华师版七年级数学下册

合集下载

2024年华师版七年级下册数学教案

2024年华师版七年级下册数学教案

2024年华师版七年级下册数学教案一、教学内容本节课选自2024年华师版七年级下册数学教材第3章《一元一次方程》的第1节《方程的概念》。

内容包括方程的定义、一元一次方程的一般形式以及方程的解法。

二、教学目标1. 理解方程的概念,掌握一元一次方程的一般形式。

2. 学会解一元一次方程,并能运用到实际问题中。

3. 培养学生的逻辑思维能力和解决问题的能力。

三、教学难点与重点教学难点:一元一次方程的解法。

教学重点:方程的概念及其一般形式。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备。

2. 学具:教材、练习本、铅笔。

五、教学过程1. 实践情景引入(5分钟)利用多媒体展示实际生活中的问题,如“某数的3倍加上5等于14”,引导学生观察并思考。

2. 知识讲解(15分钟)(1)方程的概念:回顾等式的概念,引出方程的定义。

(2)一元一次方程的一般形式:讲解ax+b=0的形式,解释a、b的含义。

(3)方程的解法:介绍移项、合并同类项、系数化为1等方法。

3. 例题讲解(10分钟)选取典型例题,讲解解题步骤,引导学生学会分析问题、解决问题。

4. 随堂练习(15分钟)(1)让学生独立完成练习题,巩固所学知识。

(2)教师巡回指导,解答学生疑问。

5. 小组讨论(10分钟)6. 课堂小结(5分钟)六、板书设计1. 方程的概念2. 一元一次方程的一般形式3. 方程的解法(1)移项(2)合并同类项(3)系数化为1七、作业设计1. 作业题目(1)解下列方程:2x+5=3x+13(x2)+4=2(x+1)(2)写出两个一元一次方程,并求解。

2. 答案(1)x=4,x=5(2)答案不唯一,如x+3=5,x=2。

八、课后反思及拓展延伸1. 反思:本节课学生对方程的概念和解法掌握程度,以及在解题过程中出现的问题。

2. 拓展延伸:研究一元一次方程的解与系数的关系,探索方程的更多解法。

重点和难点解析1. 教学目标中关于理解方程的概念和掌握一元一次方程的一般形式的描述。

华师大版七年级数学下册电子课本课件【全册】

华师大版七年级数学下册电子课本课件【全册】
华师大版七年级数学下册电子课 本课件【全册】目录
0002页 0034页 0064页 0077页 0115页 0144页 0158页 0176页 0214页 0248页 0275页 0328页 0348页 0377页 0428页 0508页 0510页
第6章 一元一次方程 6.2 解一元一次方程 2 解一元一次方程 6.3 实践与探索 7.1 二元一次方程组和它的解 *7.3 三元一次方程组及其解法 阅读材料 鸡兔同笼 8.1 认识不等式 1 不等式的解集 3 解一元一次不等式 阅读材料 等于与不等号的由来 第9章 多边形 1 认识三角形 3 三角形的三边关系 9.3 用正多边形铺设地面 2 用多钟正多边形 第10章 轴对称、平移与旋转
第6章 一元一次方程
华师大版七年级数学下册电子课本 课件【全册】

6.1 从实际问题到方程
华师大版七年级数学下册电子课本 课件【全册】
6.2 解一元一次方程
华师大版七年级数学下册电子课本 课件【全册】
1 等式的性质与方程的简单变 形
华师大版七年级数学下册电子课本 课件【全册】
2 解一元一次方程
华师大版七年级数学下册电子课本 课件【全册】
阅读材料 丢番图的墓志铭与方 程
华师大版七年级数学下册电子课本 课件【全册】

华师大版七年级数学下册全册教案

华师大版七年级数学下册全册教案

第6章一元一次方程教案6.1从实际问题到方程教学目的1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。

2.使学生会列一元一次方程解决一些简单的应用题。

3.会判断一个数是不是一些方程的解。

重点、难点1.重点:会列一元一次方程解决一些简单的应用题。

2.难点:弄清题意,找出“相等关系”。

教学过程一、复习提问小学里已经学过列方程解简单的应用题,让我们回顾一下,如何列方程解应用题?例如:一本笔记本1.2元。

小红有6元钱,那么她最多能买到几本这样的笔记本呢?解:设小红能买到工本笔记本,那么根据题意,得1.2某=6因为1.2某5=6,所以小红能买到5本笔记本。

二、新授:我们再来看下面一个例子:问题1:学校初中一年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆?问:你能解决这个问题吗?有哪些方法?(让学生思考后,回答,教师再作讲评)算术法:(328-64)÷44=264÷44=6(辆)列方程解应用题:设需要租用某辆客车,那么这些客车共可乘44某人,加上乘坐校车的64人,就是全体师生328人,可得。

44某+64=328(1)解这个方程,就能得到所求的结果。

问:你会解这个方程吗?试试看?(学生可能利用逆运算求解,教师加以肯定,同时指出本章里我们将要学习解方程的另一种方法。

)问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”小敏同学很快说出了答案。

“三年”。

他是这样算的:1年后,老师46岁,同学们的年龄是14岁,不是老师的三分之一2年后,老师47岁,同学们的年龄是15岁,也不是老师的三分之一、3年后,老师48岁,同学们的年龄是16岁,恰好是老师的三分之一、你能否用方程的方法来解呢?通过分析,列出方程:13+某=1(45+某)(2)3问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?这个方程不像例l中的方程(1)那样容易求出它的解,小敏同学的方法启发了我们,可以用尝试,检验的方法找出方程(2)的解。

华师大版七年级数学下册全册教案

华师大版七年级数学下册全册教案

华师大版七年级数学下册全册教案一、教学内容本教案依据华师大版七年级数学下册,全册内容包括:1. 第一章实数1.1 无理数1.2 实数的运算2. 第二章代数式2.1 多项式2.2 合并同类项2.3 一元二次方程3. 第三章函数3.1 一次函数3.2 一次函数的图像3.3 一次函数的性质4. 第四章四边形4.1 矩形4.2 菱形4.3 正方形二、教学目标1. 理解并掌握实数、代数式、函数和四边形的基本概念和性质。

2. 学会运用实数进行运算,解决实际问题。

3. 培养学生的逻辑思维能力和空间想象力。

三、教学难点与重点1. 教学难点:无理数的理解、一元二次方程的解法、一次函数的图像与性质。

2. 教学重点:实数的运算、合并同类项、四边形的基本性质。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔、几何模型。

2. 学具:练习本、草稿纸、直尺、圆规。

五、教学过程1. 导入:通过生活中的实例,引入无理数的概念,激发学生的学习兴趣。

2. 新课导入:讲解无理数、实数的运算、多项式、合并同类项、一元二次方程、一次函数、四边形等内容。

3. 例题讲解:针对每个知识点,选取典型例题进行讲解,分析解题思路和方法。

4. 随堂练习:布置相关练习题,让学生巩固所学知识,并及时给予反馈。

6. 课后作业布置:布置适量的作业,巩固所学知识。

六、板书设计1. 板书左侧:列出本节课的知识点,突出重点、难点。

2. 板书右侧:展示例题及解题步骤,方便学生理解。

3. 适当添加图表、模型等,提高视觉效果。

七、作业设计1. 作业题目:(1)计算题:实数的加减乘除运算。

(2)填空题:合并同类项,求解一元二次方程。

(3)解答题:一次函数的图像与性质,四边形的性质。

八、课后反思及拓展延伸1. 反思:对本节课的教学效果进行反思,分析学生的掌握程度,调整教学方法。

2. 拓展延伸:针对学有余力的学生,提供一些拓展题目,提高学生的思维能力和解题技巧。

例如:研究实数的幂运算、一次函数的图像变换、四边形的特殊性质等。

华师大版数学七年级下册整册教学课件

华师大版数学七年级下册整册教学课件

华师大版数学七年级下册整册教学课件教学内容:一、教材章节与内容1. 第一章:平面图形1.1 平面图形的认识1.2 线段的性质1.3 角的概念1.4 相交线与平行线2. 第二章:几何变换2.1 轴对称变换2.2 平移变换2.3 旋转变换3. 第三章:三角形3.1 三角形的性质3.2 三角形的分类3.3 三角形的内角和3.4 三角形的外角4. 第四章:解一元一次方程4.1 解一元一次方程的概念4.2 解一元一次方程的步骤4.3 方程的解与解方程5. 第五章:不等式与不等式组5.1 不等式的概念5.2 不等式的性质5.3 解一元一次不等式5.4 不等式组的解法教学目标:1. 学生能够掌握平面图形的性质和分类,理解线段、角的概念,以及相交线与平行线的关系。

