建筑结构抗风设计

合集下载

建筑物结构抗风设计与控制研究

建筑物结构抗风设计与控制研究

建筑物结构抗风设计与控制研究建筑物的抗风设计与控制是一个重要的研究方向,涉及到了建筑物的安全性和可持续性发展。

随着城市化进程的加快和高楼大厦的不断涌现,建筑物的抗风能力对于保障人们的生命财产安全以及城市的可持续发展至关重要。

本文将探讨建筑物结构抗风设计与控制的研究内容和方法。

一、建筑物结构抗风设计的必要性建筑物在面对风力的作用时,会产生风压和风载等力学效应,这些力学效应对建筑物的结构和稳定性产生较大的影响。

风力是一种随机的、非定常的外部荷载,其大小和方向是时刻变化的,因此,建筑物的结构必须能够适应各种复杂的风场环境。

抗风设计的必要性在于保护建筑物的安全性和使用性。

一方面,抗风设计可以保证建筑物在恶劣的天气条件下不受损害,不倒塌,确保人们的生命财产安全;另一方面,抗风设计可以提高建筑物的使用性能,减少噪音和震动,增加居住和办公的舒适度。

二、建筑物结构抗风设计的研究方法建筑物结构抗风设计的研究方法通常包括结构分析、风灾风险评估、结构优化设计等。

首先,结构分析是抗风设计的基础。

通过数学模型和计算方法,可以对建筑物在风力作用下的结构响应进行预测和分析,了解结构的载荷、变形、振动等性能。

其次,风灾风险评估是为了确定建筑物的抗风能力和安全等级。

通过对风力的分析和建筑物的物理参数进行计算,可以评估风灾风险的频率和严重程度,提供决策依据和参考。

最后,结构优化设计是为了提高建筑物的抗风能力和使用性能。

通过选择合理的结构形式、材料和附加设备,优化结构的刚度、强度和动态特性,可以使建筑物具备更好的稳定性和适应性。

三、建筑物结构抗风控制的实践应用在实际的工程项目中,建筑物结构抗风控制是不可或缺的。

例如,对于高层建筑,通常会采用框架结构、剪力墙或斜撑等抗风技术,以保证建筑物在高风速下的稳定性;对于大跨度结构,通常会采用风洞试验和风工程数值模拟方法,进行风荷载和结构响应的研究和优化设计。

