平行四边形的性质定理3

合集下载

证明平行四边形的判定定理

证明平行四边形的判定定理

证明平行四边形的判定定理
1、两组对边分别平行的四边形是平行四边形;
2、两组对边分别相等的四边形是平行四边形;
3、对角线互相平分的四边形是平行四边形;
4、一组对边平行且相等的四边形是平行四边形;
5、两组对角分别相等的四边形是平行四边形。

1定义
有两组对边分别平行的四边形叫做平行四边形,包括长方形、菱形、正方形和一般平行四边形,其边与边、角与角、对角线之间存在着各种各样的关系,即是平行四边形性质定理。

2性质
两组对边平行且相等;
两组对角大小相等;
相邻的两个角互补;
对角线互相平分;
对于平面上任何一点,都存在一条能将平行四边形平分为两个面积相等图形、并穿过该点的线;
四边边长的平方和等于两条对角线的平方和。

平行四边形的三个特点

平行四边形的三个特点

平行四边形的三个特点一、什么是平行四边形平行四边形是指具有两对对边互相平行的四边形。

在平行四边形中,相邻两边互相平行,对边长度相等,对角线互相平分。

平行四边形是几何学中的一个基本概念,具有一些独特的特点和性质。

二、平行四边形的三个特点平行四边形的三个特点分别是:内角和相等、对边平等、对角线互相平分。

2.1 内角和相等在平行四边形中,对边互相平行,因此它的相邻内角呈同位角关系,即对应角相等,内角和相等。

可以通过数学公式加以证明,设平行四边形的两对边分别为AB、CD和BC、AD,其中AB∥CD,AD∥BC。

则平行四边形的内角A、B、C、D满足以下关系:A + B = 180° B + C = 180° C + D = 180° D + A = 180°2.2 对边平等平行四边形的两对对边分别平行,对边长度相等。

设平行四边形的两对对边分别为AB、CD和BC、AD,其中AB∥CD,AD∥BC。

则平行四边形的对边满足以下关系:AB = CD AD = BC2.3 对角线互相平分平行四边形的两条对角线互相平分。

设平行四边形的两对对边分别为AB、CD和BC、AD,其中AB∥CD,AD∥BC。

则平行四边形的对角线AC和BD满足以下关系: AC平分BD:AC = BD BD平分AC:BD = AC三、平行四边形的性质及应用除了上述三个特点之外,平行四边形还具有一些其他的性质和应用。

3.1 平行四边形的对角线长度关系在平行四边形中,对角线的长度满足以下关系:AC² + BD² = 2AB² + 2AD²3.2 平行四边形的面积公式平行四边形的面积可以通过底边和高的乘积来计算,即:面积 = 底边× 高3.3 平行四边形在日常生活中的应用平行四边形的概念和性质在日常生活中有许多应用。

例如,在工程和建筑中,平行四边形可以用来描述桌子、柜子、门窗等物体的形状。

平行四边形性质和判定

平行四边形性质和判定

平行四边形性质和判定
平行四边形性质:两组对边平行且相等;两组对角大小相等;相邻的两个角互补;对角线互相平分;对于平面上任何一点,都存在一条能将平行四边形平分为两个面积相等图形、并穿过该点的线;四边边长的平方和等于两条对角线的平方和。

平行四边形性质定理
在同一个二维平面内,由两组平行线段组成的闭合图形,称为平行四边形,其边与边、角与角、对角线之间存在着各种各样的关系,即是平行四边形性质定理。

平行四边形判定定理
(1)定义法:两组对边分别平行的四边形是平行四边形;
(2)两组对边分别相等的四边形是平行四边形;
(3)两组对角分别相等的四边形是平行四边形;
(4)对角线互相平分的四边形是平行四边形;
(5)一组对边平行且相等的四边形是平行四边形。

平行四边形恒等式
平行四边形恒等式是描述平行四边形的几何特性的一个恒等式。

它等价于三角形的中线定理。

在一般的赋范内积空间(也就是定义了长度和角度的空间)中,也有类似的结果。

这个等式的最简单的情形是在普通的平面上:一个平行四边形的两条对角线长度的平方和,等于它四边长度的平方和。

(完整版)平行四边形性质定理

(完整版)平行四边形性质定理

四边性质定理总结平行四边形定义:有两组对边分别平行的四边形叫做平行四边形;性质:(1)平行四边形的邻角互补,对角相等;(2)平行四边形的对边平行且相等;(3)平行四边形的对角线互相平分。