2. 学生能够理解并应用几何变换的原理,包括轴对称变换、平移变换和旋转变换。

3. 学生能够掌握三角形的性质、分类、内角和外角的概念,以及解三角形的相关知识。

4. 学生能够理解一元一次方程的概念,掌握解方程的步骤,以及解方程的方法。

5. 学生能够理解不等式的概念和性质,掌握解一元一次不等式的步骤,以及解不等式组的方法。

教学难点与重点:难点:1. 几何变换的原理和应用。

2. 三角形的内角和外角的性质和计算。

3. 一元一次方程的解法和应用。

4. 不等式的性质和解法。

重点:1. 平面图形的性质和分类。

2. 几何变换的类型和解题方法。

3. 三角形的性质和分类。

4. 一元一次方程的解法和应用。

5. 不等式的性质和解法。

教具与学具准备:1. 教具:黑板、粉笔、直尺、圆规、剪刀、彩笔等。

2. 学具:学生用书、练习本、铅笔、橡皮、尺子、彩笔等。

教学过程:一、实践情景引入(5分钟)教师通过展示实际生活中的几何问题,引导学生观察和思考,引发学生对平面图形的兴趣。

二、教材内容讲解(15分钟)教师按照教材的章节顺序,逐章讲解每个章节的内容,包括平面图形的性质和分类、几何变换的原理、三角形的性质和分类、一元一次方程的解法、不等式的性质和解法。

