第一章-第四讲-n元线性方程组求解

合集下载

线性方程组的几种求解方法

线性方程组的几种求解方法

甘肃政法学院本科学年论文(设计)题目浅议线性方程组的几种求解方法学号:姓名:指导教师:成绩:__________________完成时间: 2012 年 11 月目录第一章引言 (1)第二章线性方程组的几种解法 (1)2.1 斯消元法 (1)2.1.1 消元过程 (1)2.1.2 回代过程 (2)2.1.3 解的判断 (2)2.2 克莱姆法则 (3)2.3 LU分解法 (4)2.4 追赶法 (6)第三章结束语 (8)致谢 (8)参考文献 (9)摘要:线性方程组是线性代数的核心内容之一,其解法研究是代数学中经典且重要的研究课题.下面将综述几种不同类型的线性方程组的解法,如消元法、克莱姆法则、直接三角形法、、追赶法,并以具体例子介绍不同解法的应用技巧. 在这些解法中,高斯消元法方法,具有表达式清晰,使用范围广的特点.另外,这些方法有利于快速有效地解决线性方程组的求解问题,为解线性方程组提供一个简易平台,促进了理论与实际的结合。

关键词:线性方程组;解法;应用Several methods of solving linear equation groupAbstract: The system of linear equations is one of linear algebra core contents, its solution research is in the algebra the classics also the important research topic. This article summarized several kind of different type system of linear equations solution, like the elimination, the Cramer principle, the generalized inverse matrix law, the direct triangle law, the square root method, pursue the law, and by concrete example introduction different solution application skill. In these solutions, the generalized inverse matrix method, has the expression to be clear, use scope broad characteristic. Moreover, these methods favor effectively solve the system of linear equations solution problem fast, provides a simple platform for the solution system of linear equations, promoted the theory and the actual union.Key word: Linear equations; Solution ; Example第一章 引言线性方程组理论是高等数学中十分重要的内容,而线性方程组的解法是利用线性方程组理论解决问题的关键.下面将介绍线性方程组的消元法、追赶法、直接三角形法等求解方法,为求解线性方程组提供一个平台。

线性方程组的求解完美版PPT

线性方程组的求解完美版PPT
rA n
推论:齐次线性方程组 A n n x n 1 0 n 1 只有零解
rA n
即 A 0 , 即系数矩阵A可逆。
2. 解的性质
性质:若 1,2 是齐次线性方程组Ax=0的解,
则 x k 1 1 k 2 2 仍然是齐次线性方程组Ax=b的解。
(可推广至有限多个解)
解向量:每一组解都构成一个向量
解空间: A X 0的所有解向量的集合,对加法和数乘
都封闭,所以构成一个向量空间,称为这个齐次 线性方程组的解空间。
3. 基础解系
设 1 ,2 , ,n r是 A X 0的解,满足
( 1 ) 1 ,2 ,,n r 线性无关;
( 2 ) A X 0 的任一解都可以由 1 ,2 , ,n r线性表示。
则称 1 ,2 , ,n r是 A X 0 的一个基础解系。
定理: 设 A是 m n矩阵,如果 r ( A ) r n ,
则齐次线性方程组 A X 0的基础解系存在, 且每个基础解系中含有 nr个解向量。
证明分三步: 1. 以某种方法找 nr个解。 2. 证明这 nr个解线性无关。 3. 证明任一解都可由这 nr个解线性表示。
线性方程组的求解
中国青年政治学院 郑艳霞
• 使用建议:建议教师具备简单的 MATHMATICA使用知识。
• 课件使用学时:4学时 • 面向对象:文科经济类本科生 • 目的:掌握线性方程组的知识点学习。
假设在美国某一固定选区国会选举的投票结果用三维向量表示为
x民 共
主 和
党 党D R得 得
票 票
若P是一个矩阵,满足各列向量均非负,且各列向量纸盒等于 1,则相对于P的稳定向量必满足:Pq=q。可以证明每一个满 足上述条件的矩阵,必存在一个稳定向量;并且,若存在整 整数k,使得Pk>0,则P存在唯一的向量q满足条件。

