细菌纤维素

合集下载

复合细菌纤维素材料的研究进展

复合细菌纤维素材料的研究进展

复合细菌纤维素材料的研究进展摘要:细菌纤维素(BC)是一类由微生物合成的可降解环保型生物高分子材料。

近年来,国内外研究者致力于对BC进行生物和化学改性,研制出多种复合细菌纤维素材料。

复合细菌纤维素材料在一定程度上优化了BC的理化和生物学、材料学性能,拓宽了BC的应用范围和领域。

本文简要介绍细菌纤维素的性质和应用,并对发展前景进行展望。

关键词:细菌纤维素、复合、应用细菌纤维素(简称BC)是由微生物发酵合成的多孔性网状纳米级生物高分子聚合物,因其由细菌合成而命名为细菌纤维素。

目前已知的细菌纤维素生产菌属有醋杆菌属、无色杆菌属、假单胞菌属、根瘤菌属、八叠球菌属、气杆菌属、固氮菌属、土壤杆菌属和产碱杆菌属等,其中研究最多、合成能力最强、生产潜力最大的菌种是木醋杆菌。

BC的纤维直径在纳米范围内,其相互交错无序排列形成微纳米级的孔隙,为许多小分子进入提供了合适的空间。

以BC为模板,利用其纳米级的超细网络结构以及其表面大量的活泼羟基,通过化学修饰、材料复合等途径,可以赋予BC更多特殊性能。

一、细菌纤维素的特性1、1 纳米结构细菌纤维素具有独特的束状纤维,其宽度约100nm,厚度为3—8nm,单根细丝纤维直径为2—5nm,属于纳米级纤维,其大小为人工合成纤维的1/10,在纤维研究中是目前发现最细的天然纤维。

1、2 高持水性和高透气性细菌纤维素分子内有大量的亲水基团及很多孔道,因此具有良好的透气、透水和持水性能。

根据实验条件不同,细菌纤维素可吸收比自身干重大60—700倍的水分,细菌纤维素膜的持水性能为600%—1000%。

1、3 高抗张强度和弹性模量细菌纤维素因其分子内存在大量的氢键,而具有高杨氏模量,其经处理后,弹性模量可达1.5×109Pa,这一性能满足其作为医用敷料、医用组织器官及其他产品的要求。

细菌纤维素抗撕拉能力是同样厚度的聚乙烯和聚氯乙烯膜的6倍,证明了细菌纤维素膜比人类的动脉和静脉更有弹性。

细菌纤维素

细菌纤维素

应用前景
作为缓释剂,应用于西药、中药、中成药 作为增强材料,提高ZnO、金磁微粒等在细 ZnO 菌、传感器的作用 作为载体与生物芯片结合,拓展其在肿瘤、 癌症诸多方面的检测、诊断和治疗作用
发酵的调控
在纤维素的合成中,尿苷葡萄糖为合成细菌纤 维素的直接前体,而6-磷酸葡萄糖作为分支点,既 可进一步合成纤维素,又可进入磷酸戊碳循环或经 柠檬酸循环继续氧化分解,经过戊糖循环和葡萄糖 异生途径,也可通过生成6-磷酸葡萄糖,进一步转 化为纤维素,因此,在细菌纤维素的发酵生产中, 可采用适当方法来抑制或阻断戊糖的形成,使碳源 转向纤维素的合成,从而提高原料的利用率和转化 率,达到提高细菌纤维素产量的目的。
细菌纤维素的生产菌株
产纤维素细菌 杆菌属、根瘤菌属、八叠球菌属、假单胞菌 属、固氮菌属、气杆菌属和产碱菌属。其中 木醋杆菌是最早发现也是研究较为透彻的纤 维素产生菌株,可以利用多种底物生长,是 目前已知合成纤维素能力最强的微生物菌株。
培养基及培养条件
木醋杆菌C544的发酵条件和培养基成分 产纤维素适宜温度范围为25℃ ̄31℃,30℃时纤维素产量最 高; 适宜的初始pH值范围为5.5 ̄7.0,在pH6.0时纤维素产量最高。 优化出的培养基配方为:葡萄糖5.0%(w/v)、大豆蛋白胨 0.9%(w/v)、Na2HPO4·12H2O0.8%(w/v)及柠檬酸0.5%(w/v) 在最佳发酵条件下纤维素最大产量可达7.79g/L,是优化前产 量的3.52倍。 当基础培养基中加入10%(w/v)甘露醇作为碳源时,发酵终点 的pH值为4.50,对纤维素的合成有利,纤维素产量达到9.33g/L, 是优化前产量的4.22倍。
培养基及培养条件
醋杆菌C2的最适碳源为蔗糖,D-甘露糖醇, 最适氮源为蛋白胨,酵母粉,无机盐为MgSO4·7H2O 和柠檬酸三钠; 发酵最佳工艺为 :p H5.0 ,2 0℃ 发酵时间 5~ 7d 使用优化后的培养基配方,醋杆菌C2的纤维素产量 可达9.5g/L 产酶最佳培养基配方为:蔗糖7%,酵母膏0.7%,蛋白 胨1.1%,MgSO4·7H2O 0.2%,柠檬酸三钠0.1%。)