华师大版七年级下册数学全册教案设计

华师大版七年级下册数学全册教案设计

华师大版数学七年级下册全册教案设计清风染绿叶第6章 一元一次方程6.1 从实际问题到方程1.掌握如何设未知数.2.掌握如何找等式来列方程.3.了解尝试法、代入法寻找方程的解.重点1.确定所有的已知量和确定“谁”是未知数x.2.列方程.难点找出问题中的相等关系.一、创设情境,问题引入在现实生活中,有很多问题都跟数学有关,例如下面的问题:问题1:某校初一年级有328名师生乘车外出春游,已有2辆校车乘坐了64人,还需租用44座的客车多少辆?这个问题用数学中的什么方法来解决呢?二、探索问题,引入新知1.在小学里,我们学过方程,你还能记得什么样的式子是方程吗?含有未知数的等式叫方程.2.讲解导入中的问题:根据小学所学的列方程,按照问题问“什么”就设这个“什么”为未知数x的方法来解决这个问题.分析:设需租用客车x辆,则客车可以乘坐44x人,加上2辆校车上的64人,就是328人.列方程为44x+64=328.解:设还需租用44座的客车x辆,则共可乘坐44x人.根据题意列方程得:44x+64=328.设问:你们谁会解这个方程?请大家自己试一试.问题2:张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年后你们的年龄是我年龄的三分之一?”方法一:我们可以按年龄的增长依次去试.1年后,老师的年龄是46岁,同学的年龄是14岁,不是老师年龄的三分之一;2年后,老师的年龄是47岁,同学的年龄是15岁,也不是老师年龄的三分之一;3年后,老师的年龄是48岁,同学的年龄是16岁,恰好是老师年龄的三分之一.方法二:也可以用列方程的办法来解.解:设x 年后同学的年龄是老师年龄的三分之一,x 年后同学的年龄是(13+x)岁,老师年龄是(45+x)岁.根据题意,列出方程得13+x =(45+x).13这个方程不太好解,大家可以用尝试、检验的方法找出它的解,即只要将x =1,2,3,4,…代入方程的左右两边,看哪个数能使左右两边的值相等,这样得到方程的解为 x =3.结论:使方程左右两边的值相等的未知数的值,就是方程的解.要检验一个数是否为方程的解,只要把这个数代入方程的左右两边,看能否使左右两边的值相等.如果左右两边的值相等,那么这个数就是方程的解.3.由上面的两个问题,你能总结出列方程解决实际问题的步骤吗?结论:设未知数x ;找出相等关系;根据相等关系列方程.【例】 某校组织爱心捐书活动,准备将一批捐赠的书打包寄往贫困地区,其中每包书的数目相等.第一次他们领来这批书的,结果打了16个包还多40本;第二次他们把剩下23的书全部取来,连同第一次打包剩下的书一起,刚好又打了9个包,那么这批书共有多少本?(列方程不必求解)分析:设这批书共有3x 本,根据每包书的数目相等,即可得出关于x 的方程,解之即可得出结论.解:设这批书共有3x 本,根据题意列方程得:=.2x -4016x +409点评:本题考查了方程的应用,根据每包书的数目相等,列出关于x 的一元一次方程是解题的关键.三、巩固练习1.下列各式中,是方程的是( )A .3+5B .x +1=0C .4+7=11D .x +3>02.下列方程中,解为x =-3的是( )A .x +1=0B .2x -1=8-x 13C .-3x =1D .x +=0133.下列四个数中,方程x +2=0的解为( )A .2B .-2C .4D .-44.已知甲数比乙数的2倍大1,如果设甲数为x ,那么乙数可表示为________;如果设乙数为y ,那么甲数可表示为________.5.一根细铁丝用去后还剩2 m ,若设铁丝的原长为x m ,可列方程为23________________.6.检验下列各数是不是方程=x -2的解.3x(1)x =2; (2)x =-1.7.小明今年12岁,他爸爸今年36岁,几年后爸爸的年龄是小明年龄的2倍?(列方程并估计问题的解)四、小结与作业小结这节课主要讲了下面两个问题:1.复习了用列方程的方法来解应用题;2.检验一个数是否为方程的解的方法.作业1.教材第4页“习题6.1”中第1,3题.2.完成练习册中本课时练习.现代数学教学观念要求学生从“学会”向“会学”转变,本课从探究到应用都有意识地营造一个较为自由的空间,让学生能积极地动手、动口、动脑,使学生在学知识的同时形成方法.整个教学过程突出了三个注重:①注重学生参与知识的形成过程,体验应用数学知识解决简单问题的乐趣. ②注重师生间、同学间的互动协作、共同提高.③注重知能统一,让学生在获取知识的同时,掌握方法,灵活应用.6.2 解一元一次方程6.2.1 等式的性质与方程的简单变形第1课时 等式的性质1.借助天平的操作活动,发现并理解等式的性质.2.应用等式的性质进行等式的变换.3.经历观察、比较、抽象、归纳等思维活动,发展学生的数学思维能力.重点等式的性质和运用.难点引导学生发现并概括出等式的性质.一、创设情境,问题引入同学们,你们还记得“曹冲称象”的故事吗?请同学说说这个故事.小时候的曹冲是多么地聪明啊!随着社会的进步,科学水平的发达,我们有越来越多的方法测量物体的重量.最常见的方法是用天平测量一个物体的质量.我们来做这样一个实验,测一个物体的质量(设它的质量为x).首先把这个物体放在天平的左盘内,然后在右盘内放上砝码,并使天平处于平衡状态,此时两边的质量相等,那么砝码的质量就是所要称的物体的质量.二、探索问题,引入新知请同学来做这样一个实验:如下图,天平处于平衡状态,它表示左右两个盘内物体的质量a ,b 是相等的.得到:a =b.1.若在平衡天平两边的盘内都添上(或都拿去)质量相等的物体,则天平仍然平衡.得到:a +c =b +c a -c =b -c2.若把平衡天平两边盘内物体的质量都扩大(或缩小)相同的倍数,则天平仍然平衡.得到:ac =bc(c ≠0) =(c ≠0)a c b c观察上面的实验操作过程,回答下列问题:(1)从这个变形过程,你发现了什么一般规律?(2)这几个等式两边分别进行了什么变化?等式有何变化?(3)通过上面的操作活动,你能说一说等式有什么性质吗?结论:等式的基本性质:性质1:等式的两边都加上(或减去)同一个数或同一个整式,等式仍然成立.如果a =b ,那么a +c =b +c ,a -c =b -c.性质2:等式两边都乘或除以同一个数(除数不为0),等式仍然成立.如果a =b ,那么ac =bc ,=(c ≠0).a c b c【例1】 用适当的数或整式填空,使所得结果仍是等式,并说明是根据等式的哪一条性质,以及怎样变形的:(1)如果2x +7=10,那么2x =10-________________________________________;(2)如果=2,那么a =________________________________________;a 4(3)如果2a =1.5,那么6a =________________________________________;(4)如果-5x =5y ,那么x =________________________________________.分析:根据等式的基本性质进行填空.解:(1)根据等式的性质1,若2x +7=10,则2x =10-7(等式的两边同时减去7,等式仍成立);故填:7(等式的两边同时减去7,等式仍成立);(2)根据等式性质2,若=2,则a =8(等式的两边同时乘以4,等式仍成立);故填:a 48(等式的两边同时乘以4,等式仍成立);(3)根据等式性质2,若2a =1.5,则6a =4.5(等式的两边同时乘以3,等式仍成立);故填:4.5(等式的两边同时乘以3,等式仍成立);(4)根据等式性质2,若-5x =5y ,则x =-y(等式的两边同时除以-5,等式仍成立);故填:-y(等式的两边同时除以-5,等式仍成立).点评:等式性质:1.等式的两边同时加上或减去同一个数或同一个整式,等式仍成立;2.等式的两边同时乘以或除以同一个不为0数或整式,等式仍成立.三、巩固练习1.下列说法正确的是( )A .等式两边都加上一个数或一个整式,所得结果仍是等式B .等式两边都乘以一个数,所得结果仍是等式C .等式两边都除以同一个数,所得结果仍是等式D .一个等式的左、右两边分别与另一个等式的左、右两边分别相加,所得结果仍是等式2.对于数x ,y ,c ,下列结论正确的是( )A .若x =y ,则x +c =y -cB .若x =y ,则xc =ycC .若x =y ,则=x c y cD .若=,则2x =3y x 2c y 3c3.在方程的两边都加上4,可得方程x +4=5,那么原方程是________.4.在方程x -6=-2的两边都加上________,可得x =________.5.方程5+x =-2的两边都减5得x =______.6.如果-7x =6,那么x =________.7.只列方程,不求解.某制衣厂接受一批服装订货任务,按计划天数进行生产,如果每天平均生产20套服装,就比订货任务少100套,如果每天平均生产32套服装,就可以超过订货任务20套,问原计划几天完成?四、小结与作业小结通过及时的练习对所学新知进行巩固和深化,在练习中,要求学生说出计算的依据,帮助学生巩固等式性质的同时,也提升了说理能力.作业1.教材第5页“练习”.2.完成练习册中本课时练习.本节课教学中,充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他成为知识的发现者、创造者,培养学生自我探究和实践能力.通过两次实践活动,学生亲自参与了等式的性质发现的过程,真正做到“知其然,知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高.第2课时 方程的简单变形1.理解并掌握方程的两个变形规则;2.使学生了解移项法则,即移项后变号,并且能熟练运用移项法则解方程;3.运用方程的两个变形规则解简单的方程.重点运用方程的两个变形规则解简单的方程.难点运用方程的两个变形规则解简单的方程.一、创设情境、复习引入1.等式有哪些性质?2.在4x -2=1+2x 两边都减去________,得2x -2=1,两边再同时加上________,得2x =3,变形依据是________.3.在x -1=2中两边乘以________,得x -4=8,两边再同时加上4,得x =12,变14形依据分别是________.二、探索问题、引入新知1.方程是不是等式?2.你能根据等式的性质类比出方程的变形依据吗?结论:方程的两边都加上(或都减去)同一个数或同一个整式,方程的解不变.方程两边都乘以(或都除以)同一个不为零的数,方程的解不变.3.你能根据这些规则,对方程进行适当的变形吗?【例1】 解下列方程:(1)x -5=7; (2)4x =3x -4.分析:(1)利用方程的变形规律,在方程x -5=7的两边同时加上5,即x -5+5=7+5,可求得方程的解.(2)利用方程的变形规律,在方程4x =3x -4的两边同时减去3x ,即4x -3x =3x -3x -4,可求得方程的解.像上面,将方程中的某些项改变符号后,从方程的一边移到另一边的变形叫做移项.点评:(1)上面两小题方程变形中,均把含未知数x 的项,移到方程的左边,而把常数项移到了方程的右边.(2)移项需变号.【例2】 解下列方程:(1)-5x =2; (2)x =;3213分析:(1)利用方程的变形规律,在方程-5x =2的两边同除以-5,即-5x÷(-5)=2÷(-5)(或=,也就是x =) 可求得方程的解.-5x -52-52-5(2)利用方程的变形规律,在方程x =的两边同除以或同乘以,即x÷=÷(或321332233232133232x ×=×),可求得方程的解.231323解: (1)方程两边都除以-5,得x =-.25(2)①方程两边都除以,得x =÷=×,即x =.②方程两边同乘以,得x =×321332132329231323=,即x =.2929结论:(1)上面两题的变形通常称作“将未知数的系数化为1”.(2)上面两个解方程的过程,都是对方程进行适当的变形,得到x =a 的形式.根据上面的例题,你能总结出解一元一次方程的一般步骤吗?点评:解方程的一般步骤是:(1)移项;(2)合并同类项;(3)系数化为1.三、巩固练习1.下面是方程x +3=8的三种解法,请指出对与错,并说明为什么?(1)x +3=8=x =8-3=5;(2)x +3=8,移项得x =8+3,所以x =11;(3)x +3=8,移项得x =8-3,所以x =5.2.下列方程的变形是否正确?为什么?(1)由3+x =5,得x =5+3.(2)由7x =-4,得x =-.74(3)由y =0,得y =2.12(4)由3=x -2,得x =-2-3.3.解下列方程.(1)4x -3=2x -2;(2)1.3x +1.2-2x =1.2-2.7x ;(3)3y -2=y +1+6y.4.方程 2x +1=3和方程2x -a =0 的解相同,求a 的值.四、小结与作业小结先小组内交流收获和感想然后以小组为单位派代表进行总结.教师加以补充.作业1.教材第9页“习题6.2.1”中第1 、2 、3题.2.完成练习册中本课时练习.本节课是在等式基本性质的基础上总结出方程的变形规则,再根据方程的变形规则,通过移项、系数化为1来解简单的方程.学生掌握的较好.6.2.2 解一元一次方程第1课时 一元一次方程的解法(1)1.一元一次方程的定义.2.了解如何去括号解方程.3.了解去分母解方程的方法.重点1.一元一次方程的定义;2.解一元一次方程的步骤.难点灵活使用变形解方程.一、创设情境、复习引入上两堂课讨论了一些方程的解法,那么那些方程究竟是什么类型的方程呢?先看下面几个方程:每一行的方程各有什么特征?(主要从方程中所含未知数的个数和次数两方面分析)4+x =7;3x +5=7-2x ;y -=+1;26y3x +y =10;x +y +z =6;x 2-2x -3=0;x 3-1=0.