像如图所示仅有一个根点时,当时,单调递减,且,当时,,当上递增;,在时,当上递减;,在时,当递增;且时,,,或,当递减时,当,则令则令则时,令当2-)(1,,)(1∴)∞,∞-(∈)()0∞-(∈ 1)2(≥)()∞0(∪)2,0(∈ ∴)∞0()(,0)(,0)(2 )2,0(),0∞-()(,0)(,0)(2 ∴.0)2(,0)0()(,0)()∞1()0∞-(∈ .

)(,0)()1,0(∈∴)1-(66-6)(4-3-2)(.

4

-3-24-3-2)(.413-)(0

≠,4

13-.04-3-2-)(12232

2

322223kx y x f y k k x g k x g x g x g x x g x g x h x x g x g x h x h h x h x h x x h x h x x x x x x h x x x h x x x x x x g x x x x g x k x

x x kx x x x kx x f k ==<=<+=++>′>><′<<=<>′+<′==′===′++==++=++=+<

题型4 不等式恒成立与存在性问题

13. (2010,全国卷1) 已知函数4

2

2

()32(31)2(31)4f x ax a x a x x =-+-++ (I )当1

6

a =

时,求()f x 的极值; (II )若()f x 在()1,1-上是增函数,求a 的取值范围 【解】(Ⅰ)()()()

241331f x x ax ax '=-+- 当16

a =

时,()2

2(2)(1)f x x x '=+-,()f x 在(,2)-∞-内单调减,在2-+∞(,)内单调增,在2x =-时,()f x 有极小值.

所以(2)12f -=-是()f x 的极小值.

14.(2012全国文21)设函数()f x 满足()e 2x

f x ax =--. (1)求()f x 的单调区间;

(2)若1a =,k 为整数,且当0x >时,()()10x k f x x '-++>,求k 的最大值.

【解】(I )函数f (x )=e x

﹣ax ﹣2的定义域是R ,f′(x )=e x

﹣a ,

若a≤0,则f′(x )=e x ﹣a≥0,所以函数f (x )=e x ﹣ax ﹣2在(﹣∞,+∞)上单调递增.

若a >0,则当x ∈(﹣∞,lna )时,f′(x )=e x ﹣a <0;当x ∈(lna ,+∞)时,f′(x )=e x ﹣a >0;所以,f (x )在(﹣∞,lna )单调递减,在(lna ,+∞)上单调递增. (II )由于a=1,所以,(x ﹣k ) f′(x )+x+1=(x ﹣k ) (e x ﹣1)+x+1

故当x >0时,(x ﹣k ) f′(x )+x+1>0等价于k <(x >0)①

令g (x )=

,则g′(x )=

由(I )知,函数h (x )=e x ﹣x ﹣2在(0,+∞)上单调递增,而h (1)<0,h (2)>0,所以h (x )=e x

﹣x ﹣2在(0,+∞)上存在唯一的零点,故g′(x )在(0,+∞)上存在唯一的零点,设此零点为α,则有α∈(1,2)

当x ∈(0,α)时,g′(x )<0;当x ∈(α,+∞)时,g′(x )>0;所以g (x )在(0,+∞)上的最小值为g (α).又由g′(α)=0,可得e α=α+2所以g (α)=α+1∈(2,3) 由于①式等价于k <g (α),故整数k 的最大值为2.

15.(2013全国II 文12).若存在正数x 使2()1x

x a -<成立,则a 的取值范围是( ) .

A.(,)-∞+∞

B.(2,)-+∞

C.(0,)+∞

D.(1,)-+∞ 16. (2014新课标Ⅰ文21)设函数()2

1ln 2

a f x a x x bx -=+-()1a ≠,

曲线()y f x =在点()()1,1f 处的切线斜率为0.

(1)求b ;(2)若存在01x ≥,使得()01

a

f x a <

-,求a 的取值范围.

17. (2014新课标Ⅱ文11)若函数()ln f x kx x =-在区间()1,+∞单调递增,则k 的取值范围是( ) A.(],2-∞- B.(],1-∞- C.[)2,+∞ D.[)1,+∞

题型5 利用导数证明不等式

18.(2011全国文21)已知函数ln ()1a x b

f x x x

=

++,曲线()y f x =在点(1,(1))

f 处的切线方程为230x y +-=.

(1)求a ,b 的值;

(2)证明:当0x >,且1x ≠时,ln ()1

x

f x x >

-. 【解】(Ⅰ)22

1

(

ln )()(1)x a x b x f x x x +-'=-+,由于直线230

x y +-=的斜率为12-,且过点(1,1),故(1)1,

1

'(1),2

f f =???=-??即1,1,22b a b =???-=-??解得1a =,1b =. (Ⅱ)由(Ⅰ)知f (x )=x x x 1

1ln ++,所以)1ln 2(111ln )(22x

x x x x x f x ---=--

,考虑函数,则2

2

222)1()1(22)(x x x x x x x h --=---=',所以x ≠1时h ′(x )<0,而h (1)=0故)1,0(∈x 时,h (x )>0可得ln ()1x f x x >

-,),1(+∞∈x 时,h (x )<0可得ln ()1x f x x >-,从而当0x >,且1x ≠时,ln ()1

x

f x x >-.