细菌纤维素的介绍

细菌纤维素的介绍

1. 细菌纤维素的简介细菌纤维素(Bacterial cellulose, 简称BC)是由微生物合成的一种新型生物材料。

是一种超微超纯的纤维素,与自然界中植物或海藻产生的天然纤维素具有相同的分子结构单元,但细菌纤维素纤维却有许多独特的性质。

细菌纤维素与植物纤维素相比无木质素、果胶和半纤维素等伴生产物,具有超高的纯度,而且具有高结晶度(一般80%以上,最高可达95%,植物纤维素的为65%)和高的聚合度(DP值2000~8000)。

衍射强度(cps)衍射角(°)细菌纤维素纤维是由直径3~4纳米的微纤组合成40~60纳米粗的纤维束,并相互交织形成发达的超精细网络结构,要远小于一般植物纤维的直径。

图:细菌纤维素放大图数张放大5000和50000倍的细菌纤维素细菌纤维素的弹性模量为一般植物纤维的数倍至十倍以上,抗张强度高。

细菌纤维素有很强的持水能力。

可以吸收上百倍于自身重量的水。

细菌纤维素有较高的生物相容性、适应性和良好的生物可降解性。

细菌纤维素生物合成时的可调控性。

通过采用不同的培养方法、调节培养条件,也可得到化学性质有所差异的细菌纤维素,以满足不同应用范围的要求。

因此,细菌纤维素被公认为是性能最好、实用价值也较好的纤维素,近年来关于细菌纤维素的研究和开发应用成为当今新的微生物合成材料的研究热点之一,在食品、医学、造纸、纺织、环保、能有等各方面具有广泛的应用价值,并已在国内外得到了一定的实际应用。

2. 细菌纤维素的一些应用目前,国内细菌纤维素的规模化生产主要在食品行业中得到应用。

在食品生产中应用的细菌纤维素俗称“椰纤果”、“椰果”、“纳塔(NATA)”。

是以椰子水或椰子汁等为主要原料,发酵培养形成的凝胶状物质,外观似嫩椰子肉,具有独特的凝胶状半透明质地,以其爽滑脆嫩细腻有弹性的独特口感倍受消费者的青睐,主要应用于果冻、饮料、珍珠奶茶、罐头等食品工业。

此外,细菌纤维素富含膳食纤维,不易为人体所消化吸收,食后可增加饱腹感,可作为减肥食品,同时它可促进肠道蠕动,降低食物的滞肠时间,促进排便,并可减少肠道对致癌物质的吸收,另外可促进粪便中胆酸的排放,因而它具有一定的美容防癌等保健功能,在国际市场上一直旺销不衰。