二、探索问题、引入新知1.比较一下,第一行的方程(即前3个方程)与其余方程有什么区别?(学生答)可以看出,前一行方程的特点是:(1)只含有一个未知数;(2)未知数的次数都是一次的.“元”是指未知数的个数,“次”是指方程中含有未知数的项的最高次数,根据这一命名方法,上面各方程是什么方程呢?(学生答)结论:只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1,这样的方程叫做一元一次方程.2.上两堂课我们探讨的方程都是一元一次方程,并且得出了解一元一次方程的一些步骤.下面我们继续通过解一元一次方程来探究方程中含有括号的一元一次方程的解法.【例1】 解方程:3(x -2)+1=x -(2x -1).分析:方程中有括号,先去括号,转化成上节课所讲方程的特点,然后再解方程.解:去括号3x -6+1=x -2x +1,合并同类项 3x -5=-x +1,移项 3x +x =1+5,合并同类项4x =6,系数化为1,x =1.5.【例2】 解方程:-=1.x -322x +13分析:只要把分母去掉,就可将方程化为上节课的类型.和-的分母为2和x -322x +133,最小公倍数是6,方程两边都乘以6,则可去分母.解:去分母3(x -3)-2(2x +1)=6,去括号3x -9-4x -2=6,合并同类项-x -11=6,移项-x =17,系数化为1,x =-17.回顾上面的解题过程,总结一下:解一元一次方程通常有哪些步骤?结论:解一元一次方程通常的一般步骤为:去分母,去括号,移项,合并同类项,系数化为1.三、巩固练习1.下列方程为一元一次方程的是( )A .y +3=0 B .x +2y =3C .x 2=2xD .+y =21y2.若代数式x +2的值为1,则x 等于________.3.解下列一元一次方程.(1)2-3x =6-5x ;(2)2(x -2)-3(1-2x)=0;(3)(a -1)-2-a =2;4314(4)-=1.x -324x -153.y 取何值时,2(3y +4)的值比5(2y -7)的值大3?4.当x 为何值时,代数式与x -1互为相反数?18+x 3四、小结与作业小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.作业1.教材第11页“练习”.2.完成练习册中本课时练习.从学生的作业中反馈出:对去分母的第一步还存在较大的问题,是不是说明过程的叙述不太清楚,部分学生模棱两可,自己做的时候就会暴露出不懂的,这也提醒我今后的教学中在关键的知识点上要下“功夫”,切不可轻易的解决问题(想当然).备课时应该多多思考学生的具体情况,然后再修改初备的教案,尽量完善,尽量完美.第2课时 一元一次方程的解法(2)1.掌握分母中含有小数的一元一次方程的解法,灵活运用解方程的步骤解方程.2.通过练习使学生灵活的解一元一次方程.重点使学生灵活的解一元一次方程.难点使学生灵活的解一元一次方程.一、创设情境、复习引入通过前面的学习,得出了解一元一次方程的一般步骤,任何一个一元一次方程都可以通过去分母、去括号、移项、合并同类项等步骤转化成x =a 的形式.因此当一个方程中的分母含有小数时,应首先考虑化去分母中的小数,然后再求解这个方程.二、探索问题,引入新知【例1】 解方程:--=10.09x +0.020.073+2x 30.3x +1.40.2分析:此方程的分母中含有小数,通常将分母中的小数化为整数,然后再按解方程的一般步骤求解.解:--=10.09x +0.020.073+2x 30.3x +1.40.2利用分数的基本性质,将方程化为:--=19x +273+2x 33x +142去分母,得6(9x +2)-14(3+2x)-21(3x +14)=42,去括号,得54x +12-42-28x -63x -294=42,移项,得54x -28x -63x =42-12+42+294,合并同类项,得-37x =366,系数化为1,得x =-.36637点评:解此方程时一定要注意区别:将分母中的小数化为整数根据的是分数的基本性质,分数的分子和分母都乘以(或除以)同一个不等于零的数,分数的值不变,所以等号右边的1不变.去分母是方程的两边都乘以各分母的最小公倍数42,所以等号右边的1也要乘以42,才能保证所得结果仍成立.【例2】 解下列方程:(1)3(2x -1)+4=1-(2x -1);(2)++=1.4x +364x +324x +33分析:我们已经学习了解方程的一般步骤,具体解题时,要观察题目的结构特征,灵活应用步骤.第(1)小题中可以把(2x -1)看成一个整体,先求出(2x -1)的值,再求x 的值;第(2)小题,应注意到分子都是4x +3,且++=1,所以如果把4x +3看成一个整161213体,则无需去分母.解:(1)3(2x -1)+4=1-(2x -1) ,3(2x -1)+(2x -1)=1-4,4(2x -1)=-3,2x -1=-,342x =,14x =18(2)++=1,4x +364x +324x +33(++)(4x +3)=1,1612134x +3=1,4x =-2,x =-12点评:解方程时,要注意观察分析题目的结构,根据具体情况合理安排解题的步骤,注意简化运算,这样可以提高解题速度,培养观察能力和决策能力.三、巩固练习1.解方程(1)5x +3=-7x +9;(2)5(x -1)-2(3x -1)=4x -1;(3)=;3x +127+x 6(4)-=1+;x 25x +1162x -43 (5)-=0.75.3+0.2x 0.20.2+0.03x 0.012.m 为何值时,代数式2m -的值与代数式的值的和等于5?5m -137-m23.如下是某同学解方程的过程,请你仔细阅读,然后回答问题.解:-1=2+x +122-x4-1×4=2+×4 ①x +122-x42x +2-4=8+2-x ②2x +x =8+2+2+4 ③3x =16 ④x = ⑤163(1)该同学有哪几步出现错误?(2)请你解题中的方程.4.马虎同学在解方程-m =时,不小心把等式左边m 前面的“-”当做1-3x 21-m3“+”进行求解,得到的结果为x =1,求代数式m 2-2m +1的值.四、小结与作业小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.作业1.教材第14页“习题6.2.2”中第1,2 题.2.完成练习册中本课时练习.这几堂课我们都在探讨一元一次方程的解法,具体解题时要仔细审题,根据方程的结构特征,灵活选择解法,以简化解题步骤,提高解题速度.对于利用方程的意义解决的有关数学题,仔细领会题目中的信息,应把它转化为方程来求解.第3课时 一元一次方程的实际应用1.使学生掌握用一元一次方程解决实际问题的一般步骤;初步了解用列方程解实际问题(代数方法)比用算术方法解的优越性.2.通过分析找出实际问题中已知量和未知量之间的等量关系,并根据等量关系列出方程.重点掌握用一元一次方程解决实际问题的一般步骤.难点通过分析找出实际问题中已知量和未知量之间的等量关系,并根据等量关系列出方程.一、创设情境、复习引入在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否用一元一次方程来解决,若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较它有什么优越性?某数的3倍减2等于它与4的和,求某数.(用算术方法解由学生回答)解:(4+2)÷(3-1)=3答:某数为3.如果设某数为x,根据题意,其数学表达式为3x-2=x+4,此式恰是关于x的一元一次方程.解之得x=3.上述两种解法,很明显算术方法不易思考,而应用设未知数,列出方程并通过解一元一次方程求得应用题的解有化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.我们知道方程是一个含有未知数的等式,而等式表示了一个相等的关系.对于任何一个应用题中所提供的条件应首先找出一个相等的关系,然后再将这个相等的关系表示成方程.下面我们通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤.二、探索问题,引入新知【例1】如图,天平的两个盘内分别盛有51 g,45 g盐,问应该从盘A内拿出多少盐放到盘B内,才能使两者所盛盐的质量相等?分析:设应从盘A内拿出盐x g,可列出下表.盘A盘B原有盐(g)5145现有盐(g)(51-x)(45+x) 等量关系:盘A中现有的盐=盘B中现有的盐.解:设应从盘A内拿出盐x g,放到盘B内,则根据题意,得51-x=45+x,解这个方程,得x=3.经检验,符合题意.答:应从盘A内拿出盐3 g放到盘B内.【例2】学校团委组织65名团员为学校建花坛搬砖.女同学每人搬6块,男同学每人搬8块,每人各搬4次,总共搬了1800块.问有多少名男同学?分析:设男同学有x人,可列出下表.(完成下表)男同学女同学总数参加人数(名)x65每人搬砖数(块)6×4共搬砖数(块)1800 解:设男同学有x 人,根据题意,得32x +24(65-x)=1800,解这个方程得x =30.经检验,符合题意.答:这些团员中有30名男同学.3.根据上面两道例题的解答过程,你能总结出用一元一次方程解实际问题的过程吗?结论:用一元一次方程解答实际问题,关键在于抓住问题中有关数量的相等关系,列出方程.求得方程的解后,经过检验,就可得到实际问题的解答.这一过程也可以简单地表述为:问题方程解答――→分析抽象――→求解检验其中分析和抽象的过程通常包括:(1)弄清题意和其中的数量关系,用字母表示适当的未知数;(2)找出能表示问题含义的一个主要的等量关系;(3)对这个等量关系中涉及的量,列出所需的表达式,根据等量关系,得到方程.在设未知数和解答时,应注意量的单位要统一.三、巩固练习1.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x 名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )A .22x =16(27-x)B .16x =22(27-x)C .2×16x =22(27-x)D .2×22x =16(27-x)2.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程( )A .10%x =330B .(1-10%)x =330C.(1-10%)2x=330 D.(1+10%)x=3303.一台空调标价2000元,若按6折销售仍可获利20%,则这台空调的进价是________元.4.某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打七折销售,则该商品每件销售利润为________元.四、小结与作业小结先小组内交流收获和感想,然后以小组为单位派代表进行总结,最后教师作以补充.作业1.教材第14页“习题6.2.2”中第4,5 题.2.完成练习册中本课时练习.本节课我始终把分析题意、寻找数量关系作为重点来进行教学,不断地对学生加以引导、启发,努力使学生理解、掌握解题的基本思路和方法.但学生在学习的过程中,却不能很好地掌握这一要领,经常会出现一些意想不到的错误.如,数量之间的相等关系找得不清楚;列方程忽视了解设的步骤等.在教学中我始终把分析题意与寻找数量关系作为重点来进行教学,不断地对学生加以引导、启发,努力使学生理解、掌握解题的基本思路和方法.针对学生在学习过程中不重视分析等量关系的现象,在教学过程中我要求学生仔细审题,认真阅读例题的内容提要,弄清题意,找出能够表示应用题全部含义的相等关系.在课堂练习的安排上适当让学生通过模仿例题的思想方法,加强学生解应用题的能力,通过一元一次方程应用题的教学,学生能够比较正确的理解和掌握解应用题的方法,初步养成正确思考问题的良好习惯.6.3 实践与探索第1课时 体积和面积问题1.使学生能够找出简单应用题中的已知量、未知量和相等关系,然后列出一元一次方程来解简单应用题,并会根据应用题的实际意义,检查求得的结果是否合理.2.能够利用一元一次方程解决图形面积、体积等相关问题.重点利用一元一次方程解决图形面积、体积等相关问题.难点找问题中的等量关系.一、创设情境、复习引入我们学过一些图形的相关公式,你能回忆一下,有哪些公式?回忆一些图形的有关公式,为本节课学习用一元一次方程解决图形相关问题,找等量关系起到帮助作用.二、探索问题,引入新知问题:用一根长60厘米的铁丝围成一个长方形:(1)如果长方形的宽是长的,求这个长方形的长和宽;23(2)如果长方形的宽比长少4厘米,求这个长方形的面积;(3)比较(1),(2)所得两个长方形面积的大小.还能围出面积更大的长方形吗?解:(1)设长方形的长为x 厘米,则宽为x 厘米.根据题意,得 2(x +x)=60,解这2323个方程, 得x =18,所以长方形的长为18厘米,宽为12厘米.(2)设长方形的长为x 厘米,则宽为(x -4)厘米,根据题意,得2(x +x -4)=60,解这个方程, 得x =17,所以S =13×17=221(平方厘米).(3)在(1)的情况下S =12×18=216(平方厘米);在(2)的情况下S =13×17=221(平方厘米).还能围出面积更大的长方形,当围出的长方形的长宽相等时,即为正方形,其面积最大,此时其边长为15厘米,面积为225平方厘米.讨论:在第(2)小题中,能不能直接设面积为x 平方厘米?如不能,怎么办?如果直接设长方形的面积为x 平方厘米,则如何才能找出相等关系列出方程呢?诱导学生积极探索:不能直接设面积为未知数,则需要设谁为未知数呢?那么设未知。