19.(2015,全国卷1)设函数()2ln x

f x e

a x =-.

(1)讨论()f x 的导函数()f x '的零点的个数; (2)证明:当0a >时()2

2ln f x a a a

≥+. 【解】(I )()f x 的定义域为()

0+¥

,,()

2()=20x a

f x e x x

¢->.

当0a £时,()0f x ¢>,()f x ¢没有零点; 当0a >时,因为2x

e 单调递增,a

x

-单调递增,所以()f x ¢在()0+¥,单调递增.又()0f a ¢>,当b

满足04a b <<

且1

4

b <时,(b)0f ¢<,故当0a >时,()f x ¢存在唯一零点.

题型6 导数在实际问题中的应用

2009至2018年北京高考真题分类汇编之导数大题

2009至2018年北京高考真题分类汇编之导数大题精心校对版题号一总分得分△注意事项:1.本系列试题包含2009年-2018年北京高考真题的分类汇编。2.本系列文档有相关的试题分类汇编,具体见封面。3.本系列文档为北京双高教育精心校对版本4.本系列试题涵盖北京历年(2011年-2020年)高考所有学科一、解答题(本大题共10小题,共0分)1.(2013年北京高考真题数学(文))已知函数2()sin cos f x x x x x (1)若曲线()y f x 在点(,())a f a 处与直线y b 相切,求a 与b 的值。(2)若曲线()y f x 与直线y b 有两个不同的交点,求b 的取值范围。2.(2012年北京高考真题数学(文))已知函数2()1(0)f x ax a ,3()g x x bx .(Ⅰ)若曲线()y f x 与曲线()y g x 在它们的交点(1,)c 处具有公共切线,求,a b 的值;(Ⅱ)当3a ,9b 时,若函数()()f x g x 在区间[,2]k 上的最大值为28,求k 的取值范围.3.(2011年北京高考真题数学(文))已知函数()()x f x x k e . (Ⅰ)求()f x 的单调区间;(Ⅱ)求()f x 在区间[0,1]上的最小值. 4.(2009年北京高考真题数学(文))姓名:__________班级:__________考号:__________●-------------------------密--------------封- -------------线--------------内--------------请--------------不--------------要--------------答--------------题-------------------------●

高考文科数学导数全国卷

导数高考题专练 1、(2012课标全国Ⅰ,文21)(本小题满分12分) 设函数f (x )= e x -ax -2 (Ⅰ)求f (x )的单调区间 (Ⅱ)若a =1,k 为整数,且当x >0时,(x -k ) f ′(x )+x +1>0,求k 的最大值 2、(2013课标全国Ⅰ,文20)(本小题满分12分) 已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4. (1)求a ,b 的值; (2)讨论f (x )的单调性,并求f (x )的极大值. 3、(2015课标全国Ⅰ,文21).(本小题满分12分) 设函数2()ln x f x e a x =-. (Ⅰ)讨论()f x 的导函数'()f x 零点的个数; (Ⅱ)证明:当0a >时,2 ()2ln f x a a a ≥+。 4、(2016课标全国Ⅰ,文21)(本小题满分12分) 已知函数.2)1(2)(-+-= x a e x x f x )( (I)讨论)(x f 的单调性; (II)若)(x f 有两个零点,求的取值范围. 5、((2016全国新课标二,20)(本小题满分12分) 已知函数()(1)ln (1)f x x x a x =+--. (I )当4a =时,求曲线()y f x =在()1,(1)f 处的切线方程;

(II)若当()1,x ∈+∞时,()0f x >,求a 的取值范围. 6(2016山东文科。20)(本小题满分13分) 设f (x )=x ln x –ax 2+(2a –1)x ,a ∈R . (Ⅰ)令g (x )=f'(x ),求g (x )的单调区间; (Ⅱ)已知f (x )在x =1处取得极大值.求实数a 的取值范围. 2017.(12分) 已知函数)f x =(a e 2x +(a ﹣2) e x ﹣x . (1)讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围. 2018全国卷)(12分) 已知函数()1 ln f x x a x x = -+. ⑴讨论()f x 的单调性; ⑵若()f x 存在两个极值点1x ,2x ,证明: ()()1212 2f x f x a x x -<--. 导数高考题专练(答案) 1 2解:(1)f ′(x )=e x (ax +a +b )-2x -4. 由已知得f (0)=4,f ′(0)=4. 故b =4,a +b =8. 从而a =4,b =4. (2)由(1)知,f (x )=4e x (x +1)-x 2-4x ,

全国卷历年高考函数与导数真题归类分析(含答案)