此外,建筑物结构抗风控制还与建筑节能和可持续发展密切相关。

建筑结构稳定性与抗风设计

建筑结构稳定性与抗风设计

建筑结构稳定性与抗风设计建筑结构稳定性是指建筑物在外力作用下保持稳定的能力,而抗风设计是建筑物在大风环境下能够抵御风力作用的能力。

在建筑设计中,确保建筑结构的稳定性和抗风能力至关重要。

本文将从建筑结构稳定性和抗风设计两个方面进行论述。

一、建筑结构稳定性建筑结构稳定性是建筑物能够承受设计荷载并保持稳定的能力。

充分考虑建筑结构的稳定性对于确保建筑物的安全和持久性非常重要。

1.1 地基承载力地基是支撑建筑物的基础,地基的承载力直接影响建筑物的稳定性。

在建筑设计中,需要根据地基的性质和地质条件来确定地基的承载力,以确保建筑物的稳定。

1.2 结构设计结构设计是建筑物稳定性的核心,包括结构的选择、布局和材料的选用等。

在结构设计中,需要考虑建筑物所承受的荷载类型和大小,并进行结构计算和分析,以确保结构的稳定性和强度。

1.3 抗震设计地震是严重威胁建筑物稳定性和安全性的自然灾害。

在地震区域,抗震设计是非常重要的。

通过采用适当的结构形式、增加抗震构造和使用抗震材料等手段来提高建筑物的抗震能力,减轻地震对建筑物的破坏。

二、抗风设计抗风设计是确保建筑物在强风环境下能够稳定承受风力作用的能力。

风力是建筑结构最常见的外力之一,通过合理的抗风设计可以有效保护建筑物的安全。

2.1 风荷载计算抗风设计的首要任务是计算出建筑物所受到的风荷载,并根据风荷载的大小进行结构计算。

风荷载的计算需要考虑建筑物的高度、形状、地理位置等因素,采用相应的风荷载标准和方法进行计算。

2.2 结构抗风性能建筑物的结构抗风性能是指建筑物所具有的抵抗风力作用的能力。

通过合理的结构设计和施工工艺,使建筑物具备良好的抗风性能,例如采用风洞试验和风挡设施等手段来提高建筑物的抗风能力。

2.3 风载体系风载体系是指建筑物在受到风力作用时所形成的力学系统。

通过合理设计风载体系,使建筑物能够在受到风力作用时实现合理的排力和传力,增强建筑物的整体稳定性。

三、建筑结构稳定性与抗风设计的关系建筑结构稳定性和抗风设计是密切相关的。

土建工程中的建筑物抗风设计原则

土建工程中的建筑物抗风设计原则

土建工程中的建筑物抗风设计原则在土建工程中,建筑物的抗风设计是非常重要的,因为风力是一种常见的自然力量,经常会对建筑物产生不同程度的影响。

合理的抗风设计旨在提高建筑物的结构稳定性和耐久性,以防止风灾的发生。

本文将介绍土建工程中的建筑物抗风设计原则。

1. 建筑物抗风设计的意义在设计建筑物时,考虑到风力的影响是至关重要的。

强风可能会对建筑物产生诸如结构破坏、倾斜、拱形变形和飞溅物的影响,甚至导致建筑物倒塌。

因此,合理的抗风设计可以保证建筑物在强风环境下的安全性和稳定性。

2. 建筑物抗风设计的基本原则(1)结构稳定性:建筑物的结构设计应具有足够的抗风能力,能够承受强风的冲击,避免结构的破坏。

建筑物的核心结构应该充分考虑加固和加强。

(2)风荷载计算:在设计过程中,需要对建筑物所受到的风荷载进行精确计算。

风荷载的计算应考虑到建筑物的高度、形状、位置等因素,以便准确评估风的作用。

(3)风向和风速:应根据当地的气象数据和风环境条件,确定设计风速和设计风向。

合理选择适当的设计风速和风向对建筑物的抗风能力至关重要。

(4)抵抗风压和风荷载:建筑物的外墙和屋顶应设计成能够抵抗风压和风荷载的结构。

外墙和屋顶材料的选用应具有足够的强度和刚度,能够有效地分散风力作用。

(5)减少风力集中效应:通过合理的设计措施,减少或避免风力的集中作用。

如采用适当的变形缝、几何形状的设计等,可以有效地减轻风力的影响。

(6)风洞实验和计算模拟:为了更准确地评估建筑物在风环境中的表现,可以进行风洞实验和计算模拟。

通过模拟不同风速和风向下的风力作用,优化建筑物的抗风设计。

3. 建筑物抗风设计的案例分析以某高层建筑为例,该建筑位于海滨地区,经常受到强风的影响。

设计团队根据当地气象数据和风环境条件,采取了以下抗风措施:(1)增加结构强度:通过钢筋混凝土结构的加固,提高建筑物的整体稳定性。

同时,在结构设计中考虑了不同风向和风速下的风荷载,确保结构能够承受强大的风力冲击。

建筑结构的抗风与抗震设计

建筑结构的抗风与抗震设计

建筑结构的抗风与抗震设计建筑结构的抗风与抗震设计是现代建筑工程中至关重要的一环。

随着科技的进步和社会的发展,建筑结构的抗风与抗震性能要求越来越高,以确保建筑物在自然灾害或其他外部力量的影响下能够保持安全和稳定。

本文将探讨抗风与抗震设计的原则、方法和实践,并强调其对建筑结构的重要性。

一、抗风设计1. 风对建筑结构的影响风是一种具有强大力量的自然力量,对建筑物产生的影响主要包括气压分布、风速、气流等。

风力的大小和方向直接影响着建筑物的稳定性和安全性。

2. 抗风设计的原则为了确保建筑物在强风环境下的稳定性,抗风设计应遵循以下原则:(1) 结构整体稳定性:建筑结构应具有足够的整体稳定性,包括纵向和横向稳定性,以抵抗侧向风力的作用。