细菌纤维素

细菌纤维素

LOGO
纺织工业
• 在纺织工业中,细菌纤维素的结构特点和功能 特性,使之能代替或不各种常用的树脂用于无 纺布中作粘合剂,改善无纺布的强度、透气性、 亲水性及最终产品的手感等,所适用的纤维包 括当前广泛使用于无纺布的各类纤维,如尼龙、 聚酯、木材纤维、碳纤维及玱璃纤维等。
LOGO
细菌纤维制成的衣服
LOGO
造纸工业

日本在造纸工业中,将醋酸菌纤维素加入纸浆,可提高纸 张强度和耐用性,同时解决了废纸回收再利用后,纸纤维强 度大为下降的问题。加细菌纤维于普通纸浆可造出高品质特 殊用纸。Ajinomoto公司不三菱公司合作开发用于流通货币 制造的特级纸,印制的美元质量好、抗水、强度高。用细菌 纤维改性的高级书写纸吸墨均匀性、附着性好。由于纳米级 超细纤维对物体极强的缠绕结合能力和拉力强度,使细菌纤 维机械匀浆后不各种相互丌亲和的有机、无机纤维材料混合 制造丌同形状用途的膜片、无纺布和纸张产品十分牢固。在 制造过滤吸附有毒气体的碳纤维板时,加入醋酸菌纤维素, 可提高碳纤维板的吸附容量,减少纸中填料的泄漏。
LOGO
LOGO
细菌纤维素结构分析
图 4 细菌纤维素 的 X-射线衍射图
图 5 细菌纤维素的 CP/MAS 13C-NMR 谱
LOGO
LOGO
细菌纤维素的常用培养方式
LOGO
LOGO
细菌纤维素高产菌株的培育筛选
细菌纤维素的特性
• 可调控性。利用细菌纤维素生物合成时,可根据需要合成 各种功能材料。 • 高结晶度。细菌纤维素提纯过程简便,提纯出来的纤维素 极纯,无果胶、木质素和半纤维素等伴生物的产生。 • 高持水性。“孔道”结构使细菌纤维素具有极强的吸水性, 可吸收60~700倍于其干重的水分,因而利用细菌纤维素 的空间三维结构制备出来的医用敷料丌仅能保持伤口的干 燥,而且能吸收伤口渗出物,从而避免伤口感染。 • 高弹性模量和抗张强度。细菌纤维素由于纤维直径达到纳 米级别(10~lOOnm),其杨氏模量可高达10MP,抗拉强度 高。 • 高抗撕性。细菌纤维素膜具有极佳的形状维持能力,其抗 撕性比聚氯乙烯膜和聚乙烯醇膜和要强5倍以上。 • 可降解性。细菌纤维素可在自然界中直接降解,环保无污 染。对环境起到很好的保护作用。