解n元线性方程组的模型

解n元线性方程组的模型
For(i=k+1;i<M;i++)
{x=A[i][k];
For(j=k;j<N;j++)
A[i][j]-=x*A[k][j;]
}
If(SetPrintMatrix) PriontMatrix()
}
Return 0;
}
(2) 再定义一个求和变量sum和一个指针变量*P,其中p指向 最后一行的每一个元素U[m-1][j], j=0,1,……n-1,判断p所指向的元素的值是否为0,如果是0,则sum++,P++,若不为0,则结束程序;
五、参考文献
[1]陈维兴林晓茶.C++面向对象程序设计(第二版).9.中国铁道出版社2009.11(2010.9重印)
[2]胡超梁伟闫玉宝. C语言从入门到精通.机械工业出版社.2011.1
[3]甄西丰实用数值计算方法.清华大学出版社2006.1
解n元线性方程组的模型
问题的提出:小明妈妈去买白菜,青菜总共花了10元。白菜2.5元一斤,青菜3元一斤,请算出小明妈妈买了几斤白菜及青菜?
尽管这个问题听起来非常熟悉,显得非常简单,但仅仅由这几个数字和约束条件解不出来这个问题的实际解。因为这个问题有白菜和青菜的质量的两个变元,所以还必须需要一组约束,既需要白菜和青菜的总和斤量才能解出这个问题唯一解,否则这个问题会有很多解,这不符合实际要求。
再举一个物理机械运动学有关的简单例子:甲乙两人分别从相距30千米的A、B两地同时相向而行,经过3小时后相距3千米,再经过2小时,甲到B地所剩路程是乙到A地所剩路程的2倍,求甲、乙两人的速度。
解方程组的思想是数学上很热的问题,更是在化学,物理,经济,天文学,医学等许多领域都常会遇到及需要解的问题。

第一章 第讲 n元线性方程组求解

第一章 第讲 n元线性方程组求解

第四讲 n 元线性方程组求解上一讲我们介绍了当n 元一次线性方程组的系数矩阵A 可逆时,可求出方程组解1X A b -=,实际上这也是方程组的唯一解。

如果方程组系数矩阵A 不可逆或A 不是方阵时,该如何来讨论方程组的解?这一讲将通过矩阵的初等变换来研究n 元一次线性方程组(齐次、非齐次)在什么条件下有解、如何求解以及各种解的表达形式等.n 元一次线性方程组是指形如⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++mn mn m m n n n n b x a x a x a b x a x a x a b x a x a x a ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ22112222212111212111 ... ...(4.1)令111212122212n n m m mn a a a a a a A a a a ⎛⎫⎪ ⎪= ⎪⎪⎝⎭L L L L L L L,12n x x X x ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭M ,12m b b b b ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭M则方程组的矩阵方程形式AX b =.其中:A 称为方程组(4.1)的系数矩阵,°()A A b =称为方程组(4.1)的增广矩阵。

当b O ≠时,称(4.1)式为一元线性非齐次线性方程组;当b O =时,称 (4.2 ) 式为一元线性齐次线性方程组,其矩阵形式AX O =.111122121122221122000n n n nm m mn n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩L L L L L L L L L L L L L L L ... ...(4.2) 显然X O =是(4.2)式的当然解。

所以说,齐次线性方程组的解只有两种情况:唯一解(零解)和无穷多解(非零解)。

把非齐次线性方程组(4.1)式的每个方程右边的常数项都换成0,所得到的齐次线性方程组称为原方程组的导出齐次线性方程组,简称导出组。

线性方程组课件

线性方程组课件

对一般的线性方程组
a11 x1 a12 x2 a1n xn b1 a x a x a x b 21 2 22 2 2n n 2 am1 x1 am 2 x2 amn xn bm
(*)
分别称
a11 a A 21 a m1 a12 a22 am 2 a1n a11 a a2 n , A 21 a amn m1 a12 a22 am 2 a1n a2 n amn b1 b2 bm
例2
解线性方程组
x3 x3 x3 x3 2 x4 4 x4 x4 3 x5 4 x5 5 x5 8 x5 1 2 3 2
x1 x2 2 x 2 x 1 2 3 x1 3 x2 x1 x2