全国卷历年高考函数与导数真题归类分析(含答案) (2015年-2018年共11套) 函数与导数小题(共23小题) 一、函数奇偶性与周期性 1.(2015年1卷13)若函数f (x ) =ln(x x +为偶函数,则a= 【解析】由题知ln(y x = 是奇函数,所以ln(ln(x x ++- =22ln()ln 0a x x a +-==,解得a =1.考点:函数的奇偶性 2.(2018年2卷11)已知是定义域为的奇函数,满足 .若 , 则 A. B. 0 C. 2 D. 50 解:因为是定义域为 的奇函数,且 , 所以, 因此, 因为 ,所以, ,从而 ,选C. 3.(2016年2卷12)已知函数()()R f x x ∈满足()()2f x f x -=-,若函数1 x y x += 与()y f x =图像的交点为()11x y ,,()22x y ,,?,()m m x y ,,则()1 m i i i x y =+=∑( ) (A )0 (B )m (C )2m (D )4m 【解析】由()()2f x f x =-得()f x 关于()01, 对称,而11 1x y x x +==+也关于()01,对称, ∴对于每一组对称点'0i i x x += '=2i i y y +,∴()1 1 1 022 m m m i i i i i i i m x y x y m ===+=+=+? =∑∑∑,故选B . 二、函数、方程与不等式 4.(2015年2卷5)设函数211log (2),1, ()2,1,x x x f x x -+-

导数有关知识点总结、经典例题及解析、近年高考题带答案

导数及其应用 【考纲说明】 1、了解导数概念的某些实际背景(如瞬时速度,加速度,光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念。 2、熟记八个基本导数公式;掌握两个函数和、差、积、商的求导法则,了解复合函数的求导法则,会求某些简单函数的导数。 3、理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。 【知识梳理】 一、导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+)()(00。如果当0→?x 时,x y ??有极限,我们 就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。 即f (x 0)=0lim →?x x y ??=0lim →?x x x f x x f ?-?+)()(00。 说明:

(1)函数f (x )在点x 0处可导,是指0→?x 时,x y ??有极限。如果x y ??不存在极限,就说函数在点x 0处不可导, 或说无导数。 (2)x ?是自变量x 在x 0处的改变量,0≠?x 时,而y ?是函数值的改变量,可以是零。 由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤: (1)求函数的增量y ?=f (x 0+x ?)-f (x 0); (2)求平均变化率x y ??=x x f x x f ?-?+) ()(00; (3)取极限,得导数f’(x 0)=x y x ??→?0lim 。 二、导数的几何意义 函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。相应地,切线方程为y -y 0=f/(x 0)(x -x 0)。 三、几种常见函数的导数 ①0;C '= ②() 1;n n x nx -'= ③(sin )cos x x '=; ④(cos )sin x x '=-; ⑤();x x e e '=⑥()ln x x a a a ' =; ⑦ ()1ln x x '= ; ⑧()1 l g log a a o x e x '=. 四、两个函数的和、差、积的求导法则 法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: ( .)' ''v u v u ±=± 法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数, 即: .)('''uv v u uv += 若C 为常数,则' ''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数: .)(''Cu Cu = 法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方: ? ?? ??v u ‘=2' 'v uv v u -(v ≠0)。 形如y=f [x (?])的函数称为复合函数。复合函数求导步骤:分解——求导——回代。法则:y '|x = y '|u ·u '|x 五、导数应用 1、单调区间: 一般地,设函数)(x f y =在某个区间可导,

高考数学真题汇编——函数与导数

高考数学真题汇编——函数与导数 1.【2018年浙江卷】函数y=sin2x的图象可能是 A. B. C. D. 【答案】D 点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复. 2.【2018年理天津卷】已知,,,则a,b,c的大小关系为A. B. C. D. 【答案】D

【解析】分析:由题意结合对数函数的性质整理计算即可求得最终结果. 详解:由题意结合对数函数的性质可知:,, , 据此可得:.本题选择D选项. 点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确. 3.【2018年理新课标I卷】已知函数.若g(x)存在2个零点,则a的取值范围是 A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞) 【答案】C 详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.

点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果. 4.【2018年理新课标I卷】设函数,若为奇函数,则曲线在点处的切线方程为 A. B. C. D. 【答案】D 点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果. 5.【2018年全国卷Ⅲ理】设,,则

全国卷数学导数真题整理

全国卷数学导数真题整理 参考答案与试题解析 一.解答题(共14小题) 3 1 1. ( 2015?河北)已知函数 f ( x ) =x +ax+亠,g (x ) =- Inx 4 (i) 当a 为何值时,x 轴为曲线y=f (x )的切线; (ii) 用 min {m , n }表示 m , n 中的最小值,设函数 h (x ) =min { f (x ), g (x ) } (x >0), 讨论h (x )零点的个数. 2 【分析】(i ) f '(x ) =3x +a .设曲线y=f (x )与x 轴相切于点P (x o , 0),则f (x o ) =0, f (x 0) =0解出即可. (ii )对 x 分类讨论:当 x € (1, + 旳 时,g (x ) =- lnx v 0,可得函数 h (x ) =min { f (x ), g (x ) } 0,因此只考虑f (x )在(0, 1)内的零点个数即可.对 a 分类讨论: ①当a w-3或a 时,②当-3v a v 0时,利用导数研究其单调性极值即可得 出. 2 【解答】解:(i ) f '(x ) =3x +a . 设曲线 y=f (x )与 x 轴相切于点 P (x o , 0),则 f (x o ) =0, f '(x o ) =0, 3 因此当a =-时,x 轴为曲线y =f (x )的切线; (ii )当 x € (1, + 乡时,g (x ) = - lnx v 0, 9 3 X|-i+a =0 ,解得 a=