产细菌纤维素

产细菌纤维素

产细菌纤维素
细菌纤维素是一种由一些细菌产生的纤维素物质。

它是细菌细胞外分泌的一种多聚糖,由许多纤维素链组成。

细菌纤维素具有较强的强度和生物降解性能,因此被广泛应用于生物材料和生物医学领域。

产生细菌纤维素的细菌主要有以下几种:
1. 醋酸菌:醋酸菌能够通过发酵产生纤维素,被称为醋酸菌纤维素。

醋酸菌纤维素被广泛用于食品、纺织品、纸张等领域。

2. 莱氏菌:莱氏菌是一种革兰氏阴性细菌,能够产生纤维素。

莱氏菌纤维素具有抗菌和抗氧化等特性,可以应用于药物控释、修复组织等领域。

3. 酵母菌:某些酵母菌也能够产生纤维素,这种纤维素被称为酵母菌纤维素。

酵母菌纤维素被用于食品添加剂、织物制造等领域。

细菌纤维素的应用主要包括以下几个方面:
1. 生物医学领域:细菌纤维素可以作为药物控释系统的载体,帮助控制药物的释放速度。

它也可以用于修复组织、填充空洞等医学应用。

2. 食品工业:细菌纤维素可以用作食品添加剂,增加食品的质地和口感。

3. 纺织品工业:细菌纤维素可以用于制作纺织品,提高纺织品的柔软度和稳定性。

4. 纸张工业:细菌纤维素可以用作纸张的添加剂,增加纸张的强度和柔韧性。

总之,细菌纤维素是一种具有广泛应用前景的生物材料,可以在医学、食品、纺织品和纸张等领域发挥重要作用。

细菌纤维素的研究进展

细菌纤维素的研究进展

细菌纤维素的研究进展发布时间:2022-10-20T07:13:53.903Z 来源:《科技新时代》2022年5月第9期作者:孙歆原沈凡熙王小龙[导读] 细菌纤维素是一种天然的生物高聚物,具有生物活性、生物适应性孙歆原沈凡熙王小龙山东协和学院山东济南 250109摘要:细菌纤维素是一种天然的生物高聚物,具有生物活性、生物适应性,具有独特的物理、化学和机械性能,例如高的结晶度、高的持水性、超精细纳米纤维网络、高抗强度和弹性模量等,因而成为近年来国际上新型生物医学材料的研究热点。

概括细菌纤维素的性质,发酵过程,改性方法以及在生物医学材料上的应用。

关键词:细菌纤维素;改性;生物医学材料前言细菌合成纤维素是在1886年由Brown首次报道的,是胶膜醋酸菌A.xyliumpppp在静置培养时于培养基表面形成的一层白色纤维状物质。

后来在许多革兰氏阴性细菌,如土壤木干菌、致瘤农杆菌和革兰氏阳性菌和八叠球菌中也发现了细菌纤维素的产生。

细菌纤维素与天然纤维素结物非常相似,都是由葡萄糖以B一1,4一糖苷键连接而成的高分子化合物,此外,细菌纤维素相对于传统的纤维素资源又有其优势,如加工时不用去木质素,可合成高质量的纸或者加工成任何形状的无织物,还可通过发酵件的改变控制合成不同结晶度的纤维素,从而可根据需要成不同结晶度的纤维素。

从纤维素的发现至今已有一百多年的历史,但由于无合适的实验手段以及纤维素的产量较低,因此多年来一直未受到足多重视。

近十几年来随着分子生物学的发展和体无细胞体系的应用,细菌纤维素的生物合成机制已有了很深入的研究,同时在细菌纤维素的应用方面也有了很大进展。

一、细菌纤维素的结构特点和理化特性经过长期的研究发现,BC和植物纤维素在化学组成和结物上没有明显的区剥,均可以视为是由很多D-此喃葡萄糖苷彼此C以(1-4)糖苷键连接而成的线型高分子,相邻的比南葡萄糖的6个碳原子不在一个平面上,而是呈稳定的椅式立体结物。

细菌纤维素

细菌纤维素

改性纤维素在卫生领域的研究及应用情况(昆明理工大学化学工程学院轻化工程2010级肖任)摘要:纤维素是自然界最丰富的自然资源,在未来对于解决人类面临的能源、资源、和环境污染等问题方面有非常重要的作用,但是纤维素分子中由于高密度的氢键影响作用,使之在医疗卫生领域等方面受到了很大的限制。

综述近年来通过对纤维素化学改性合成可以得到纤维素衍生物在医疗卫生方面的应用。

其中,细茵纤维素是一种天然的生物高聚物,具有生物活性、生物可降解性、生物适应性,具有独特的物理、化学和机械性能,例如高的结晶度、高的持水性、超细纳米纤维网络、高抗张强度和弹性模量等,因而成为近年来国际上新型生物医学材料的研究热点。