判定:(1)定义法:两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)两组对角分别相等的四边形是平行四边形;(4)对角线互相平分的四边形是平行四边形;(5)一组对边平行且相等的四边形是平行四边形。

三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线;定理:三角形中位线平行于三角形的第三边且等于第三边的一半。

矩形定义:有一个角是直角的平行四边形是矩形性质:(1)具有平行四边形的所有性质;(2)矩形的四个角都是直角;(3)矩形的对角线相等;判定:(1)定义法:有一个角是直角的平行四边形是矩形;(2)对角线相等的平行四边形是矩形;(3)有三个角是直角的四边形是矩形;直角三角形斜边中线定理:直角三角形斜边中线等于斜边的一半。

菱形定义:有一组邻边相等的平行四边形是菱形性质:(1)具有平行四边形的所有性质;(2)菱形的四条边相等;(3)菱形的两条对角线互相垂直平分,并且每一条对角线平分一组对角;(4)菱形的另一个面积计算公式:对角线乘积的一半。

判定:(1)定义法:一组邻边相等的平行四边形是菱形;(2)对角线互相垂直的平行四边形是菱形;(3)四条边相等四边形是菱形。

正方形定义:既是矩形又是菱形的四边形是正方形性质:正方形具有矩形的性质又具有菱形的性质;(1)边:四条边相等,邻边相等,对边平行;(2)角:四个角都是直角;对角线:相等且互相垂直平分;每一条对角线平分一组对角;正方形一条对角线上的一点到另一条对角线的两端相等;判定:判定是一个四边形是正方形的顺序:(1)先证明是平行四边形;(2)再证明是矩形(菱形);(3)最后证明是菱形(或矩形);梯形定义:一组对边平行,另一组对边不平行的四边形叫做梯形梯形的底:梯形中平行的两边叫做梯形的底;梯形的腰:梯形中不平行的两边叫做梯形的腰;梯形的高:梯形两底的距离;梯形的分类:一般梯形;特殊的梯形(1)等腰梯形(两腰相等的梯形);(2)直角梯形(有一个角是直角的梯形);等腰梯形性质:(1)等腰梯形的两腰相等,两底平行;(2)等腰梯形同底上的两个角相等;(3)等腰梯形的两条对角线相等;等腰梯形判定:(1)两腰相等的梯形是等腰梯形;(2)在同底上的两个角相等的梯形是等腰梯形;(3)两条对角线相等梯形是等腰梯形;。