高考数学真题导数专题及答案

2017年高考真题导数专题 一.解答题(共12小题) 1.已知函数f(x)2(a﹣2)﹣x. (1)讨论f(x)的单调性; (2)若f(x)有两个零点,求a的取值范围. 2.已知函数f(x)2﹣﹣,且f(x)≥0. (1)求a; (2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2. 3.已知函数f(x)﹣1﹣. (1)若f(x)≥0,求a的值; (2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值. 4.已知函数f(x)321(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b关于a的函数关系式,并写出定义域; (2)证明:b2>3a; (3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.5.设函数f(x)=(1﹣x2). (1)讨论f(x)的单调性; (2)当x≥0时,f(x)≤1,求a的取值范围. 6.已知函数f(x)=(x﹣)e﹣x(x≥). (1)求f(x)的导函数; (2)求f(x)在区间[,+∞)上的取值范围. 7.已知函数f(x)2+2,g(x)(﹣2x﹣2),其中e≈2.17828…是自然对数的底数.(Ⅰ)求曲线(x)在点(π,f(π))处的切线方程; (Ⅱ)令h(x)(x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.

) 10.已知函数f(x)3﹣2,a∈R, (1)当2时,求曲线(x)在点(3,f(3))处的切线方程; (2)设函数g(x)(x)+(x﹣a)﹣,讨论g(x)的单调性并判断有无极值,有极值时求出极值. 11.设a,b∈R,≤1.已知函数f(x)3﹣6x2﹣3a(a﹣4),g(x)(x). (Ⅰ)求f(x)的单调区间; (Ⅱ)已知函数(x)和的图象在公共点(x0,y0)处有相同的切线, (i)求证:f(x)在0处的导数等于0; ()若关于x的不等式g(x)≤在区间[x0﹣1,x0+1]上恒成立,求b的取值范围. 12.已知函数f(x)(﹣a)﹣a2x. (1)讨论f(x)的单调性; (2)若f(x)≥0,求a的取值范围.

高考真题导数第一问分类汇总

切线问题 1 已知函数31()4 f x x ax =++,()ln g x x =-.当a 为何值时,x 轴为曲线()y f x =的切线; 2 设函数1 (0ln x x be f x ae x x -=+,曲线()y f x =在点(1,(1)f 处的切线为(1)2y e x =-+. 3已知函数ln ()1a x b f x x x = ++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=.求a 、b 的值; 4 设函数()()23x x ax f x a R e +=∈若()f x 在0x =处取得极值,确定a 的值,并求此时曲线()y f x =在点()()1,1f 处的切线方程; 5已知函数f(x)=e x -ax(a 为常数)的图像与y 轴交于点A ,曲线y =f(x)在点A 处的切线斜率为-1. 求a 的值及函数f(x)的极值; 6设函数,曲线在点处的切线方程为, 7已知函数.求曲线在点处的切线方程; 8设函数f (x )=x 2+ax +b ,g (x )=e x (cx +d ).若曲线y =f (x )和曲线y =g (x )都过点P (0,2),且在点P 处有相同的切线y =4x +2.求a ,b ,c ,d 的值; ()a x f x xe bx -=+()y f x =(2,(2))f (1)4y e x =-+()e cos x f x x x =-()y f x =(0,(0))f

单调性问题 1已知函数)(x f 满足212 1)0()1(')(x x f e f x f x +-=-.求)(x f 的解析式及单调区间; 2 讨论函数2()2 x x f x e x -=+ 的单调性,并证明当x >0时,(2)20x x e x -++>; 3已知函数()2x x f x e e x -=--. 讨论()f x 的单调性; 4 设1a >,函数a e x x f x -+=)1()(2.求)(x f 的单调区间 ; 5已知函数f (x )=a e 2x -b e -2x -cx (a ,b ,c ∈R )的导函数f ′(x )为偶函数,且曲线y =f (x )在点(0,f (0))处的 切线的斜率为4-c . (1)确定a ,b 的值; (2)若c =3,判断f (x )的单调性; 6设,已知定义在R 上的函数在区间内有一个零点,为的导函数.求的单调区间; 7已知函数()ln()x f x e x m =-+. 设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; a ∈Z 432 ()2336f x x x x x a =+--+(1,2)0x ()g x ()f x ()g x

近五年高考试题分类汇编-导数部分(附答案解析)