概括细茵纤维素的性质、研究历史以及在生物医学材料上的应用,重点阐述细茵纤维素在组织工程支架、人工血管、人工皮肤和治疗皮肤损伤方面的应用以及当前研究现状。

关键词:纤维素、细茵纤维素、组织工程支架、人工血管、人工皮肤、化学改性、医疗卫生Modified cellulose in health field research and should use situationCellulose is the most abundant natural resources of nature, in the future to solve human beings are facing with the energy, resources, and environment pollution and so on has a very important role, but cellulose molecules due to the high density of hydrogen bond effect, make in the medical and health fields was much limited. Recent advances in chemical modification of cellulose by synthesis can get cellulose derivatives in medical applications. Among them, the fine wormwood cellulose is a kind of natural biopolymer, with biological activity, biodegradable property, biological adaptability, has a unique physical, chemical and mechanical properties, such as high degree of crystallinity, high water binding capacity, ultrafine nano fiber network, a high strength and modulus of elasticity, etc., and become in recent years international new biomedical materials research hot spot. The nature of the cellulose in fine wormwood, historical study and the application of biomedical materials, the paper fine wormwood cellulose in tissue engineering scaffolds, artificial blood vessels, artificial skin and the treatment of skin damage and the application of the current research status.Keywords: cellulose, fine wormwood cellulose, tissue engineering scaffolds, artificial blood vessels, artificial skin, chemical modification, medical and health细菌纤维素( bacterial cellulose,简称 B C) 又称为微生物纤维素( microbial cellulose ) ,不仅是地球上除植物纤维素之外的另一类由细菌合成的天然惰性材料,而且是世界上公认的性能优异的新型生物学材料。

细菌纤维素

细菌纤维素

音响设备振动膜
细菌纤维素的高机械强度可满足当今项级音响设 备声音振动膜材料所需的对声音振动传递快和内耗高 分子间作用力较强,强度增加 的特性要求。
此优异特性主要源于其 高纯度及超微细结构,经热 压处理制成的具有层状结构 的膜形成了更多氢键,使其 杨氏模量和机械强度大幅度 提高
纺织工业
作吸附剂和离子交换膜,从工业废水中回收重金属离子
扩大生产

2
从碳源和培养基的组成上降低成本,提高产量
在菲律宾,人们传统上是用椰子水发酵生产细菌纤维素,产品叫Nata de coco,中国的海南省也是用本地特有的椰子水作原料生产细菌纤 维素。 在木醋杆菌的发酵中用西瓜皮汁做培养基具有更高的细菌纤维素 产量。再加入酵母浸出液和蛋白胨还能提高纤维素产量。
专业 务实 贴心
您的办公效率顾问
细菌纤维素
定义:细菌纤维素(Bacterial Cellulose,简 称BC),又称为微生物纤维素,他是一种由 细菌产生的高聚物。 结构式:
细菌纤维素
发展历程
专业 务实 贴心
您的办公效率顾问
物化特性
高结晶度、高聚合度和非常一致的分子取向,并以单 一纤维形式存在,纯度极高 纤维直径在0.01-0.1um之间,抗拉力强度高,杨氏模量高
在国内,采用大豆乳清作为培养基质制备细菌纤维素,既达到 降低细菌纤维素生产成本的目的,又为大豆乳清的无污染处理 与排放提供了新的途径。大豆乳清中含糖量较少,研究仅限于 大豆乳清代替培养基中的蒸馏水。
改性和表面修饰
一:是通过在其发酵过程中加入试剂实现
向培养基中加入萘啶酸和氯霉素可以延长细菌的生存时 间,可以发酵形成更宽的纤维素丝带。这样获得的纤维素 具有更高的杨氏模量,具有优良的机械性能
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

改性纤维素在卫生领域的研究及应用情况(昆明理工大学化学工程学院轻化工程2010级肖任)摘要:纤维素是自然界最丰富的自然资源,在未来对于解决人类面临的能源、资源、和环境污染等问题方面有非常重要的作用,但是纤维素分子中由于高密度的氢键影响作用,使之在医疗卫生领域等方面受到了很大的限制。

综述近年来通过对纤维素化学改性合成可以得到纤维素衍生物在医疗卫生方面的应用。

其中,细茵纤维素是一种天然的生物高聚物,具有生物活性、生物可降解性、生物适应性,具有独特的物理、化学和机械性能,例如高的结晶度、高的持水性、超细纳米纤维网络、高抗张强度和弹性模量等,因而成为近年来国际上新型生物医学材料的研究热点。