§1.2 线性方程组解的情况及判别
情形一:
d r 1 0 0 d r 1
此时阶梯形方程组中出现了
这种矛盾方程,因此阶梯形方程组无解。
情形二:
d r 1 0
子情形一:
r n
则上述阶梯形方程组为
c11 x1 c12 x2 c1n xn d1 c22 x2 c2 n xn d 2 cnn xn d n
定理 方程组的初等变换把一个线性方程组变成 另一个同解的线性方程组。
定理 任一矩阵均可通过有限次初等行变换化为 阶梯形矩阵。
给定线性方程组
a11 x1 a12 x2 a1n xn b1 a x a x a x b 21 2 22 2 2n n 2 am1 x1 am 2 x2 amn xn bm

课件:线性方程组的求解

课件:线性方程组的求解

§1.4 线性方程组的求解
最简形方程组
x1+2x2 x3 = 3 x2+2x3 = 2 (2) 0=0
x1 5x3 = 1 x2+2x3 = 2 0=0
由此可得原方程组的通解
x1 = 5x3+1 x2 = 2x32 x3 = x3
上述求方程组解的方法---Gauss消元法
第1章 行列式和线性方程组的求解
则称A为阶梯形矩阵(简称阶梯阵). 这时称A 中非零行的行数为A的阶梯数. 例如
1 1 2 0 4
11 0 0 4
01 00
3 0
2 2
2 3
,
0 1 0 2 2 0 0 0 2 3
00 0 0 0
00 0 0 4
第1章 行列式和线性方程组的求解
§1.4 线性方程组的求解
如果阶梯阵A还满足如下条件
§1.4 线性方程组的求解
1. 线性方程组的换法变换, 倍法变换和消法变 换统称为线性方程组的初等变换.
注: 倍法变换必须用非零的常数去乘某一个 方程.
2. 阶梯形线性方程组的有三中基本类型. 例如
2x1+3x2 x3 = 1 2x2+x3 = 2 0=1
x1x2+2x3 = 8 2x2 +x3 = 1 x3 = 5
x1+ 2x2 + x3+ x4 = -1 2x1 - x2 +2x3+ x4 = 2 x1 + x2 +2x3+ 2x4 = 0
第三章 矩阵的相抵变换和秩·线性方程组
§3.1 消元法
例2. 设线性方程组
x1 x2 x3 0
x1
(
1) x2

解线性方程组的解法

解线性方程组的解法
13
定理3.1(线性方程组有解判别定理) 线性方程组 Ax β 有解的充要条件是它的系数矩阵 A 与增 广矩阵 A ( A, β ) 等秩,即 r ( A) r ( A) r ( A, β ) 推论3.1(解的个数定理) (1)n元线性方程组 Ax β 有唯一解的充要条件是 r ( A) r ( A, β ) n . (2)n元线性方程组 Ax β 有无穷多解的充要条 件是 r ( A) r ( A, β ) r n . 此时它的一般解中含 n r 个自由未知量. (3)n元线性方程组 Ax β 无解的充要条件 是 r ( A) r ( A, β ) . 由于上述讨论并未涉及常数项 b1 , b2 ,, bm 的 取值,因此对b1 b2 bm 0 时的n元齐次线性 方程组
x (9,1,6)T
9
一般地,不妨设线性方程组(3.1)的增广矩阵可通 过适当的初等行变换化为阶梯形矩阵 1 0 0 c1r 1 c1n d1 0 1 0 c2 r 1 c2 n d 2 0 0 1 crr 1 crn d r A 0 0 d r 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 因而由初等行变换不改变矩阵的秩可知:线性方程 组(3.1)的系数矩阵 A 与增广矩阵 A 的秩分别为
5
集(solution set). 若两个线性方程组的解集相等,则称 它们同解(same solution). 若线性方程组(3.1)的解存 在,则称它有解或相容的. 否则称它无解或矛盾的. 解 线性方程组实际上先要判断它是否有解,在有解时求 出它的全部解. 消元法是求解线性方程组的一种基本方法,其基 本思想是通过消元变形把方程组化成容易求解的同解 方程组. 在中学代数里我们学过用消元法求解二元或 三元线性方程组,现在把这种方法理论化、规范化、 并与矩阵的初等变换结合起来,使它适用于求解含更 多未知量或方程的线性方程组. 为此,先看一个例子.