(2) 槽口设计:对于高层建筑,应采用疏风的槽口设计,减少风力对建筑等的作用。

(3) 风洞试验:在设计过程中,可以借助风洞试验模拟不同风速下的风力对建筑物的作用,从而确定合适的抗风设计方案。

二、抗震设计1. 地震对建筑结构的影响地震是地球表面破裂释放能量的现象,其产生的地震波通过介质传播,对建筑物产生打击和摇晃。

地震力的大小和频率直接影响着建筑物的抗震能力。

2. 抗震设计的原则为了确保建筑物在地震中能够保持稳定和安全,抗震设计应遵循以下原则:(1) 结构的韧性:建筑结构应具备一定的韧性,能够承受地震波的冲击和变形,在保证人员安全的前提下保护建筑物本身。

(2) 剪力墙和框架结构:在设计过程中,应采用剪力墙和框架结构等抗震措施,以增加建筑物的抗震能力。

(3) 地基处理:合理的地基处理可以提高建筑物的抗震能力,如采用升降变换地基或灌注桩等。

三、抗风与抗震设计的实践1. 结构选择与材料选用在抗风与抗震设计实践中,应根据具体需求选择合适的结构形式和材料。

例如,在地震易发区,应选择更加柔韧的结构形式和较好的抗震性能的材料,以提高建筑物的抗震能力。

2. 合理的结构布局合理的结构布局能够减少风力和地震力对建筑物的影响。

建筑结构的抗风设计与控制

建筑结构的抗风设计与控制

建筑结构的抗风设计与控制随着现代建筑技术的不断发展,抗风设计与控制对于建筑结构的安全和可持续发展至关重要。

本文将探讨建筑结构的抗风设计原理、措施与方法,并分析其对建筑的影响和作用。

1. 抗风设计的重要性建筑结构的抗风设计是指在建筑物的设计与施工过程中,考虑到气象条件和气候特点,采取相应的措施和设计原则,使建筑物能够抵御风力的作用,确保其在长期使用中的稳定性和安全性。