概括细茵纤维素的性质、研究历史以及在生物医学材料上的应用,重点阐述细茵纤维素在组织工程支架、人工血管、人工皮肤和治疗皮肤损伤方面的应用以及当前研究现状。

关键词:纤维素、细茵纤维素、组织工程支架、人工血管、人工皮肤、化学改性、医疗卫生Modified cellulose in health field research and should use situationCellulose is the most abundant natural resources of nature, in the future to solve human beings are facing with the energy, resources, and environment pollution and so on has a very important role, but cellulose molecules due to the high density of hydrogen bond effect, make in the medical and health fields was much limited. Recent advances in chemical modification of cellulose by synthesis can get cellulose derivatives in medical applications. Among them, the fine wormwood cellulose is a kind of natural biopolymer, with biological activity, biodegradable property, biological adaptability, has a unique physical, chemical and mechanical properties, such as high degree of crystallinity, high water binding capacity, ultrafine nano fiber network, a high strength and modulus of elasticity, etc., and become in recent years international new biomedical materials research hot spot. The nature of the cellulose in fine wormwood, historical study and the application of biomedical materials, the paper fine wormwood cellulose in tissue engineering scaffolds, artificial blood vessels, artificial skin and the treatment of skin damage and the application of the current research status.Keywords: cellulose, fine wormwood cellulose, tissue engineering scaffolds, artificial blood vessels, artificial skin, chemical modification, medical and health细菌纤维素( bacterial cellulose,简称 B C) 又称为微生物纤维素( microbial cellulose ) ,不仅是地球上除植物纤维素之外的另一类由细菌合成的天然惰性材料,而且是世界上公认的性能优异的新型生物学材料。

能够产生纤维素的细菌【1】主要有A c e t o b a c t e r ,R h i z o b i u m,A g r o b a c t e r i u m和S a r c i n a等,其中研究最多、产量最高的是A c e t o b a c t e r x y l i n u m( A .x y l i n u m,木醋杆菌) 。

从纤维素的分子组成看,B c和植物纤维一样都是由B - D- 葡萄糖通过B .1 ,4 精苷键结合成的直链,直链间彼此平行,不呈螺旋构象,无分支结构,又称为 B - 1 ,4.葡聚糖。

但从物理、化学、机械性能来看,它具有自己独特的性质,是一种新型天然纳米生物材料,已广泛应用于食品、造纸、医学材料、声音振动膜等各个领域,现已成为国际的研究热点。

本文就细菌纤维素的性质、研究历史以及在生物医学材料上的应用进行概括,重点阐述该纤维素在组织工程支架、人工血管、人工皮肤和治疗皮肤损伤方面的应用以及当前研究现状。

1 细菌纤维素的特性由A ,x y l i n u m产生的B c和植物或海藻产生的纤维素在化学性质上是相同的,但B C作为一种新型生物材料,有以下许多独特的性质:( 1 ) 纤维超细。

微纤维组成独特的柬状纤维,其宽度大约为100 n m左右,厚度为3~8 n m,属纳米极纤维,是目前最细的天然纤维,其大小仅为人工合成纤维的I / 1 0;( 2 ) 细菌合成纤维素的速度和产率要比植物高许多,每个木醋杆菌每小时至少可聚合1.5×100 个葡萄糖分子,以平面静态浅盘培养,年产量在1 0 t /666.7平方左右,是一个季度同面积棉产量的100倍;( 3 ) 高结晶度和高化学纯度。

以100%纤维素的形式存在,不含半纤维素、木质素和其它细胞壁成分,提纯过程简单;( 4 ) 高抗张强度和弹性模量。

B C经洗涤、干燥后,杨氏模量可达10 M P a ,经热压处理后,杨氏模量可达3 0 MP a ,比有机合成纤维的强度高4倍;( 5 ) 高持水量( 或称高亲水性) 。