2018年全国高考试题分类汇编-导数部分(含解析) 1.(2018·全国卷I 高考理科·T5)同(2018·全国卷I 高考文科·T6)设函数f (x )=x3+(a -1)x2+ax.若f (x )为奇函数,则曲线y=f (x )在点(0,0)处的切线方程为( ) A.y=-2x B.y=-x C.y=2x D.y=x 2.(2018·全国卷II 高考理科·T13)曲线y=2ln(x+1)在点(0,0)处的切线方程为 3.(2018·全国卷II 高考文科·T13)曲线y=2lnx 在点(1,0)处的切线方程为 4.(2018·全国Ⅲ高考理科·T14)曲线y=(ax +1)ex 在点(0,1)处的切线的斜率为-2,则a= . 5.(2018·天津高考文科·T10)已知函数f(x)=exlnx,f ′(x)为f(x)的导函数,则f ′(1)的值为 . 6.(2018·全国卷I 高考理科·T16)已知函数f (x )=2sinx+sin2x,则f (x )的最小值是 . 7.(2017·全国乙卷文科·T14)曲线y=x 2 + 1 x 在点(1,2)处的切线方程为 . 8.(2017·全国甲卷理科·T11)若x=-2是函数f (x )=(2x +ax-1)1x e -的极值点,则f (x )的极小值为 ( ) A.-1 B.-23e - C.53e - D.1 9.(2017 10.(2017递增,则称f (x )A.f (x )=2-x 11.(2017数a 12.(2017则称f (x )具有M ①f (x )=2-x ;②f (x

13.(2017·全国乙卷理科·T16)如图,圆形纸片的圆心为O ,半径为5cm ,该纸片上的等边三角形ABC 的中心为O.D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3 )的最大值为 . 14.(2017·天津高考文科·T10)已知a ∈R ,设函数f (x )=ax-lnx 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为 . 15.(2016·全国卷Ⅰ高考文科·T12)若函数f (x )=x-1 3 sin2x+asinx 在(-∞,+∞)上单调递增,则a 的取值范围是( ) A.[-1,1] B.11,3 ? ? -?? ?? C.11,33??- ???? D.11,3? ? --???? 16.(2016·四川高考理科·T9)设直线l 1,l 2分别是函数f (x )=lnx,0x 1,lnx,x 1, ?-<?图象上点P 1,P 2处的 切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是( ) A.(0,1) B.(0,2) C.(0,+∞) D.(1,+∞) 17.(2016·四川高考文科·T6)已知a 为函数f (x )=x 3 -12x 的极小值点,则a=( ) A.-4 B.-2 C.4 D.2 18.(2016·四川高考文科·T10)设直线l 1,l 2分别是函数f (x )=lnx,0x 1,lnx,x 1, ?-<?图象上点P 1,P 2处的切线,l 1 与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是 ( ) A.(0,1) B.(0,2) C.(0,+∞) D.(1,+∞) 19.(2016·山东高考文科·T10)同(2016·山东高考理科·T10) 若函数y=f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f (x )具有T 性质.下列函数中具有T 性质的是 ( ) A.y=sinx B.y=lnx C.y=e x D.y=x 3 20.(2016·全国卷Ⅱ理科·T16)若直线y=kx+b 是曲线y=lnx+2的切线,也是曲线y=ln (x+1)的切线,则b= .

(完整版)专题05导数与函数的极值、最值—三年高考(2015-2017)数学(文)真题汇编.doc

1. 【 2016 高考四川文科】已知函数的极小值点,则=( ) (A)-4 (B) -2 (C)4 (D)2 【答案】 D 考点:函数导数与极值. 【名师点睛】本题考查函数的极值.在可导函数中函数的极值点是方程但是极大值点还是极小值点,需要通过这点两边的导数的正负性来判断,在 的解,附近,如 果时,,时,则是极小值点,如果时,,时,,则是极大值点, 2. 【 2015 高考福建,文A.充分而不必要条 件12】“对任意 B.必要而不充分条件 ,”是“ C .充分必要条件 D ”的() .既不充分也不必 要条件 【答案】 B 【解析】当时,,构造函数,则 .故在单调递增,故,则;当时,不等式等价于,构造函数 ,则,故在递增,故 ”是“,则.综上 ”的必要不充分条件,选 所述,“ 对任 意B. ,

【考点定位】导数的应用. 【名师点睛】 本题以充分条件和必要条件为载体考查三角函数和导数在单调性上的应用, 根 据已知条件构造函数,进而研究其图象与性质,是函数思想的体现,属于难题. 3. (2014 课标全国Ⅰ,文 12) 已知函数 f ( x ) = ax 3 - 3 2 + 1,若 f ( ) 存在唯一的零点 x 0 ,且 x x x 0>0,则 a 的取值范围是 ( ) . A . (2 ,+∞ ) B . (1 ,+∞) C . ( -∞,- 2) D .( -∞,- 1) 答案: C 解析:当 a = 0 时, f ( x ) =- 3x 2+ 1 存在两个零点,不合题意; 当 a >0 时, f ′(x ) = 3ax 2- 6x = , 令 ′( ) = 0,得 x 1 = 0, , fx 所以 f ( x ) 在 x =0 处取得极大值 f (0) = 1,在 处取得极小值 , 要使 f ( x ) 有唯一的零点,需 ,但这时零点 x 0 一定小于 0,不合题意; 当 a <0 时, f ′(x ) = 3ax 2- 6x = , 令 f ′(x ) = 0,得 x 1=0, ,这时 f ( x ) 在 x =0 处取得极大值 f (0) = 1,在 处取得极小值 , 要使 f ( x ) 有唯一零点,应满足 ,解得 a <- 2( a > 2 舍去 ) ,且这时 零点 x 0 一定大于 0,满足题意,故 a 的取值范围是 ( -∞,- 2) . 名师点睛:本题考查导数法求函数的单调性与极值,函数的零点,考查分析转化能力,分类讨论思想, 较难题 . 注意区别函数的零点与极值点 . 4. 【 2014 辽宁文 12】当 时,不等式 恒成立,则实数 a 的取 值范围是()