平行四边形的判定定理

平行四边形的判定定理

平行四边形的判定定理平行四边形是一种特殊的四边形,具有以下特点:对边平行且对角线相等。

在数学中,判定一个四边形是否为平行四边形有多种方法。

方法一:利用对边平行的性质判定一个四边形ABCD是否为平行四边形时,可以先利用对边平行的性质进行判断。

步骤:1.检查边AB和边CD是否平行。

2.检查边BC和边AD是否平行。

如果边AB和边CD以及边BC和边AD都是平行的,则可以断定四边形ABCD是一个平行四边形。

方法二:利用对角线相等的性质判定一个四边形ABCD是否为平行四边形时,可以利用对角线相等的性质进行判断。

步骤:1.计算对角线AC的长度。

2.计算对角线BD的长度。

如果对角线AC的长度等于对角线BD的长度,则可以断定四边形ABCD是一个平行四边形。

方法三:利用对边比例相等的性质判定一个四边形ABCD是否为平行四边形时,还可以利用对边比例相等的性质进行判断。

步骤:1.计算边AB与边CD的长度比(AB/CD)。

2.计算边BC与边AD的长度比(BC/AD)。

如果边AB与边CD的长度比等于边BC与边AD的长度比,即AB/CD = BC/AD,那么四边形ABCD是一个平行四边形。

方法四:利用四个角的性质判定一个四边形ABCD是否为平行四边形时,也可以利用四个角的性质进行判断。

步骤:1.检查角A与角C是否相等。

2.检查角B与角D是否相等。

如果角A与角C相等,并且角B与角D相等,则可以断定四边形ABCD是一个平行四边形。

总结通过以上四种方法,我们可以判定一个四边形是否为平行四边形。

可以根据实际情况选择其中一种或多种方法来进行判定,以便快速准确地得出结论。

请注意,以上的判定定理仅适用于四边形,其他多边形无法用这些方法判定是否为平行四边形。

在实际应用中,合理选择合适的方法,结合几何定理,可以更好地解决相关问题。

希望本文能对你理解和应用平行四边形的判定定理有所帮助。

第二十二章 四边形 平行四边形的判断 平行四边形的判定定理、

第二十二章 四边形 平行四边形的判断 平行四边形的判定定理、

四边形.
( √)
2.如图,四边形ABCD的对角线交于点O,下列哪组 条件不能判断四边形ABCD是平行四边形( B ) A.OA=OC,OB=OD B.AB=CD,AO=CO C.AB=CD,AD=BC D.∠BAD=∠BCD,AB∥CD
A
D
O
B
C
3.如图,已知E,F,G,H分别是▱ABCD的边AB, BC,CD,DA上的点,且AE=CG,BF=DH.求证: 四边形EFGH是平行四边形. 证明:在平行四边形ABCD中, ∠A=∠C,AD=BC, 又∵BF=DH, ∴AH=CF. 又∵AE=CG, ∴△AEH≌△CGF(SAS), ∴EH=GF. 同理得△BEF≌△DGH(SAS), ∴GH=EF, ∴四边形EFGH是平行四边形.
证明:在Rt△ABC和Rt△ACD中, ∵AC=CA,AB=CD, ∴Rt△ABC≌Rt△ACD(HL), ∴BC=AD. 又∵AB=CD, ∴四边形PONM是平行四边形.
2.四边形AEFD和EBCF都是平行四边形,求证:四 边形ABCD 是平行四边形.
证明:∵四边形AEFD和
A
D
EBCF都是平行四边形,

两组对边分别平行的四边形是平 行四边形(定义法)
一组对边平行且相等的四边形是 平行四边形(判定定理1)

两组对边分别相等的四边形是平

行四边形(判定定理2)


从角考虑
两组对角分别相等的四边形是平 行四边形(定义拓展)
方 法
对角线互相平分的四边形是平 从对角线考虑 行四边形(判定定理3)
当堂练习
一组对边平行且相等的四边形是 平行四边形(判定定理1)

两组对边分别相等的四边形是平

四边形判定定理以及性质定理

四边形判定定理以及性质定理

判定定理以及性质定理四边形判定定理四边形一、平行四边形:一、平行四边形:判定:判定:)两组对边分别平行的四边形是平行四边形。

(1)两组对边分别平行的四边形是平行四边形。

)两组对边分别相等的四边形是平行四边形。

(2)两组对边分别相等的四边形是平行四边形。

(3)一组对边平行且相等的四边形是平行四边形。

)一组对边平行且相等的四边形是平行四边形。

)对角线互相平分的四边形是平行四边形。

(4)对角线互相平分的四边形是平行四边形。

)两组对角分别相等的四边形是平行四边形。

(5)两组对角分别相等的四边形是平行四边形。

性质:性质:)平行四边形两组对边分别平行。

(1)平行四边形两组对边分别平行。

(2)平行四边形的对变相等。

)平行四边形的对变相等。

)平行四边形的对角相等。

(3)平行四边形的对角相等。

)平行四边形的两条对角线互相平分。

(4)平行四边形的两条对角线互相平分。

(5)平行四边形是中心对称图形,对称中心是两条对角线的交点。

)平行四边形是中心对称图形,对称中心是两条对角线的交点。

二、矩形:二、矩形:判定:判定:)有一个内角是直角的平行四边形是矩形。

(1)有一个内角是直角的平行四边形是矩形。

)有三个内角是直角的四边形是矩形。

(2)有三个内角是直角的四边形是矩形。

)对角线相等平行四边形是矩形。

(3)对角线相等平行四边形是矩形。

性质:性质:)矩形的四个角都是直角。

(1)矩形的四个角都是直角。

)矩形的两条对角线相等。

(2)矩形的两条对角线相等。

三、菱形:三、菱形:判定:判定:)有一组邻边相等的平行四边形叫做菱形。

(1)有一组邻边相等的平行四边形叫做菱形。

)四条边都相等的四边形是菱形。

(2)四条边都相等的四边形是菱形。

)对角线互相垂直的平行四边形是菱形。

(3)对角线互相垂直的平行四边形是菱形。

性质:性质:)菱形的四条边都相等。

(1)菱形的四条边都相等。

)菱形的对角线互相垂直,并且每一条对角线平分一组对角。

(2)菱形的对角线互相垂直,并且每一条对角线平分一组对角。

平行四边形定义性质以及判定定理

平行四边形定义性质以及判定定理

性质(1)如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。

(简述为“平行四边形的两组对边分别相等”[2])(2)如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。