其内部有很多“孔道”,有良好的透气、透水性能,能吸收60—700倍于其干重的水份,即有非凡的持水性,并具有高湿强度;( 6 ) 极佳的形状维持能力和抗撕力。

B C膜的抗撕能力比聚乙烯膜和聚氯乙烯膜要强5倍;( 7 ) 较高的生物适应性和良好的生物可降解性。

自然环境中,在酸性、微生物以及纤维素酶催化等条件下可以最终降解成单糖等小分子物质;( 8 ) 生物合成时性能和形状的的可调控性。

通过调节培养条件,可得到化学性质有差异的B C。

如木醋杆菌能利用葡萄糖与乙酰葡萄胺合成N一乙酰氨基葡萄糖,并以4 %的比例将N,乙酰氨基葡萄糖连接在BC上【2】。

此外,采取不同的培养方法,如静态培养和动态培养,也可以得到不同高级结构的纤维素。

White等【3】曾报道利用A c e t o b a c t e r 在培养过程中直接形成一种无缝的、手套形状的纤维素产品,以用于治疗烧/烫伤的手部皮肤;( 9) 可利用广泛的原料进行生;( 1 0 ) 提取过程简单。

2 细菌纤维素的研究历史有关B C的研究最先由B mw n 【4】于1886年发现并报道。

在醋酸发酵过程中他观察到培养基表面形成一层凝胶状膜,经进一步分析确定这是由醋酸杆菌发酵产生的一种纤维素物质,将其命名为纤维素薄膜。

其后,很多课题组对B C的形成机制做了研究。

Hestrin 等【5】在1 9 4 7年第一次详细阐明A .x y l i n u m合成纤维素的机制。

1 9世纪50年代期间,相关学者发表了一系列有关B C的研究论文。

S c h r a m m等【6】在1 9 5 4年报道了纤维素形成过程中的影响因素,研究了培养基以及相关抑制剂对其形成的影响,并于1957年研究了合成该纤维素的酶系统【7】;同一个课题组的E l h a n a n—G r o me t 等【8】于1 9 6 2年研究了纤维素合成过程中的中间产物。

同时,菲律宾的研究人员也报道了用菠萝皮和椰子汁发酵生产“N a t a ”的方法【9 , 1 0 】。

但是直到1 9 6 7年,才由L a p u z等【11】证实“N a t a ”实际上是由A .x y l i n u m产生的纯纤维素。

关于B C的早期研究有很多是围绕提高“N a t a ”产品的最优发酵条件、分离提纯以及高产菌株的筛选等展开的。

接下来的十年,研究主要集中在A.x y l i n u m合成纤维素的生物模型机制。

1977年 C o l v i n 等【12】曾尝试以一种单糖为原料利用纤维素合成酶全生物合成纤维素产品。

直到1 9世纪8 O年代,人们才渐渐认识到B C是一种具有潜在商业价值的生物材料,因此对A .x y l i n t t m的关注逐渐由过去在实验室中研究单纯的生物合成纤维素模型飞跃到大规模工业化生产。

在这个飞跃中有两个课题组的研究人员作出了开拓性工作:由索尼公司、味之素公司和日本纺织研究所组成的科研人员致力于利用BC的特殊物理性能制造高强度材料【13】;另一个是由We y e r h a e u s e r 和G e ms C o r p组成的研究小组在深层搅动发酵罐中以A .x y l i n u m为菌株生产B C t 1 4 ] 。

到80年代末期,很多有关BC 的商业化应用都申请了专利。

1992—1993年,Ok I y a ma等【1 5 , 1 6】报道了实验室大规模培养及通过改进发酵罐的设计生产B C的文章。

接下来对B C的研究越来越多,应用范围也更加广泛,相继有做为食品添加剂、纸张粘合剂及滤膜等方面的研究被报道【17】。

目前的研究热点主要是将B C应用于高附加值的产品,尤其是生物医用材料上。

1990年和1991年日人Y砌a I I a k a 【1 8 , 1 9】首次以该纤维素制备人工血管获了成功。

2001年和2003年K l e m n等[【20 , 21】则以此材研制成功小直径( 1—3 I t l l n内径) 人工血管。

相关文档
最新文档