2019年高考数学理科数学 导数及其应用分类汇编

2019年高考数学理科数学 导数及其应用 1.【2019年高考全国Ⅲ卷理数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==, D .1e a -=,1b =- 【答案】D 【解析】∵e ln 1,x y a x '=++ ∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=, 将(1,1)代入2y x b =+,得21,1b b +==-. 故选D . 2.【2019年高考天津理数】已知a ∈R ,设函数222,1, ()ln , 1.x ax a x f x x a x x ?-+≤=?->?若关于x 的不等式()0 f x ≥在R 上恒成立,则a 的取值范围为 A .[] 0,1 B .[] 0,2 C .[]0,e D .[] 1,e 【答案】C 【解析】当1x =时,(1)12210f a a =-+=>恒成立; 当1x <时,2 2 ()22021 x f x x ax a a x =-+≥?≥-恒成立, 令2 ()1 x g x x =-, 则222(11)(1)2(1)1 ()111x x x x g x x x x -----+=-=-=- --- 11122(1)2011x x x x ???? =--+-≤--?= ? ? ?--???? , 当1 11x x -= -,即0x =时取等号, ∴max 2()0a g x ≥=,则0a >.

当1x >时,()ln 0f x x a x =-≥,即ln x a x ≤恒成立, 令()ln x h x x = ,则2ln 1()(ln )x h x x -'=, 当e x >时,()0h x '>,函数()h x 单调递增, 当0e x <<时,()0h x '<,函数()h x 单调递减, 则e x =时,()h x 取得最小值(e)e h =, ∴min ()e a h x ≤=, 综上可知,a 的取值范围是[0,e]. 故选C. 3.(2019浙江)已知,a b ∈R ,函数32 ,0 ()11(1),03 2x x f x x a x ax x 0 C .a >–1,b <0 D .a >–1,b >0 【答案】C 【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x , 则y =f (x )﹣ax ﹣b 最多有一个零点; 当x ≥0时,y =f (x )﹣ax ﹣b x 3 (a +1)x 2+ax ﹣ax ﹣b x 3 (a +1)x 2﹣b , 2(1)y x a x =+-', 当a +1≤0,即a ≤﹣1时,y ′≥0,y =f (x )﹣ax ﹣b 在[0,+∞)上单调递增, 则y =f (x )﹣ax ﹣b 最多有一个零点,不合题意; 当a +1>0,即a >﹣1时,令y ′>0得x ∈(a +1,+∞),此时函数单调递增, 令y ′<0得x ∈[0,a +1),此时函数单调递减,则函数最多有2个零点. 根据题意,函数y =f (x )﹣ax ﹣b 恰有3个零点?函数y =f (x )﹣ax ﹣b 在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点, 如图:

导数及其应用高考题精选含答案

导数及其应用高考题精选 1.(2010·海南高考·理科T3)曲线2 x y x = +在点()1,1--处的切线方程为() (A )21y x =+(B )21y x =-(C )23y x =--(D )22y x =-- 【命题立意】本题主要考查导数的几何意义,以及熟练运用导数的运算法则进行求解. 【思路点拨】先求出导函数,解出斜率,然后根据点斜式求出切线方程. 【规范解答】选 A.因为22 (2) y x '= +,所以,在点()1,1--处的切线斜率12 2 2(12)x k y =-' == =-+,所以,切线方程为12(1)y x +=+,即21y x =+,故选A. 2.(2010·山东高考文科·T8)已知某生产厂家的年利润y (单位:万元) 与年产量x (单位:万件)的函数关系式为3 1812343 y x x =-+-,则使该生产厂 家获得最大年利润的年产量为() (A)13万件(B)11万件 (C)9万件(D)7万件 【命题立意】本题考查利用导数解决生活中的优化问题,考查了考生的分析问题解决问题能力和运算求解能力. 【思路点拨】利用导数求函数的最值. 【规范解答】选C ,2'81y x =-+,令0y '=得9x =或9x =-(舍去),当9x <时'0y >;当9x >时'0y <,故当9x =时函数有极大值,也是最大值,故选C. 3.(2010·山东高考理科·T7)由曲线y=2 x ,y=3 x 围成的封闭图形面积为() (A ) 1 12 (B)14 (C)13 (D) 712 【命题立意】本题考查定积分的基础知识,由定积分求曲线围成封闭图形的

2016年高考导数试题及答案(精选)