抗风设计对于建筑结构来说至关重要,不仅直接关系到人民的生命财产安全,还关系到建筑物的使用寿命和经济效益。

2. 抗风设计原理抗风设计的基本原理是通过减小风力对建筑物的影响,降低风力对建筑物结构的作用,增强建筑物的抵抗力和稳定性。

其主要原理包括:2.1 稳定原理:通过设计合理的结构形式、选择适当的材料和构造,使建筑具有足够的抗倾覆和抗倒塌能力。

2.2 减小风力影响原理:通过合理的立面设计、减小建筑物与风的迎角、设置遮挡物等方法,降低风力对建筑物的作用。

2.3 控制风振原理:通过合理选择阻尼系统、增加刚度和强度,控制风振的产生和传递,保证建筑物结构在风载荷作用下的稳定性。

3. 抗风设计的措施与方法为了实现建筑结构的良好抗风性能,需要采取一系列的措施与方法。

以下是一些常见的措施与方法:3.1 合理的建筑形态设计:选择具有较小风力影响的建筑形态,如流线型、圆形、卵形等,并避免棱角过多的设计。

3.2 优化构造设计:通过合理的结构配置和布置,提高结构的稳定性和抗风性能。

例如增加立杆、加强柱子和梁的抗风刚度。

3.3 选择合适的材料:选用具有良好抗风性能的材料,例如高强度混凝土、结构钢等。

3.4 设置风挡和遮阳装置:在建筑物的外立面或周边设置适当的风挡和遮阳装置,减小风力对建筑物的直接作用。

3.5 增加阻尼措施:在建筑物结构中增加适当的阻尼系统,如阻尼器、减震墩等,以减小风振效应。

4. 抗风设计对建筑的影响与作用抗风设计不仅可以提高建筑结构的抗风能力,还可以对建筑物的整体性能和舒适度产生积极影响。

建筑抗风设计

建筑抗风设计

建筑抗风设计随着建筑技术的不断发展,建筑物在面对自然灾害,如台风和龙卷风等风灾时需要具备一定的抗风能力。

建筑抗风设计成为了建筑领域中的重要课题之一。

本文将探讨建筑抗风设计的原则、方法以及在不同类型建筑中的应用。

一、抗风设计原则建筑抗风设计的基本原则是确保建筑物在强风环境下的安全可靠。

以下是四个基本原则:1.结构稳定性:建筑物应具备足够的刚度和稳定性,以抵御风力的作用。

这可以通过选择和布局适当的结构材料和构件来实现。

2.气动稳定性:适当的建筑造型和外形设计可以降低风阻力,减少对建筑物的风力作用。

建筑物的较佳气动性能可以通过模型试验和数值模拟等手段来研究和优化。

3.连接和固定:建筑物的各个部分和构件之间的连接和固定必须足够强固,以确保整体结构的完整性和稳定性。

合适的连接方式可以通过经验和实践来确定。

4.材料选择:建筑材料的选择和使用应符合抗风的要求。

例如,在抗风建筑中,钢材和混凝土多用于结构和柱基建设,以增强整体抗风能力。

二、抗风设计方法下面是几种常见的建筑抗风设计方法:1.风洞试验:通过风洞试验,可以模拟实际风场并测试建筑物的抗风性能。

风洞试验可以提供关于风荷载和结构响应的详细数据,为设计提供依据。

2.数值模拟:利用计算流体力学(CFD)等数值模拟方法,可以对建筑物在不同风速下的气动性能进行模拟和分析。

数值模拟可以辅助风洞试验并提供更全面的设计信息。

3.结构优化:根据风压分布和结构参数,使用结构优化方法对建筑物进行重新设计,以提高抗风性能。

这可以通过增加结构材料的强度或调整构件和连接方式来实现。

4.风阻器和缓冲设施:在建筑物的设计中,可以引入风阻器和缓冲设施,以减少风力对建筑物的作用。

这包括设置遮挡物、风险缓冲区和减震装置等。

三、建筑抗风设计的应用建筑抗风设计广泛应用于各种类型的建筑物中。

下面是几个不同类型建筑的抗风设计应用示例:1.高层建筑:高层建筑由于自身的高度和结构特点,需要考虑更严格的抗风设计要求。

高层建筑结构的抗风设计

高层建筑结构的抗风设计

高层建筑结构的抗风设计在现代城市的天际线中,高层建筑如同一座座巍峨的巨人矗立着。

然而,这些高耸入云的建筑在面临强风时,却面临着巨大的挑战。

风,这个看似无形的力量,对于高层建筑的结构稳定性和安全性有着至关重要的影响。

因此,高层建筑结构的抗风设计成为了建筑领域中一个极为关键的环节。

风对高层建筑的作用是复杂而多样的。

首先,风会在建筑表面产生压力差,从而形成风荷载。

这种风荷载会使建筑结构产生水平位移和振动,如果设计不合理,可能会导致结构的损坏甚至倒塌。

其次,风的漩涡脱落和湍流等现象也会引起建筑的振动,特别是在某些特定的风速下,可能会引发共振,对建筑造成严重的破坏。

此外,高层建筑的形状、高度和周围环境等因素都会影响风的流动特性,进而影响风对建筑的作用。