华师版七年级数学下册全部教案

华师版七年级数学下册全部教案

第6章一元一次方程教材简析本章的内容包括:一元一次方程的相关概念及其解法;利用一元一次方程分析与解决实际问题.方程是一种重要的描述现实世界的数学模型.教材以实际问题为主线引入方程和方程的解的概念,探索等式的性质以及解一元一次方程,然后通过实践与探索,经历“问题情境——建立数学模型——解答——应用与拓展”的过程,体会数学建模思想.一元一次方程是中考的必考内容,题型主要是选择题和填空题,也有少量的解答题.主要考查一元一次方程的解的意义的理解、解一元一次方程以及列一元一次方程解决实际问题.贴近生活、具有时代气息的一元一次方程应用题是历年各地中考的热点题型之一.教学指导【本章重点】一元一次方程的解及应用.【本章难点】列一元一次方程解决实际问题,提高数学应用能力.【本章思想方法】1.区分解方程中的两种变形.一是“同解变形”,变形的实质是“形变解不变”;另一种是“恒等变形”,变形的实质是“形变值不变”.2.掌握方程思想.方程思想在本章内容的体现主要是列方程解决实际问题.解决问题的思路是分析题意,找出题目中的相等关系,列出一元一次方程,解方程,得出答案.课时计划6.1 从实际问题到方程1课时6.2 解一元一次方程6课时6.3 实践与探索3课时6.1 从实际问题到方程教学目标一、基本目标1.理解方程及方程的解的概念.2.掌握检验某个值是不是方程的解的方法.二、重难点目标【教学重点】根据实际问题中的等量关系,了解方程及方程的解的概念.【教学难点】会用方程描述具体问题中的数量关系和变化规律,建立数学模型.教学过程环节1 自学提纲,生成问题【5 min阅读】阅读教材P2~P3的内容,完成下面练习.【3 min反馈】1.含有未知数的等式叫做方程.2.完成下面各题.(1)某校七年级328名师生乘车外出春游,已有2辆校车共可乘坐64人,还需租用44座的客车多少辆?解:设需要租用客车x辆,共可乘坐44x人.列方程为44x+64=328.(2)在课外活动中,张老师发现同学们的年龄基本都是13岁,就问同学们:“我今年45岁,经过几年后你们的年龄整好是我年龄的13?”解:设经过x年后同学的年龄是老师年龄的13,而经过x年后同学的年龄是(13+x)岁,老师的年龄是(45+x)岁.列方程为13+x=13(45+x).环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】根据题意设未知数,并列出方程(不必求解).(1)有两个工程队,甲队有30人,乙队有10人,问怎样调整两队的人数,才能使甲队的人数是乙队人数的7倍;(2)七(1)班的同学准备去划船,租了若干条船,他们计算了一下,如果比原计划多租1条船,那么正好每条船坐6人;如果比原计划少租1条船,那么正好每条船坐9人.问这个班共有多少名同学?【互动探索】(引发学生思考)根据实际问题列方程的步骤有哪些?题目中有哪些等量关系?【解答】(1)设从乙队调x 人去甲队,则乙队现在有(10-x )人,甲队有(30+x )人.根据甲队的人数是乙队人数的7倍列出方程如下:30+x =7(10-x ).(2)设这个班共有x 名同学,则原计划租船可表示为⎝ ⎛⎭⎪⎫x 6-1条或⎝ ⎛⎭⎪⎫x 9+1条,由此联立可得如下方程:x 6-1=x9+1.【互动总结】(学生总结,老师点评)根据题意列方程的一般步骤:(1)弄清题意和其中的数量关系,用字母表示适当的未知数;(2)找出题目中有关数量的相等关系;(3)用代数式表示出这个等量关系中涉及的量,根据等量关系得到方程.【例2】检验2,1,0三个数是否为方程3(x +1)=2(2x +1)的解. 【互动探索】(引发学生思考)判断一个数是不是原方程的解,必须用这个数替换方程中的未知数,并计算方程左、右两边的值是否相等.【解答】将x =2分别代入原方程左、右两边,左边=3×(2+1)=9,右边=2×(2×2+1)=10.因为左边≠右边,所以x =2不是原方程的解.将x =1分别代入原方程左、右两边,左边=3×(1+1)=6,右边=2×(2×1+1)=6.因为左边=右边,所以x =1是原方程的解.将x =0分别代入原方程左、右两边,左边=3×(0+1)=3,右边=2×(2×0+1)=2.因为左边≠右边,所以x =0不是原方程的解.【互动总结】(学生总结,老师点评)使方程左、右两边相等的未知数的值称为方程的解.检验方程的解的步骤:(1)将数值分别带入原方程的左、右两边进行计算;(2)比较方程左、右两边的值;(3)下结论,若方程左右两边的值相等,则该数是方程的解;反之则不是方程的解.活动2 巩固练习(学生独学) 1.下列式子是方程的有 ( B )35+24=59;3x -18>33;2x -5=0;2x+15=0.A .1个B .2个C .3个D .4个2.小明准备为希望工程捐款,他现在有20元,以后每月打算存10元,若设x 月后他能捐出100元,则下列所列方程正确的是 ( A )A .10x +20=100B .10x -20=100C .20-10x =100D .20x +10=1003.检验下列数值是不是方程的解. (1)3y -1=2y +1(y =2;y =4); (2)3(x +1)=2x -1(x =2;x =-4).解:(1)y =2是方程3y -1=2y +1的解;y =4不是方程3y -1=2y +1的解. (2)x =2不是方程3(x +1)=2x -1的解;x =-4是方程3(x +1)=2x -1的解.环节3 课堂小结,当堂达标 (学生总结,老师点评)方程⎩⎨⎧概念方程的解根据实际问题列方程练习设计请完成本课时对应练习!6.2 解一元一次方程6.2.1 等式的性质与方程的简单变形第1课时 等式的性质教学目标 一、基本目标1.了解等式的两条性质.2.会用等式的性质将等式进行简单的变形. 二、重难点目标 【教学重点】理解和应用等式的性质.【教学难点】会运用等式的性质进行简单的变形.教学过程环节1 自学提纲,生成问题【5 min阅读】阅读教材P4~P5的内容,完成下面练习.【3 min反馈】1.等式的性质等式的性质1:等式两边都加上(或都减去)同一个数或同一个整式,所得结果仍是等式.符号语言:如果a=b,那么a+c=b+c,a-c=b-c.等式的性质2:等式两边都乘(或都除以)同一个数(除数不能为0),所得结果仍是等式.符号语言:如果a=b,那么ac=bc,ac=bc(c≠0).2.已知a=b,请用“=”或“≠”填空:(1)3a=3b;(2)a4=b4;(3)-5a=-5b.3.下列说法正确的是 ( B )A.在等式ab=ac两边都除以a,可得b=cB.在等式a=b两边都除以c2+1,可得ac2+1=bc2+1C.在等式ba=ca两边都除以a,可得b=cD.在等式2x=2a-b两边都除以2,可得x=a-b环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】说一说下面的变形是根据等式的哪条性质及怎样变形得到的?(1)如果2x+7=10,那么2x=10-7;(2)如果5x=4x+7,那么5x-4x=7;(3)如果-3x=18,那么x=-6.【互动探索】(引发学生思考)等式的性质有哪些?【解答】(1)等式性质1,两边减去7.(2)等式性质1,两边减去4x.(3)等式性质2,两边除以-3.【互动总结】(学生总结,老师点评)等式两边都加上(或都减去)同一个数或同一个整式,所得结果仍是等式;等式两边都乘(或都除以)同一个数(除数不能为0),所得结果仍是等式.活动2 巩固练习(学生独学)1.下列等式变形错误的是 ( B )A.若x-1=3,则x=4B.若12x-1=x,则x-1=2xC.若x-3=y-3,则x-y=0D.若3x+4=2x,则3x-2x=-42.若x=y,且a≠0,则下面各式中不一定正确的是 ( D ) A.ax=ay B.x+a=y+aC.xa=yaD.ax=ay3.已知m+a=n+b,根据等式的性质变形为m=n,那么a、b必须符合的条件是 ( C )A.a=-bB.-a=bC.a=bD.a、b可以是任意有理数或整式4.在下列各题的横线上填上适当的数或整式,使所得结果仍是等式,并说明根据的是等式的哪一条性质以及是怎样变形的.(1)如果-x10=y5,那么x=-2y,根据等式的性质2,两边乘-10;(2)如果-2x=2y,那么x=-y,根据等式的性质2,两边除以-2;(3)如果23x=4,那么x=6,根据等式的性质2,两边乘32;(4)如果x=3x+2,那么x-3x=2,根据等式的性质1,两边减3x. 活动3 拓展延伸(学生对学)【例2】 已知3b -2a -1=3a -2b ,试利用等式的性质比较a 与b 的大小. 【互动探索】要比较a 与b 的大小,可以对等式化简,再利用作差法比较两个数的大小.【解答】根据等式的性质1,等式两边都减去3a -2b -1,得5b -5a =1. 根据等式的性质2,等式两边都除以5,得b -a =15,则有b >a .【互动总结】(学生总结,老师点评)运用等式的基本性质1时,一定要注意条件“同时”和“同一个”;运用等式的性质2时,除了要注意“同时”和“同一个”外,还要注意除数不能为0.环节3 课堂小结,当堂达标 (学生总结,老师点评)等式的性质⎩⎪⎨⎪⎧如果a =b ,那么a +c =b +c ,a -c =b -c如果a =b ,那么ac =bc ,a c =bc c ≠0等式的其他性质:(1)若a =b ,则b =a (对称性); (2)若a =b ,b =c ,则a=c (传递性); (3)若a =b ,c =d ,则a ±c =b ±d ,ac =bd ,a c =bd (c =d ≠0);(4)若a =b ,则a n =b n .练习设计请完成本课时对应练习!第2课时 方程的简单变形教学目标 一、基本目标1.理解并掌握方程的两个变形规则. 2.运用方程的两个变形规则解简单的方程. 二、重难点目标 【教学重点】掌握方程的两个变形规则.【教学难点】会运用方程的变形规则解简单方程.教学过程环节1 自学提纲,生成问题【5 min阅读】阅读教材P5~P7的内容,完成下面练习.【3 min反馈】1.由等式的基本性质,可以得到方程的变形规则:(1)方程两边都加上(或都减去)同一个数或同一个整式,方程的解不变;(2)方程两边都乘(或都除以)同一个不等于0的数,方程的解不变.2.