第四讲线性代数

第四讲线性代数

基础解系的概念
定义:齐次线性方程组 Ax = 0 的一组解向量:x1, x2, ..., xr
如果满足
① x1,x2,...,xr 线性无关; ②方程组中任意一个解都可以表示x1, x2, ..., xr 的线性组合,
那么称这组解是齐次线性方程组的一个基础解系.
设 R(A) = r ,为叙述方便, 不妨设 A 行最简形矩阵为
x1 b11c1 b c 1,nr nr
b11
b12
xr
br1c1
xr+1
c1
b c r ,nr nr
c1
br1 1
+
c1
br 2 1
+
xr + 2
c2
0
0
xn
cnr
0 0
b1,nr
+
cnr
x1 x2 5 x3 + 7 x4 0
3
4
根据前面的结论,导出组的基础解系为
x1
2 1
,
x2
3 0
0
1
于是,原方程组的通解为
3 4 1
c1x1 + c2x2
+*
c1
2 1
+
c2
3 0
+
1
0
0
1
0
§5 向量空间
封闭的概念
定义:所谓封闭,是指集合中任意两个元素作某一运算得到 的结果仍属于该集合. 例:试讨论下列数集对四则运算是否封闭? 整数集 Z 有理数集 Q 实数集 R
结论:若 x = x1, x = x2, ...,, x = xt 是齐次线性方程组 Ax = 0 的解, 则 x = k1x1 + k2x2 + … + ktxt 还是 Ax = 0 的解.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四讲 n 元线性方程组求解上一讲我们介绍了当n 元一次线性方程组的系数矩阵A 可逆时,可求出方程组解1X A b -=,实际上这也是方程组的唯一解。

如果方程组系数矩阵A 不可逆或A 不是方阵时,该如何来讨论方程组的解?这一讲将通过矩阵的初等变换来研究n 元一次线性方程组(齐次、非齐次)在什么条件下有解、如何求解以及各种解的表达形式等.n 元一次线性方程组是指形如⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++mn mn m m n n n n b x a x a x a b x a x a x a b x a x a x a ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ22112222212111212111 ... ...(4.1)令111212122212n n m m mn a a a a a a A a a a ⎛⎫⎪ ⎪= ⎪⎪⎝⎭L L L L L L L,12n x x X x ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭M ,12m b b b b ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭M则方程组的矩阵方程形式AX b =.其中:A 称为方程组(4.1)的系数矩阵,°()A A b =称为方程组(4.1)的增广矩阵。

当b O ≠时,称(4.1)式为一元线性非齐次线性方程组;当b O =时,称 (4.2 ) 式为一元线性齐次线性方程组,其矩阵形式AX O =.111122121122221122000n n n nm m mn n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩L L L L L L L L L L L L L L L ... ...(4.2) 显然X O =是(4.2)式的当然解。

所以说,齐次线性方程组的解只有两种情况:唯一解(零解)和无穷多解(非零解)。

把非齐次线性方程组(4.1)式的每个方程右边的常数项都换成0,所得到的齐次线性方程组称为原方程组的导出齐次线性方程组,简称导出组。

(即:(4.2)是(4.1)的导出组)在第二讲的例2.12中,非齐次方程组的解是通过对方程组的增广矩阵实施初等行变换得到的. 那么,这种求解方法是不是对任意的线性方程组都适用?答案是肯定的。

下面我们就给出理论证明.定理4.1 若将非齐次线性方程组AX b =的增广矩阵°()A A b =用初等行变换化为()V U ,则方程组AX b =与V UX =是同解方程组。

证 由第二讲的性质3.2及定理3.1知,当对增广矩阵°()A A b =用初等行变换化为()V U 时,一定存在初等矩阵k P P P ,,,21Λ,使得()()11k k P P P A b UV -=L 成立记P P P P k k =-11Λ,由初等矩阵的可逆性知P 可逆。

若设1X 为AX b =的解,即1AX b =,两边同时左乘矩阵P ,有111()PAX Pb PA X Pb UX V =⇒=⇒=于是1X 是方程组V UX =的解。

反之,若2X 为V UX =的解,即11112222()UX V P UX P V P U X P V AX b ----=⇒=⇒=⇒=2X 亦为AX b =的解。