为了确保高层建筑在风荷载作用下的安全性和稳定性,工程师们在进行抗风设计时需要综合考虑多个因素。

首先,建筑的外形设计是至关重要的。

流线型的建筑外形能够有效地减少风的阻力,降低风荷载的作用。

例如,圆形、椭圆形或带有倒角的建筑外形通常比方形或矩形的建筑更有利于抗风。

此外,通过在建筑表面设置凹角、凸缘或其他扰流装置,可以改变风的流动路径,减少风的漩涡脱落和湍流,从而降低风振响应。

建筑的高度也是影响抗风设计的一个重要因素。

随着建筑高度的增加,风荷载也会显著增大。

因此,对于超高层建筑,需要采用更加先进的抗风设计方法和技术。

例如,采用风洞试验来模拟真实的风环境,获取准确的风荷载数据。

风洞试验是一种通过在实验室中模拟风的流动来研究物体在风中行为的方法。

在风洞试验中,将建筑模型放置在风洞中,通过测量模型表面的压力和风速等参数,可以精确地计算出风荷载的大小和分布。

除了外形和高度,建筑的结构体系也对其抗风性能有着重要的影响。

常见的高层建筑结构体系包括框架结构、剪力墙结构、框架剪力墙结构和筒体结构等。

不同的结构体系在抵抗风荷载方面具有不同的特点和优势。

例如,筒体结构具有良好的抗侧力性能,能够有效地抵抗风荷载引起的水平位移和振动。

建筑结构的抗风设计

建筑结构的抗风设计

建筑结构的抗风设计在建筑工程中,抗风设计是至关重要的一环。

高风速的风力对建筑物产生的压力和风载影响可能导致建筑结构的倒塌和损坏,给人员和财产带来巨大的风险。

因此,合理的抗风设计是确保建筑物安全稳定的关键措施之一。

本文将介绍建筑结构抗风设计的重要性、影响因素和常用的设计方法。

1. 重要性建筑结构抗风设计在保障人员和财产安全方面起到至关重要的作用。

当遭受强风袭击时,建筑物若没有经过合理的抗风设计,可能产生严重变形、位移或倾覆,引发人员伤亡事故。

此外,受强风的冲击,建筑物的墙体、屋顶、窗户等易受损件也容易发生破坏,进而对建筑物内部设备和财产造成损失。

因此,通过合理的抗风设计,能有效减少风灾带来的损害。

2. 影响因素建筑结构抗风设计的成功与否受多种因素的影响。

2.1 地理环境特征地理环境特征是抗风设计的首要因素之一。

不同地区的地理环境特征(如海拔、气候、地形等)会导致当地风速和风向的差别,因此,抗风设计需要结合具体地理环境特征进行。

2.2 建筑物形式和高度建筑物的形式和高度对其抗风能力有直接影响。

例如,高层建筑由于面积较大,截风面积也相应增大,因此需要更强的抗风设计。

此外,建筑物的形式(如平面形状、结构形式等)也会影响到其抗风性能。

2.3 结构材料和构造方式建筑物所采用的结构材料和构造方式直接关系到其承载能力和抗风性能。

结构材料的抗风能力会影响到建筑物的整体稳定性,不同构造方式也会产生不同的抗风效果。

因此,在抗风设计中需要选择合适的材料和构造方式。

3. 设计方法为了确保建筑物具备较好的抗风能力,设计师可以采用以下方法:3.1 强度设计法强度设计法是最常用的抗风设计方法之一。

该方法通过计算建筑物受到的风荷载,并根据结构材料的强度和抗拉性能进行合理设计,以确保建筑物的整体稳定性。

3.2 风洞试验风洞试验是一种能够模拟真实风场条件的实验方法,通过在缩比模型中对建筑物进行风洞试验,可以精确评估建筑物所承受的风荷载和风力效应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

建筑结构抗风设计在如今经济高速发展的同时,建筑的高度也飞速增高,而且建筑体型越来越复杂。

高楼引来“风速杀手”。

由于高层、超高层建筑鳞次栉比而引发峡谷效应,使城市街道风速加大,以致危及行人和行车安全。

这种峡谷效应还表现在某些高楼部分外墙表面因风速过大产生巨大负压,玻璃幕墙或大墙板块会像雪崩一样脱落,高档门窗等也常常会发生突然崩塌、坠落伤人事故。

所以,建筑高度的增高和复杂的体型使得建筑结构抗风设计的难度也在不断提高。

我们要明白风对建筑的危害机理才能更好地进行抗风设计。

风是紊乱的随机现象。

风对建筑物的作用十分复杂,规范中关于风荷载值的确定适用于大多数体型较规则、高度不太大的单幢高层建筑。

目前还没有有效的预测体型复杂、高柔建筑物风作用的计算方法;摩天大楼可能造成很强的地面风,对行人和商店有很大影响;当附近还有别的高层建筑时,群体效应对建筑物和建筑物之间的通道也会造成危害。