1.(新课标1)已知函数 有两个零点. (I)求a 的取值范围;(II)设x 1,x 2是的两个零点,证明: +x 2<2. 解:(Ⅰ) '()(1)2(1)(1)(2)x x f x x e a x x e a =-+-=-+. (i )设0a =,则()(2)x f x x e =-,()f x 只有一个零点.(ii )设0a >,则当(,1)x ∈-∞时,'()0f x <;当(1 ,)x ∈+∞时,'()0f x >.所 以 ()f x 在(,1)-∞上单调递减,在(1,)+∞上单调递增.又(1)f e =-,(2)f a =,取b 满足0 b <且ln 2a b <,则22 3()(2)(1)()022 a f b b a b a b b >-+-=->,故()f x 存在两个零点. (iii )设0a <,由'()0f x =得1x =或ln(2)x a =-.若2 e a ≥-,则ln(2)1a -≤,故当 (1,)x ∈+∞时,'()0f x >,因此()f x 在(1,)+∞上单调递增.又当1x ≤时,()0f x <,所以() f x 不存在两个零点. 若2 e a <- ,则ln(2)1a ->,故当(1,ln(2))x a ∈-时,'()0f x <;当(ln(2),)x a ∈-+∞时,'()0f x >.因此()f x 在(1,ln(2))a -单调递减,在(ln(2),)a -+∞单调递增.又当1x ≤时,()0f x <,所以()f x 不存在两个零点.综上,a 的取值范围为(0,)+∞. (Ⅱ)不妨设1 2x x <,由(Ⅰ)知12(,1),(1,)x x ∈-∞∈+∞,22(,1)x -∈-∞,()f x 在(,1) -∞上单调递减,所以122x x +<等价于12()(2)f x f x >-,即2(2)0f x -<. 由于 222222(2)(1)x f x x e a x --=-+-,而22222()(2)(1)0x f x x e a x =-+-=,所以 222222(2)(2)x x f x x e x e --=---. 设 2()( 2 ) x x g x xe x e -=---, 则 2'()(1)()x x g x x e e -=--.所以当1x >时,'()0g x <,而(1)0g =,故当1x >时,()0g x <.从 而22()(2)0g x f x = -<,故122x x +<. 2(新课标2)(I)讨论函数x x 2f (x) x 2 -= +e 的单调性,并证明当x >0时,(2)20;x x e x -++> (II)证明:当[0,1)a ∈ 时,函数2 x =(0)x e ax a g x x -->() 有最小值.设g (x )的最小值为()h a , 求函数()h a 的值域.

2015-2018年高考全国卷文科数学--函数与导数大题汇编

2015年~2018年高考全国卷数学(文科)—函数与导数汇编 1.(2015年全国乙卷第21题)已知函数()ln (1)f x x a x =+-﹒ (1)讨论函数()f x 的单调性; (2)当()f x 有最大值,且最大值大于22a -时,求a 的取值范围﹒ 2.(2015年全国甲卷第21题)设函数2()ln x f x e a x =-﹒ (1)讨论()f x 的导函数()f x '零点的个数; (2)证明:当0a >时,2()2ln f x a a a ≥+﹒ 3.(2016年全国丙卷第21题)设函数()ln 1f x x x =-+﹒ (1)讨论函数()f x 的单调性; (2)证明:当(1,)x ∈+∞时,11ln x x x -<<; (3)设1c >,证明:当(0,1)x ∈时,1(1)x c x c +->﹒ 4.(2016年全国乙卷第20题)已知函数()(1)ln (1)f x x x a x =+--﹒ (1)当4a =时,求曲线()y f x =在(1,(1))f 处的切线方程; (2)若当(1,)x ∈+∞时,()0f x >,求a 的取值范围﹒ 5.(2016年全国甲卷第21题)已知函数2()(2)(1)x f x x e a x =-+-﹒ (1)讨论函数()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围﹒ 6. (2017年全国丙卷第21题)已知函数2()ln (21)f x x ax a x =+++﹒ (1)讨论函数()f x 的单调性; (2)当0a <时,证明:3()24f x a ≤- -﹒

最新2019高考数学《导数及其应用》专题完整题(含答案)

2019年高中数学单元测试卷 导数及其应用 学校:__________ 姓名:__________ 班级:__________ 考号:__________ 一、选择题 1.22 (1cos )x dx π π-+?等于( ) A .π B . 2 C . π-2 D . π+2(2009福建理) 2.若()224ln f x x x x =--,则()'f x >0的解集为( ) A .()0,+∞ B. ()()1,02,-?+∞ C. ()2,+∞ D. ()1,0-(2011江西理4) 3.若[0,)x ∈+∞,则下列不等式恒成立的是 (A)2 1x e x x ++ (211) 1 24x x <-+ (C)21cos 12x x -… (D)21 ln(1)8 x x x +-… 4.如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记t 时刻五角星露出水面部分的图形面积为()()() 00S t S =,则导函数()' y S t =的图像大致为 二、填空题 5.已知3 2 ()26(f x x x m m =-+为常数)在[2,2]-上有最大值3,那么此函数在[2,2]-上的最小值为____________ 6.已知f (x )=x 3,g (x )=-x 2+x -29a ,若存在x 0∈[-1,a 3](a >0),使得f (x 0)<g (x 0),则实