综上所述,AX b =与V UX =所表示的是同解方程组.定理4.1给出了利用矩阵初等行变换求解方程组的思路,具体方法如下:将方程组的增广矩阵°()A A b =实施初等行变换化为行的最简形,此时该最简形作为增广矩阵对应的方程组与原方程组同解,这样通过解简化的阶梯形矩阵所对应的方程组就求出原方程组的解,这种方法称为高斯消元法。

4.1.1非齐次线性方程组的相容性先写出方程组(4.1)的增广矩阵°A ,然后利用初等行变换将°A 化为行最简形。

°()A A b ==11121121222212n nm m mn m m na a ab a a a b a a a b ⨯⎛⎫⎪ ⎪⎪⎪⎝⎭L L L L L LL°A 的行最简形有下面三种情形(为方便讨论,假设°A 的行最简形中构成的单位阵正好在左上角)。

(1)11121121222212n nm m mn m m na a ab a a a b a a a b ⨯⎛⎫⎪ ⎪ ⎪⎪⎝⎭L L L L L LL−−−→行变换12(1)10000100000100000000n m n c c c ⨯+⎛⎫⎪ ⎪ ⎪⎪⎪⎪⎪ ⎪ ⎪⎝⎭L L M M M M L M L L M M L M M L...... (4.3) 注意到°A 的行最简形矩阵不为零的行数正好等于变量个数n ,其对应的方程组如下1122n nx c x c x c =⎧⎪=⎪⎨⎪⎪=⎩L L L此时原方程组的唯一解已经得到: 12n c c X c ⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭M ;(2)11121121222212nnm m mn m m na a ab a a a b a a a b ⨯⎛⎫⎪⎪ ⎪⎪⎝⎭L L L L L LL−−−→行变换1(1)2(2)1()12(1)(2)2()2(1)(2)()(1)10000100100000000000000r r r n r r r n r r r r r r n r m n d d d c d d d c d d d c +++++++++⨯+⎛⎫⎪ ⎪ ⎪ ⎪⎪⎪⎪ ⎪ ⎪⎝⎭L L L L M M M M M M M M L L L L LM M M L M L... ... (4.4) 注意到°A 的行最简形中不为零的行数为r (<r n )小于变量个数n .对应的方程组如下 11(1)11(2)21122(1)12(2)2222(1)1(2)2r r r r n n r r r n n r r r r r r r rn n r x b x b x b x c x b x b x b x c x b x b x b x c +++++++++++++++++=⎧⎪+++++=⎪⎨⎪⎪++++=⎩L L L L L L此时还不能完全求出原方程的解,但可以看出原方程有无数个解,这是因为如果把后面n r -个变量12,,r r n x x x ++L 赋予数值后,前面r 个变量12,,r x x x L 的值就被唯一确定,从而得到方程组解X ={12,,r x x x L ,12,,r r n x x x ++L }T .(3)11121121222212n nm m mn m m na a ab a a a b a a a b ⨯⎛⎫⎪ ⎪ ⎪⎪⎝⎭L L L L L LL−−−→行变换12+1(1)1000010000010000000k k m n c c c c ⨯+⎛⎫⎪ ⎪ ⎪⎪⎪⎪⎪ ⎪ ⎪⎝⎭L L M M M M L M L L M M L M M L.....(4.5) 注意到°A 的行最简形中不为零的行数是+1k ,但第+1k 行中只有10k c +≠,其余元素全为零。

这就是说°A 的行最简形对应的方程组中最后一个方程是“10k c +=”(10k c +≠),这显然是一个矛盾方程,因而原方程组无解。

根据上面讨论的方程组(4.1)解的3种情况,先给出非齐次方程组的相关定义定理后再详细讨论(4.1)的解。

定义4.1 如果一个n 元线性方程组它存在解,则称方程组是相容的,否则就称方程组是不相容组或矛盾方程组。

比如(4.3)式和(4.4)式所表示的方程组都是相容方程组,而(4.5)所表示的方程组是不相容方程组。

定义4.2 n 元线性方程组经过化简后,方程组中被保留的方程称为有效方程,消去的方程称为多余方程.比如(4.3)式的有效方程个数正好有n 个(相容的有效方程组);(4.4)式的有效方程个数有r 个,多余方程个数有n r -个(相容的有效方程组).(4.5)式有效方程有1r +个,多余方程1n r --个(不相容的有效方程组). 定理4.2(1)方程组(4.1)有唯一解的充要条件是,有效方程的个数等于变量个数; (2)方程组(4.1)有无穷多解的充要条件是,有效方程的个数小于变量个数; (3)方程组(4.1)无解的从要条件是,存在着矛盾的有效方程。