将方程中的某些项改变符号后,从方程的一边移到另一边,像这样的变形叫做移项.3.将方程的两边都除以未知数的系数,像这样的变形通常称作“将未知数的系数化为1”.4.解方程20-3x=5时,移项后正确的是 ( B )A.-3x=5+20 B.20-5=3xC.3x=5-20 D.-3x=-5-205.解下列方程:(1)x+7=26;(2)-5x=20;(3)9x=8x-4.解:(1)x=19. (2)x=-4. (3)x=-4.教师点拨:注意运用方程的变形规则对方程进行逐步变形,最终可变形为“x =a”的形式.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】解方程:(1)x-5=-2; (2)3x=2x-5;(3)-3x=15;(4)12x=18.【互动探索】(引发学生思考)利用方程的变形规则将方程逐渐化为“x=a”的形式.【解答】(1)方程两边都加5,得x=3.(2)方程两边都减2x,得x=-5.(3)方程两边都除以-3,得x=-5.(4)方程两边都乘2,得x=1 4 .【互动总结】(学生总结,老师点评)利用方程的变形规则解方程时,要注意方程两边“同时”加、减、乘、除.活动2 巩固练习(学生独学)1.解方程-23x=32时,应在方程两边 ( C )A.同乘-23B.同除以23C.同乘-32D.同除以322.利用等式的性质解方程x2+1=2的结果是 ( A )A.x=2 B.x=-2 C.x=4 D.x=-4 3.方程x-5=0的解是x=5.4.由2x-1=0得到x=12,可分两步,按步骤完成下列填空:第一步:根据等式的性质1,等式两边加1,得到2x=1;第二步:根据等式的性质2,等式两边除以2,得到x=1 2 .5.利用等式的性质解方程:(1)8+x=-5;(2)4x=16;(3)3x-4=11.解:(1)方程两边减8,得x =-13. (2)方程两边除以4,得x =4.(3)方程两边加4,得3x =15.两边除以3,得x =5. 活动3 拓展延伸(学生对学)【例2】能不能从(a +3)x =b -1得到x =b -1a +3,为什么?反之,能不能从x =b -1a +3得到等式(a +3)x =b -1,为什么? 【互动探索】方程的变形规则有哪些?需要注意什么? 【解答】当a =-3时,从(a +3)x =b -1不能得到x =b -1a +3,因为0不能为除数.而从x =b -1a +3可以得到等式(a +3)x =b -1,这是根据等式的性质2,且从x =b -1a +3可知,a +3≠0. 【互动总结】(学生总结,老师点评)运用方程的变形规则求解方程时,注意除数不能为0.环节3 课堂小结,当堂达标 (学生总结,老师点评) 方程的变形规则:(1)方程两边都加上(或都减去)同一个数或同一个整式,方程的解不变; (2)方程两边都乘(或都除以)同一个不等于0的数,方程的解不变. 练习设计请完成本课时对应练习!第3课时 解方程教学目标 一、基本目标1.进一步熟悉方程的两个变形规则及解方程的两个重要步骤.2.引导学生自主探索复杂方程的解法,体会方程不同解法中所蕴含的转化思想.二、重难点目标【教学重点】让学生经历自主探索解方程的每一步变形依据,归纳解方程的一般步骤.【教学难点】灵活运用方程的变形规则解方程.教学过程环节1 自学提纲,生成问题【5 min阅读】阅读教材P7~P8的内容,完成下面练习.【3 min反馈】1.解方程的一般步骤:(1)移项;(2)合并同类项;(3)系数化为1. 2.合并同类项的法则:同类项的系数相加,字母连同它的指数不变. 3.解形如ax+bx=c的一元一次方程先合并同类项,再将系数化为1. 4.方程3x+1=7的解是x=2.5.若x=1是关于x的方程3n-x2=1的解,则n=12.6.解下列方程:(1)-3x+7=1; (2)-y2-3=9;(3)512x-13=14;(4)3x+7=2-2x.解:(1)x=2. (2)y=-24. (3)x=75 .(4)x=-1.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】解下列方程:(1)x-2018=82-5x;(2)-2x+3.5=3x-8.【互动探索】(引发学生思考)解简单的方程的步骤有哪些?移项的关键是什么?【解答】(1)移项,得x+5x=82+2018.合并同类项,得6x=2100.系数化为1,得x=350.(2)移项,得-2x-3x=-8-3.5.合并同类项,得-5x=-11.5.系数化为1,得x=2.3.【互动总结】(学生总结,老师点评)移项是解方程的关键步骤,移项时,一般把含有未知数的项移到等号左边,常数项移到等号右边,注意移项时一定要变号.活动2 巩固练习(学生独学)1.下列各式的变形中,错误的是 ( C )A.由7x-6x=1,得x=1B.由3x-4x=10,得-x=10C.由x-2x+4x=15,得x=15D.由-7y+y=6,得-6y=62.已知关于x的方程4x-3m=2的解是x=m,则m的值是 ( A )A.2 B.-2C.27D.-273.一个两位数,个位上的数字是十位上数字的3倍,两个数字的和是12,这个两位数是39.4.解下列方程:(1)x-2=3-x;(2)-x=1-2x;(3)5=5-3x; (4)x-2x=1-23 x;(5)x-3x-1.2=4.8-5x.解:(1)x=52. (2)x=1. (3)x=0.(4)x=-3. (5)x=2.5.有只狡猾的狐狸,它平时总喜欢戏弄人,有一天它遇见了老虎,狐狸说:“我发现2和5是可以一样大的,我这里有一个方程5x-2=2x-2.方程两边同时加上2,得5x-2+2=2x-2+2.①即5x=2x.方程两边同时除以x,得5=2.②”老虎瞪大了眼睛,听傻了.你认为狐狸的说法正确吗?如果正确,请说明上述①、②步的理由;如果不正确,请指出错在哪里?并加以改正.解:不正确.①正确,运用了等式的性质1.②不正确,因为方程两边同时除的数不能为0.由5x=2x,两边同时减去2x,得5x-2x=0,即3x=0,所以x=0.活动3 拓展延伸(学生对学)【例2】有一些分别标有6,12,18,24,…的卡片,后一张卡片上的数比前一张卡片上的数大6,小彬拿了相邻的3张卡片.(1)若这些卡片上的数字之和为342,小彬拿了哪3张卡片?(2)这3张卡片上的数的和能为86吗?如果能,请求出这3张卡片上的数各是多少;如果不能,请说明理由.【互动探索】(1)根据题意列方程即可求得所拿卡片;(2)假设这三个数字的和能为86,利用方程的解进行判断假设是否正确.【解答】(1)设小彬拿到相邻的3张卡片上的数分别为x-6,x,x+6.根据题意,得x-6+x+x+6=342,解得x=114,所以x-6=108,x+6=120.即小彬拿到相邻的3张卡片上的数分别为108,114,120.(2)假设能拿到和为86的3张卡片,设这3张卡片上的数分别为y-6,y,y +6.则有y-6+y+y+6=86,解得y≈28.67,显然不符合题意,说明上述假设不成立.所以这3张卡片上的数的和不能为86.【互动总结】(学生总结,老师点评)解答本题的关键是由后一张卡片上的数比前一张卡片上的数大6的特点,设出未知数,然后根据每一问中的具体等量关系列出方程求解.环节3 课堂小结,当堂达标(学生总结,老师点评)解方程的步骤⎩⎨⎧ 移项合并同类项系数化为1练习设计请完成本课时对应练习!6.2.2 解一元一次方程第1课时 解一元一次方程(一)教学目标一、基本目标1.了解一元一次方程的概念.2.掌握含有括号的一元一次方程的解法.3.熟练地运用去括号法则解带有括号的方程.二、重难点目标【教学重点】了解一元一次方程的概念.【教学难点】会解含有括号的一元一次方程.教学过程环节1 自学提纲,生成问题【5 min 阅读】阅读教材P9~P10的内容,完成下面练习.【3 min 反馈】1.只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数都是1,像这样的方程叫做一元一次方程.2.当方程中含有括号时,在解方程的过程中把方程含有的括号去掉的过程叫做去括号.3.方程中的去括号法则与整式运算中的去括号法则相同,它的依据是乘法分配律.4.去括号法则:(1)将括号外的因数连同前面的符号看作一个整体,按乘法分配律与括号内的各项相乘;(2)若括号外的因数是正数时,去括号后,原括号内各项的符号不变;(3)若括号外的因数是负数时,去括号后,原括号内各项的符号要变号.5.对于方程2(2x-1)-(x-3)=1,去括号正确的是 ( D )A.4x-1-x-3=1 B.4x-1-x+3=1C.4x-2-x-3=1 D.4x-2-x+3=1环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】下列方程:①x-2=2x;②0.3x=1;③x2=5x+1;④x2-4x=3;⑤x=6;⑥x+2y=0.其中一元一次方程的个数是( ) A.2 B.3C.4 D.5【互动探索】(引发学生思考)①x-2=2x分母含有未知数,是分式方程,故①不符合;②0.3x=1,即0.3x-1=0,符合一元一次方程的定义;③x2=5x+1,即9x+2=0,符合一元一次方程的定义;④x2-4x=3的未知数的最高次数是2,它属于一元二次方程,故④不符合;⑤x=6,即x-6=0,符合一元一次方程的定义;⑥x+2y=0中含有2个未知数,属于二元一次方程,故⑥不符合.综上所述,一元一次方程的个数是3.【答案】B【互动总结】(学生总结,老师点评)本题主要考查了一元一次方程的定义.一元一次方程必须满足的条件:(1)是整式,即分母中不含有未知数;(2)只含有一个未知数;(3)未知数的次数都是1,且系数不为0.【例2】解下列方程:(1)10-4(x +3)=2(x -1);(2)2(y -3)-(4y -1)=6(1-y ).【互动探索】(引发学生思考)由方程特点,运用去括号法则解方程.【解答】(1)去括号,得10-4x -12=2x -2.移项,得-4x -2x =-2-10+12.合并同类项,得-6x =0.系数化为1,得x =0.(2)去括号,得2y -6-4y +1=6-6y .移项,得2y -4y +6y =6+6-1.合并同类项,得4y =11.系数化为1,得y =114. 