数a 的取值范围是 ▲ .(0,-3+21 2) 7. 若函数32()4f x x x ax =+--在区间()1,1-恰有一个极值点,则实数a 的取值范围为 .[1,5) 8.曲线2 y 21x x =-+在点(1,0)处的切线方程为________ 9.已知函数()322f x x ax bx a =+++在1x =处有极值10,则a b += . 10.已知32()33f x x bx cx =++有两个极值点12,x x ,且[][]121,0,1,2x x ∈-∈,则(1)f 的取值范围 . 11.已知函数ln ()x f x x = ,则()f x 的最大值为 12.函数y=x 3+lnx 在x=1处的导数为 . 13.若函数()()02 3 >-=a ax x x f 在区间?? ? ??+∞,320上是单调递增函数,则使方程()1000=x f 有整数解的实数a 的个数是 。 三、解答题 14. 已知函数()2 a f x x x =+,()ln g x x x =+,其中0a >. (1)若1x =是函数()()()h x f x g x =+的极值点,求实数a 的值; (2)若对任意的[]12,1x x e ∈,(e 为自然对数的底数)都有()1f x ≥()2g x 成立,求实数a 的取值范围. .

高考文科数学专题复习导数训练题(汇编)

高考文科数学专题复习导数训练题(文) 一、考点回顾和基础知识 1.导数的概念及其运算是导数应用的基础,是高考重点考查的内容.考查方式以客观题为主,主要考查导数的基本公式和运算法则,以及导数的几何意义. 2.导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题.选择填空题侧重于利用导数确定函数的单调性、单调区间和最值问题,解答题侧重于导数的综合应用,即与函数、不等式、数列的综合应用. 3.应用导数解决实际问题,关键是建立适当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极值,而此时不用和端点值进行比较,也可以得知这就是最值. 2.导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ?,则函数值y 也引起相应的增量)()(00x f x x f y -?+=?;比值x x f x x f x y ?-?+= ??) ()(00称为函数)(x f y =在点0x 到x x ?+0之间的平均变化率;如果极限x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即 )(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 注:①x ?是增量,我们也称为“改变量”,因为x ?可正,可负,但不为零. ②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ?. 3.求导数的四则运算法则: ''')(v u v u ±=±)(...)()()(...)()(''2'1'21x f x f x f y x f x f x f y n n +++=?+++=? ''''''')()(cv cv v c cv u v vu uv =+=?+=(c 为常数)

高考导数大题汇编理科答案

高考导数大题汇编理科 答案 YUKI was compiled on the morning of December 16, 2020

一、解答题 1. 解:(Ⅰ) 函数()f x 的定义域为(0,)+∞,' 112()e ln e e e .x x x x a b b f x a x x x x --=+-+ 由题意可得' (1)2,(1) e.f f ==故1,2a b ==. (Ⅱ)由(Ⅰ)知12e ()e ln ,x x f x x x -=+从而()1f x >等价于2 ln e .e x x x x ->- 设函数()ln g x x x =,则()1ln g x x '=+,所以当1 (0,)e x ∈时,' ()0g x <; 当1(,)e x ∈+∞时,' ()0g x >,故()g x 在1(0,)e 单调递减,在1(,)e +∞单调递增, 从而()g x 在(0,)+∞的最小值为11().e e g =-. 设函数2 ()e e x h x x -=-,则'()e (1)x h x x -=-,所以当(0,1)x ∈时,'()0h x >; 当(1,)x ∈+∞时,' ()0h x <,故()h x 在(0,1)上单调递增,在(1,)+∞上单调递减,从而()h x 在(0,)+∞的最大值为1(1)e h =- . 综上,当0x >时,()()g x h x >,即()1f x >. 2. 解题指南(1)根据导数公式求出函数的导数,利用分类讨论思想求解;(2)根据函数的单调性以及函数极值与导数的关系式确定函数的极值点,代入函数中求解. 解析(1)2/ 2 2 2(2)24(1) ()1(2)(1)(2)a x x ax a f x ax x ax x +-+-=-=++++ (*) 当1a ≥时,/ ()0f x >,此时,()f x 在区间(0,)+∞上单调递增. 当01a <<时,由/ ()0f x = 得1 x = ,(2x =-舍去). 当1(0,)x x ∈时,/()0f x <;当1(,)x x ∈+∞时,/ ()0f x >. 故()f x 在区间1(0,)x 上单调递减,在区间1(,)x +∞上单调递增. 综上所述,当1a ≥时,()f x 在区间(0,)+∞上单调递增. 当01a <<时,()f x 在区间(0, 上单调递减,在区间)+∞上单调递增. 由(*)式知,当1a ≥时,/ ()0f x >,此时()f x 不存在极值点,因而要使得()f x 有两个极值点, 必有01a <<.又()f x 的极值点只可能是1 x = 2x =-,且由定义可知,1 x a >- 且2x ≠- ,所以1a ->- 且2-≠-,解得1 2 a ≠- 此时,由(*)式易知,12,x x 分别是()f x 的极小值和极大值点,而 令2a - 01x <<. 记(g x (Ⅰ)当1 - 因此,g 1()( f x f +(Ⅱ)当0 因此,(g x 1()( f x f + 综上所 3. (1)证明函数. (2)解:由条 令t = 因为 当且 因此 (3)解:令函 当x ≥1时, 因此g (x )在 由于存在x 0故1 e+e 2 --令函数() h x

相关文档
最新文档