风对建筑物表面的作用力大小,与建筑物体型、高度、建筑物所处位置、结构特性有关。

我国是世界上遭受台风灾害最为严重的国家之一,每年因台风灾害造成的经济
损失十分惨重。

城市各类建筑物的损坏与倒塌是风灾直接损失的主要组成部分,快速预测和评估城市建筑物遭受风灾后的损伤情况,对城市防灾减灾工作至关重要,也是目前土木工程领域急待解决的一个问题。

接下来让我们看一些比较成功的抗风设计的实例。

1974年美国芝加哥建成443m高(加上天线达500m)110层的西尔斯大楼成为当时世界最高的建筑,纽约的世界贸易中心大厦(412m,110层)只能让位,退居第二。

大楼由9个标准方形钢筒体(22.9mx22.9m)组成。

该结构由SOM设计.建筑师为FazlurKahn。

建造到52层减少2个简体.到67层再减少2个简体.到92层再
减少3个简体.到顶部变成2个简体。

这种独特结构的确引人人胜。

它是多筒结构中的巨型结构.每一个筒体都是单独简体,本身具有很好的刚度和强度,能够单独工作。

必须指出:这种逐步减少的单筒结构,最好对称于建筑物的平面中心,减少偏心。

同时这种把上部结构的某些单筒适当减少,可减小高层建筑上部的受风面积。

并且扰乱大气气流.使产生的涡流对高层建筑的摇摆振动减小。

从而有效地减小风力产生的侧向移动,因此。

多筒结构往往采用这种自下而上逐步减少简体数量的方法,使得高层建筑的结构体系更加合理和经济。

独特贝壳广场建造于1970年,位于美国休斯敦,是一座高、52层的办公大楼,是当时最高的钢筋混凝土大楼。

休斯敦的地基在600多m内主要是粘土,要求结构体系必须使整个建筑物最为经济,建筑物包括基础全部采用轻质混凝土。

这座大楼的结构体系:上部结构采用钢筋混凝土筒中筒。

这种体系在当时是剪力墙与框架共同作用结构的发展。

楼板结构采用密肋楼板,混凝土外框柱外面为玻璃帷幕。

这样,使得整个建筑别有风格,尤为美观。

基础采用筏板基础。

埋深为19.3m ,筏厚2.52m,该筏板从大楼的四边各伸出 6.1m,整个筏板的尺寸为70.76mx52.46m。

风荷载采用休斯敦地区的飓风的风力,沿整个建筑物高度作用40lb/ft (195.3kg /mz),在风荷载作用下产生的摆动限制在1/600高度。

这座大楼不但设计成功。

而且,采用轻质混凝土把原设计的35层大楼变成52层.获得很高的经济效益。

应予指出:现场监测很成功.为编制美国建筑规范作出应有贡献。

70年代同济大学高层建筑与地基基础课题组从杂志上获得信息,翻译全文刊登,既有助于对共同作用的研究,又使河南郑州大楼和上海华盛大楼的箱形基础的设计获得经济效益。

百吉迪拜大楼位于阿联酋,为美国SOM建筑设计事务所设计。

根据对比法和综
合分析法推断,大楼高度约为700m,2009年当它建成之13,这座古典派风格的多用途摩天大楼将成为世界建筑第一高度,超过目前世界建筑之最的508m高的台北一101。

该座具有280,O00m2面积的大楼,5—37层为酒店,45—108层可供700套的私人公寓,是一幢为商店、Amani酒店、住宅和办公的综合性多用途的建筑物,该大楼的外形好像一架指向太空的巨型宇宙飞船。