【互动总结】(学生总结,老师点评)解方程的基本程序又多了一步“去括号”.解含括号的一元一次方程的基本步骤:①去括号;②移项;③合并同类项;④未知数的系数化为1.活动2 巩固练习(学生独学)1.将方程2x -3(4-2x )=5去括号,正确的是 ( C )A .2x -12-6x =5B .2x -12-2x =5C .2x -12+6x =5D .2x -3+6x =5 2.方程2(x -3)+5=9的解是 ( B )A .x =4B .x =5C .x =6D .x =73.解方程4(x -1)-x =2⎝⎛⎭⎪⎫x +12步骤如下:①去括号,得4x -1-x =2x +1;②移项,得4x -2x -x =1+1;③合并同类项,得x =2,其中做错的一步是 ( A )A .①B .②C .③D .①②4.判断下列哪些是一元一次方程?(1)34x =12;(2)3x -2;(3)13x -15=2x 3-1; (4)5x 2-3x +1=0;(5)2x +y =1-3y ;(6)1x -1=5. 解:(1)(3)是一元一次方程.(2)不是方程,是代数式.(4)不是一元一次方程,方程中未知数x 的次数是2.(5)不是一元一次方程,方程中含有2个未知数.(6)不是一元一次方程,1x -1不是整式. 5.解下列方程:(1)2(x -3)=5x ;(2)4x +3(2x -3)=12-()x +4;(3)6⎝ ⎛⎭⎪⎫12x -4+2x =7-⎝ ⎛⎭⎪⎫13x -1; (4)2-3(x +1)=1-2()1+0.5x .解:(1)x =-2. (2)x =1711. (3)x =6. (4)x =0.活动3 拓展延伸(学生对学)【例3】某供电公司分时电价执行时段分为平、谷两个时段,平段为8:00~22:00,14小时,谷段为22:00~次日8:00,10小时.平段用电价格在原电价基础上每千瓦时上浮0.03元,谷段电价在原电价基础上每千瓦时下浮0.25元,小明家5月份实用平段电量40千瓦时,谷段电量60千瓦时,按分时电价付费42.73元.(1)平段、谷段电价每千瓦时各为多少元?(2)如不使用分时电价结算,5月份小明家将多支付电费多少元?【互动探索】(1)本题中存在的等量关系是:小明家支付平段用电费用+谷段用电费用=42.73元; (2)求出原售电价,已知5月份的用电量,就比较容易求出不使用分时电价结算,5月份小明家将支付的电费.【解答】(1)设原电价为每千瓦时x 元.根据题意,得40×(x +0.03)+60×(x -0.25)=42.73.去括号,得40x +1.2+60x -15=42.73.移项、合并同类项,得100x =56.63.化系数为1,得x =0.5653.当x =0.5653时,x +0.03=0.5953,x -0.25=0.3153.即平段电价为每千瓦时0.5953元,谷段电价为每千瓦时0.3153元.(2)100×0.5653-42.73=13.8(元).即如不使用分时电价结算,小明家5月份将多支付13.8元.【互动总结】(学生总结,老师点评)正确找出题目中的等量关系是列方程解应用题的关键.环节3 课堂小结,当堂达标(学生总结,老师点评)一元一次方程⎩⎨⎧ 定义解含括号的一元一次方程练习设计请完成本课时对应练习!第2课时 解一元一次方程(二)教学目标一、基本目标1.会解含有分母的一元一次方程.2.对于求解较复杂的方程,要自觉反思求解的过程和自觉检验方程的解是否正确的良好习惯.二、重难点目标【教学重点】掌握解含分母的一元一次方程的方法.【教学难点】总结解一元一次方程的一般步骤,并能正确的求解一元一次方程.教学过程环节1 自学提纲,生成问题【5 min阅读】阅读教材P10~P11的内容,完成下面练习.【3 min反馈】1.方程中的系数为分数时,根据等式的性质2,将含分数系数的方程两边都乘同一个数(所有分母的最小公倍数),使方程中的分母为1,约去分母的过程叫做去分母.2.方程中含有分母,解方程时,一般先去分母,再进行其他变形.去分母时方程的两边应同乘各分母的最小公倍数.3.解方程:3x+x-12=x+14-2x-13.解:方程两边都乘12,去分母,得12×3x+6(x-1)=3(x+1)-4(2x-1).去括号,得36x+6x-6=3x+3-8x+4.移项,得36x+6x-3x+8x=3+4+6.合并同类项,得47x=13.系数化为1,得x=13 47 .环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】解方程:x+12-4-3x8=1.【互动探索】(引发学生思考)解方程的一般步骤是什么?【解答】去分母,得4(x+1)-(4-3x)=8.去括号,得4x+4-4+3x=8.移项、合并同类项,得7x=8.系数化为1,得x=8 7 .【互动总结】(学生总结,老师点评)解一元一次方程的一般步骤:(1)去分母:方程两边都乘各分母的最小公倍数;(2)去括号:根据去括号法则,依次去小括号、中括号、大括号;(3)移项:将方程的项改变符号后,从方程的一边移到另一边;(4)合并同类项:利用合并同类项的法则,将方程化为ax=b的形式(a≠0);(5)系数化为1:将方程的两边都除以未知数的系数,得到方程的解.活动2 巩固练习(学生独学)1.方程3-1-x2=0可以变形为 ( C )A.3-1-x=0 B.6-1-x=0 C.6-1+x=0 D.6-1+x=22.解方程13-x-12=1的结果是 ( D )A.x=12B.x=-12C.x=13D.x=-133.若式子4x-5与2x-12的值相等,则x的值是 ( B )A.1 B.3 2C.23D.24.解下列方程:(1)x-32-4x+15=1;(2)2x+13=1-x-15.解:(1)x=-9. (2)x=1.5.当x取何值时,代数式5x-28-x的值比代数式x+112-3的值小1?解:根据题意,得5x-28-x=x+112-3-1.去分母,得5x-2-8x=4x+44-32.移项、合并同类项,得-7x=14.系数化为1,得x=-2.活动3 拓展延伸(学生对学)【例2】一架飞机在两城之间飞行,风速为24千米/小时,顺风飞行需要2小时50分,逆风飞行需要3小时.(1)求无风时飞机的飞行速度;(2)求两城之间的距离.【互动探索】应先设出飞机在无风时的速度,由此可知在顺风时的飞行以及在逆风时的飞行速度,又已知了顺风飞行和逆风飞行所用的时间,再根据路程相等,列出方程,求解即可.【解答】(1)设无风时飞机的飞行速度为x千米/小时.根据题意,得(x+24)×256=(x-24)×3,解得x=840,即无风时飞机的飞行速度为840千米/小时.(2)由(1)可知,两城之间的距离为(840-24)×3=2448(千米).【互动总结】(学生总结,老师点评)此题主要考查一元一次方程的实际运用,关键在于根据飞机在顺风时的速度为风速加上在无风中的速度,飞机在逆风中的速度等于在无风中的速度减去风速,列出等式.环节3 课堂小结,当堂达标(学生总结,老师点评)解一元一次方程的步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1.练习设计请完成本课时对应练习!第3课时解一元一次方程(三)教学目标一、基本目标1.理解一元一次方程解简单应用题的方法和步骤.2.会列一元一次方程解简单应用题.二、重难点目标【教学重点】弄清应用题题意并列出方程.【教学难点】会用一元一次方程解决实际问题.教学过程环节1 自学提纲,生成问题【5 min阅读】阅读教材P11~P13的内容,完成下面练习.【3 min反馈】1.天平的两个盘内分别盛有51 g和45 g的盐,其中盘A盛有51 g,盘B 盛有45 g,问应从盘A中拿出多少盐放到盘B中,才能使两者所盛盐的质量相等?分析:本题的等量关系:盘A现有盐的质量=盘B现有盐的质量.设应从盘A 中拿出x克盐放到盘B中,则列出方程为51-x=45+x.=3.故应从盘A中拿出3 g盐放到盘B中,才能使两者所盛盐的质量相等.2.学校团委组织65名新团员为学校建花坛搬砖.女同学每人每次搬6块,男同学每人每次搬8块,每人各搬了4次,共搬了1800块.问这些新团员中有多少名男同学?分析:本题的等量关系:男同学的搬砖数+女同学的搬砖数=搬砖总数.设新团员中有x名男同学,则32x+24(65-x)=1800.=30.故这些新团员中有30名男同学.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】有一位工人师傅要锻造底面直径为40 cm的“矮胖”形圆柱,可他手上只有底面直径是10 cm,高为80 cm的“瘦长”形圆柱,试帮助这位师傅求出“矮胖”形圆柱的高.【互动探索】(引发学生思考)题中的等量关系:锻造前的体积=锻造后的体积.【解答】设锻造成“矮胖”形圆柱的高为x cm. 根据题意,得π·⎝ ⎛⎭⎪⎫1022·80=π·⎝ ⎛⎭⎪⎫4022·x .解得x =5.即“矮胖”形圆柱的高为5 cm.【互动总结】(学生总结,老师点评)圆柱的形状由“瘦长”变成“矮胖”,底面直径和高度都发生了变化,在不计损耗的情况下不变量是它们的体积,抓住这一不变量,就得到等量关系:锻造前的体积=锻造后的体积.【例2】在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下:甲同学说:“二环路车流量为每小时10 000辆.” 乙同学说:“四环路比三环路车流量每小时多2000辆.”丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍.”请你根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多少?【互动探索】(引发学生思考)本题中的等量关系:三环路车流量的3倍-四环路车流量=二环路车流量的2倍.【解答】设三环路车流量为每小时x 辆,那么四环路车流量为每小时(x +2000)辆.依题意,得3x -(x +2000)=2×10 000, 解得x =11 000, 所以x +2000=13 000.即三环路车流量为每小时11 000辆,四环路车流量为每小时13 000辆. 【互动总结】(学生总结,老师点评)用一元一次方程解决实际问题,关键在于抓住问题中的等量关系,列出方程.求得方程的解后,经过检验,得到实际问。