(简述为“平行四边形的两组对角分别相等”[2])(3)如果一个四边形是平行四边形,那么这个四边形的邻角互补。

(简述为“平行四边形的邻角互补”)(4)夹在两条平行线间的平行的高相等。

(简述为“平行线间的高距离处处相等”)(5)如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。

(简述为“平行四边形的对角线互相平分”[2])(6)连接任意四边形各边的中点所得图形是平行四边形。

(推论)(7)平行四边形的面积等于底和高的积。

(可视为矩形。

)(8)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。

(9)平行四边形是中心对称图形,对称中心是两对角线的交点.(10)平行四边形不是轴对称图形,但平行四边形是中心对称图形。

矩形和菱形是轴对称图形。

注:正方形,矩形以及菱形也是一种特殊的平行四边形,三者具有平行四边形的性质。

(11)平行四边形ABCD中(如图)E为AB的中点,则AC和DE互相三等分,一般地,若E为AB上靠近A的n等分点,则AC和DE互相(n+1)等分。

(12)平行四边形ABCD中,AC、BD是平行四边形ABCD的对角线,则各四边的平方和等于对角线的平方和。

(13)平行四边形对角线把平行四边形面积分成四等份。

(14)平行四边形中,两条在分歧对边上的高所组成的夹角,较小的角等于平行四边形中较小的角,较大的角等于平行四边形中较大的角。

(15)平行四边形的面积等于相邻两边与其夹角正弦的乘积平行四边形的判定方法(共6种)1.两组对边分别平行的四边形是平行四边形(定义判定法);2.一组对边平行且相等的四边形是平行四边形;3.对角线互相平分的四边形是平行四边形;4.两组对角分别相等的四边形是平行四边形;5.所有邻角(每一组邻角)都互补的四边形是平行四边形;6.两组对边分别相等的四边形是平行四边形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行四边形的性质3》
一、教材所处的地位与作用
《平行四边形的性质3》是华东师大版八年级下册第二十章第二节第二课时的内容.它属于“空间与图形”的领域,是在学习了全等三角形、平行四边形的性质1 、性质2 的基础上,继续探究平行四边形的性质3.它是全等三角形、平行四边形的回顾、延伸;又是今后继续学习平行四边形的判定、特殊平行四边形的基础,起到承上启下的作用。

平行四边形在人们日常生活和生产实践中应用较广,接触较多的一种几何图形,它的性质的学习,为人们解决日常生活中的实际问题起到很大的帮助。

二、学情分析八年级的学生,活泼好动、求知表现欲都比较强,他们对于图形已有初步认识(学习过三角形、三角形全等、多边形等),但逻辑思维不是很严密,逻辑推理能力较弱,用符号语言表达证明的能力也有待加强。

若前面所学习的平行四边形的性质1、性质2 掌握不牢,有可能在探究性质3 的环节上说理会不清楚,思路不清晰。

三、教学目标
(1)知识技能能根据已有知识(三角形全等、平行四边形的定义、性质等)来探究平行四边形的性质3。

了解平行四边形在生活中的实际应用,运用平行四边形的性质解决实际生活中的有关问题。

(2)数学思考经历运用平行四边形描述现实世界的过程,发展学生的抽象思维和形象思维。

根据平行四边形的性质进行简单的计算和证明,通过观察、实验、归纳、证明,能运用数学语言合乎逻辑地进行讨论与质疑,培养学生的推理能力和演绎能力。

(3)解决问题能运用已学的知识从数学的角度去探究平行四边形的性质3,并能运用平行四边形的性质进行简单的证明与计算,发展应用意识。

(4)情感态度在应用平行四边形性质的过程中培养独立思考的习惯,在数学学习的活动中,获得成功的体验,通过平行四边形性质的应用,进一步认识数学与生活的密切联系。

四、教学重难点
(1)重点:平行四边形的性质3、平行四边形性质的综合应用。

(2)难点:平行四边形的性质3 的探究,选择合适的平行四边形性质解决实际问题。

五、教学法指导
针对学生已有认知水平和特点,创设情境导入新课,调动学生兴趣,并引发认知冲突,引出新课学习的必要。

针对以上重难点,平行四边形的性质3,让学生
自主探究,合作交流,通过观察、实验、归纳、证明得到。

教师只扮演引导者的角色。

六、教学手段
PPT多媒体,学生准备(直尺、三角尺)
七、教学课时
1课时
八、教学过程
教学流程:
创设情境,导入新课一合作交流,解读探究一应用迁移、巩固提高一自主练习、深化新知一畅谈收获、归纳总结一作业布置、拓展延伸一板书设计
教学过程设计
沪科版八年级下册
第二十章四边形20.2.2 平行四边形的性质3
授课人:芜湖县赵桥中学
林霖
授课时间:2010-3-31。

相关文档
最新文档