大楼的结构体系可描述为一个“扶壁”型的核心筒,它的特点表现在:1.中心六边形的钢筋混凝土核心墙类似于一个闭合管,可以提供抗扭力。

中心六边形的墙由翼墙和锤型墙撑住,它们的作用类似于梁上的腹板和翼缘,能够抵抗风所产生的剪力和弯矩。

核心筒心筒的筒侧的每个翼又有自己的高性能混凝土核心筒和周边柱群,翼和翼之间通过六边形中心筒相互支撑,使塔楼具有极大的抗扭刚度。

把所有公共中心筒和柱单元联成具有一座没有结构转递性的建筑物。

2.大楼以螺旋上升的方式层层缩进,每次缩进改变塔楼的宽度,使得风向混乱,在每个缩进层风
遇到不同的建筑形状,风旋涡永远得不到形成。

3.大楼的平面设计为Y型结构,除了保持结构简单和形成结构性,还可减少施加在塔楼上的风力。

4.钢筋混凝土塔楼的结构设计主要受风力控制,不是地震荷载,而钢筋混凝土裙房的结构和塔楼的钢螺旋形结构设计中,地震荷载是控制因素。

5.桩筏基础,桩伸进岩层,上下部结构整体性强,共同作用使得抗风抗地震能力增大。

这样的结构特点能把上部结构的钢筋混凝土墙体、连系梁、楼板、筏板、桩和和螺旋形钢结构体系组成的共同作用体系。

台北一101大楼位于台北市区,2004年建成,成为世界高层建筑之一,裙房6层。

采用正方对称的巨型框架结构,以期在风力或地震力作用下获得最稳定的设计。

在最大荷载下,主要由东南西北侧的中央部位共16根钢筋混凝土(SRC)巨型
柱以及中央管状核心结构的电梯间承担。

每侧四根柱的总荷载约45000t 以两根5.6mx1.8m和两根2.7mxO.9m的SRC巨型柱支承在厚4.7m和平面约为40mx16m 的筏板上,通过筏板将荷载传递到其下51根深入岩层约15m一30m的大直径灌注桩。

该大楼共有380根,直径均1.5m,桩的设计荷载为1000t一1450t.深入岩层约15m一30m.桩长在地面以下62m一81m。

基坑开挖深度约为22.8m。

必须指出,该大楼是由中国人自行设计和自行施工的工程,显示着中国科技人员的聪明才智。

地震力的影响的研究,非常认真出色,在大楼即将建成的关键时刻,遇到大地震,却巍然不动。

该大楼不但设计成功,而且施工方法也很成功。

主楼采用顺作法,而裙房采用逆作法,减少两楼相互影响,有利于缩短施工期限。

在艺术风格上,它表现着中国传统花工富贵、节节高升的意境。

总之,该大楼堪称是科技与艺术结合的典范。

是中国人的骄傲。

从这些成功的例子中我们不难发现,对于建筑结构抗风的设计基本上有这些方法:1.建大型基础,与上层建筑形成共同体系,达到能有更高的刚度与整体稳定,最后达到防风抗震。

2.对建筑物的体型的设计,以达到减少风荷载对建筑物的影响,或者使风产生不了风旋涡,从而不会使建筑物产生风振。

3.抑或减少受风荷载的面积,并且扰乱大气气流.使产生的涡流对高层建筑的摇摆振动减小。

这些方法,主要是从减小荷载对结构的影响以及提高结构自身的承载能力,从而使结构更加安全舒适。

我也提不出更好的方法或者更科学的方法,我觉得可以借鉴这些方法,结合实际情况进行抗风设计。

我认为硬抗的始终会有一个极限,所以以后可以更多使用对建筑体型的设计,顺而导之,如采用流线型的,进行风的诱导,让风从建筑路过而不影响到建筑,当然这些仍需对抗风设计知识的学习,所以以后有机会一定会好好看一些有关的书籍。

相关文档
最新文档