2024年华师大版初中数学七年级下册全册教案

2024年华师大版初中数学七年级下册全册教案

2024年华师大版初中数学七年级下册全册教案一、教学内容1. 第一章:有理数的乘方与幂运算1.1 有理数的乘方1.2 幂的运算法则1.3 应用题举例2. 第二章:一元一次方程2.1 方程的概念2.2 一元一次方程的解法2.3 应用题举例3. 第三章:不等式与不等式组3.1 不等式的概念3.2 不等式的解法3.3 不等式组及其解法3.4 应用题举例二、教学目标1. 掌握有理数的乘方和幂运算的法则,并能熟练运用。

2. 学会解一元一次方程,理解方程的解的概念。

3. 掌握不等式与不等式组的解法,并能解决实际问题。

三、教学难点与重点1. 教学难点:有理数的乘方与幂运算、一元一次方程的解法、不等式与不等式组的解法。

2. 教学重点:培养学生的运算能力,提高解决实际问题的能力。

四、教具与学具准备1. 教具:黑板、粉笔、教学课件。

2. 学具:练习本、铅笔、直尺。

五、教学过程1. 实践情景引入通过生活中的实例,引导学生了解有理数乘方、幂运算、方程和不等式的概念。

2. 例题讲解(1)有理数的乘方与幂运算:讲解例题,引导学生运用法则进行计算。

(2)一元一次方程:讲解例题,引导学生学会解方程。

(3)不等式与不等式组:讲解例题,引导学生学会解不等式和不等式组。

3. 随堂练习设计有针对性的练习题,让学生巩固所学知识。

4. 课堂小结5. 课后作业布置布置适量的作业,巩固所学知识。

六、板书设计1. 有理数的乘方与幂运算2. 一元一次方程3. 不等式与不等式组4. 各类题型的解法步骤七、作业设计1. 作业题目:(1)计算题:有理数的乘方与幂运算。

(2)解方程题:一元一次方程。

(3)解不等式题:不等式与不等式组。

八、课后反思及拓展延伸1. 反思:对本节课的教学过程进行反思,找出不足之处,改进教学方法。

2. 拓展延伸:(1)探讨有理数乘方与幂运算在实际问题中的应用。

(2)研究一元一次方程与不等式在生活中的应用,提高学生的实际问题解决能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华师版七年级数学下册
诗山中学 洪丽云
一、引入
数学是一个色彩斑斓并充满着浓厚趣味 性和挑战性的奇幻世界,每个人走进这个奇 幻世界所经历的路都不一样。在计算一道数 学题时,我们每个人思考问题的方式方法不 同,产生的解法也不一样。今天我要说的题 目是——“一题多解--鸡兔同笼”。
本题出自华师版七年级下册第44页阅读 材料,书中是这样叙述的: “今有雉兔同笼, 上有三十五头,下有九十四足,问雉兔各几 何?”
返回
方法二:列表法
先假设笼子里的动物都是鸡,没有兔子, 那么腿的数量就是35×2=70(条腿)照此类 推便能得出得数。
鸡/只 35 30 25 24 23 22 。。。。。。
兔/只 0 5 10 11 12 13 。。。。。。
脚/只 70 80 90 92 94 96 。。。。。。
返回
小结:这列表法简单易懂直观,也深受大家的喜爱。 但对于数据较大的题目应采用跳跃式列表法或取中列表 法,比如这个题目就不适合采用逐一列表法,否则计算 量就会很大。
方法一
感悟 方法五
ቤተ መጻሕፍቲ ባይዱ
解决问题 的多种方法
方法二 方法三
方法四
方法一:化归法
这个题目有很多的解法,在中国古代孙子给出了一种 简单巧妙的解法:“上置三十五头,下置九十四足。半其足 得四十七。以少减多,再命之,上三除下四,上五除下七。 下有一除上三,下有二除上五,即得”。
《孙子算经》中记载的算法:
兔子站起,金鸡独立
这道题的意思就是:
有兔子和鸡在笼子里,数一数,有35 个头94条脚,问兔子和鸡共几只?
“鸡兔同笼”是我国古代著名趣题之一, 也是数学中的常见题型,最早出现在《孙 子算经》中。“鸡兔同笼”问题一方面可 培养我们的逻辑推理能力;另一方面可使 我们体会代数方法的一般性,激发我们的 解题兴趣。
你知道吗
返回
(1)脚数: 94÷2=47(只)
(2)头数: 兔 47-35=12(只)
1
鸡 35-12=23(只)
2
小结:这种思维方法叫化归法。化归 法就是在解决问题时,先不对问题采取直 接的分析,而是将题中的条件或问题进行 变形,使之转化,直到最终把它归成某个 已经解决的问题。这种思路简单又新颖, 十分适合运算。
谢谢老师和同学们
46÷2=23(只)
35-23=12(只)
小结:假设法也是解答鸡兔同笼问题的 一种基本方法,先假设,再置换,使问题 得到解决。
返回
方法四:列方程法
1、用一元一次方程求解
解:设有鸡ⅹ只。 则有兔(35-x)只。 鸡兔共有94只脚,依题意就是: 2ⅹ+4(35-ⅹ)=94 解得有:ⅹ=23 35-23=12 答:笼子里有鸡23只,兔子12只。 用一元一次方程解答的优点:思维便捷些。
返回
方法五:抬腿法
94-35=59
35个头94条腿
59-35=24
现在鸡已经一屁股坐在地上了,只有兔子还站立着。
24÷2=12 35-12=23
怎么样这个方 法既容易又有
趣吧。
小结:简单的鸡兔问题可以用列表方法 或抬腿法很快找出答案;复杂的鸡兔问题可 返回 以用假设法或方程来解决。
同学们,一题多解的最终目的不是来 展示有多少种解决问题的途径,也不是所 有的题目都需要用多种方法去解决,而是 要寻找一种最佳、最近的途径。类似“鸡 兔同笼”一题多解的问题也常出现在日常 学习中,我们要懂得活学活用,才能让我 们的认知水平更好地提高。
注意:通常设方程时,选择腿的只数多的动物,会在套 用到其他类似鸡兔同笼的问题上,比较好算一些。
2、用二元一次方程组求解
解:设笼中有鸡x只,有兔y只
依题意就是:
x+y=35 2x+4y=94 解此方程组得:
X=23 Y=12
答:笼中有鸡23只,兔12只。
用二元一次方程组解答的优点:思维快速简单。
小结:方程的思想,是初中阶 段一种非常重要的数学思想。分析 数学问题中变量间的等量关系,建 立方程或方程组,通过解方程或方 程组,去分析、转化问题,使问题 获得解决。
方法三:假设法 1、先假设全部都是鸡,即35×2=70比 实际少94-70=24条腿,因为兔子是4条 腿我们把兔子少算了2条腿,所以
24÷2=12(只) 35-12=23(只)
2、我们也可以假设全部都是兔子,所以有 4×35=140条腿,比实际多140-94=46条腿, 我们帮鸡多算了2条腿,所以
相关文档
最新文档