证明(略)定理4.2更加明确了利用高斯消元法如何判断非齐次方程组的解的情况.例4.1 求解线性方程组⎪⎩⎪⎨⎧=+---=-+-=-+-422312320432143214321x x x x x x x x x x x x解:将方程组的增广矩阵用初等行变换化为行最简形213133213232315111101111021321011013212401454111101111001101011010055500111110010101000111r r r r r r r r r r r r A ----------⎛⎫⎛⎫⎪ ⎪=---−−−→- ⎪ ⎪⎪ ⎪---⎝⎭⎝⎭----⎛⎫⎛⎫ ⎪ ⎪−−−→-−−−→- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭-⎛⎫ ⎪−−−→ ⎪ ⎪--⎝⎭:12100110101000111r +⎛⎫⎪−−−→ ⎪⎪--⎝⎭这时行最简形所对应的方程组为⎪⎩⎪⎨⎧-=-=+=+101434241x x x x x x注意到方程组的有效方程个数为3小于方程变量个数4,所以原方程有无穷多解,求解方法如下:先将x 4移到等号右端得⎪⎩⎪⎨⎧+-=-=-=434241101xx x x x x ,称123,,x x x 是方程组的保留变量,称4x 是方程组的自由变量(可任意取值)。

4x再令x 4取任意常数k R ∈,则得 1234101x k x k x k x k =-⎧⎪=-⎪⎨=-+⎪⎪=⎩ , ... ... (4.6)或写成 123411011101x x k x x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪=+ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ... .. .(4.7)称k 为方程组的自由未知数或自由元,(4.6) 式称为方程组的通解或一般解;(4.7)称为方程组的向量解.例4.2求线性方程组的解 ⎪⎪⎩⎪⎪⎨⎧-=---=+-=++=+-53221232312321321321321x x x x x x x x x x x x解 将方程组的增广矩阵用初等行变换化为行最简形2131412312432142433214(1)1()721121112131230440121101122235007711211011011001100112002200110011r r r r r r r r r r r r r r r r r r A ----+---+---⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪=−−−→ ⎪ ⎪----- ⎪ ⎪-----⎝⎭⎝⎭-⎛⎫⎛⎫⎪ ⎪--⎪⎪−−−→−−−→ ⎪⎪⎪ ⎪⎝⎭⎝⎭43410001000010101010000001100110000r r r ↔⎛⎫⎛⎫⎪⎪⎪ ⎪−−−→−−−→⎪⎪⎪⎪⎝⎭⎝⎭从增广矩阵行的最简形可看出,方程组有效方程数是3,方程组的第4个方程是多余方程,但由于方程组变量的个数是也是3,所以原方程组有唯一解:⎪⎩⎪⎨⎧===110321x x x本例说明当方程组中方程的个数多于变量个数时,方程组一定有多余方程.例4.3 求解线性方程组⎪⎩⎪⎨⎧=-++-=-+-=++-33221531232432143214321x x x x x x x x x x x x 解 将方程组的增广矩阵用初等行变换化为行阶梯形213132123211232131511054742123305471r r r r A ----⎛⎫⎛⎫ ⎪ ⎪=---−−−→--- ⎪ ⎪⎪ ⎪---⎝⎭⎝⎭:32123210547400005r r --⎛⎫ ⎪−−−→--- ⎪⎪⎝⎭, 行阶梯形所对应的方程组是 ⎪⎩⎪⎨⎧=⋅-=--=++-504745123244324321x x x x x x x x , 虽说方程组有效方程有3个,但最后一个方程是矛盾方程,故原方程组无解.例4.4 设方程组 ⎪⎩⎪⎨⎧-=+=++=++k x x kx x x x x kx 5221823532321321问:k 取何值时方程组有唯一解?无穷多解?无解?在有无穷多解时求出通解。

相关文档
最新文档