专题-概率(学生)
中考试题专题---概率试题及答案

中考试题专题--概率试题及答案一、选择题1、有一个正方体,6个面上分别标有1~6这6个整数,投掷这个正方体一次,则出现向上一面的数字是偶数的概率为()A.13B.16C.12D.14【答案】c2、将三个均匀的六面分别标有1、2、3、4、5、6的正方体同时掷出,出现的数字分别为a b c、、,则a b c、、正好是直角三角形三边长的概率是()A.1216B.172C.112D.136【答案】D3、为了防控输入性甲型H1N1流感,某市医院成立隔离治疗发热流涕病人防控小组,决定从内科5位骨干医师中(含有甲)抽调3人组成,则甲一定抽调到防控小组的概率是()A.35B.25C.45D.15【答案】A一、填空题1、布袋中装有1个红球,2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是白球..的概率是.【答案】1 32、甲、乙两人玩抽扑克牌游戏,游戏规则是:从牌面数字分别为5、6、7的三张扑克牌中。
随机抽取一张,放回后,再随机抽取一张,若所抽的两张牌面数字的积为奇数,则甲获胜;若所抽取的两张牌面数字的积为偶数,则乙获胜,这个游戏(填“公平”或“不公平”)3、如右图,是由四个直角边分别是3和4的全等的直角三角形拼成的“赵爽弦图”,小亮随机的往大正方形区域内投针一次,则针扎在阴影部分的概率是4、在一个不透明的布袋中,红色、黑色、白色的玻璃球共有60个,除颜色外,形状、大小、质地等完全相同.小刚通过多次摸球实验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是个.【答案】245、(2009年龙岩)在3 □ 2 □(-2)的两个空格□中,任意填上“+”或“-”,则运算结果为3的概率是 .【答案】21. 6、在一个不透明的布袋中装有2个白球和n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,摸到黄球的概率是45,则n __________. 【答案】8 7、晓芳抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概率为______。
六年级数学专题思维训练—概率(含答案及解析)

六年级数学专题思维训练—概率1.气象台预报“本市明天降水概率是80%,” 对此信息,下列说法中正确的是 。
(填序号) ①本市明天将有80%地区降水 ②本市明天将有80%时间降水 ③明天肯定下雨 ④明天降水的可能性比较大.2. 1~100这100个自然数中任意取出一个数,这个数是质数的可能性是 。
3. 有一个骰子(小正方体)的六个面上分别写有数字1、2、2、3、3、3, 当掷投这个骰子时,数字“2”朝上的可能性是 。
A.13 B.23 C.12 D. 164. 一辆肇事车辆撞人后逃离现场, 警察到现场调查取证,目击者只能记得车牌号是由1,4,6, 7,8五个数字组成,却把它们的排列顺序忘记了,如果在电脑中随机地输人一个由这五个数字构成的车牌号,那么,输人的车牌号正好是肇事车辆车牌号的可能性是 .(填分数)5. 一个小方木块的六个面上分别写有数字2,3,5,6,7,9,小光、小亮二人随意往桌面上扔放这个木块,规定:当小光扔时,如果朝上的一面写的是偶数,得 1分,当小亮扔时,如果朝上的一面写的是奇数,得1分。
每人扔100次, 得分高的可能性最大。
6. 约翰与汤姆掷硬币,约翰掷两次,汤姆掷两次,约翰掷两次,……,这样轮流掷下去.若约翰连续两次掷得的结果相同,则记1分,否记记0分,若汤姆连续两次掷得的结果中至少有l次硬币的正面向上,则记1分 ,否则记0分,谁先记满10谁就赢,赢的可能佳较大(请填汤姆或约翰)。
7. 将编号依次为1,2,3,4的四个同样的小球放进一个不透明的袋子中.摇匀舌甲、乙二人做如下游戏:每人从袋子中各摸出一个个球,然后将这两个球上的数字相乘,若积为奇数,则甲获胜;若积为偶数,则乙获胜,请问:在这样的游戏规则下,乙获胜的概率为。
8. 小红、小兰和小明三人玩掷小正方体的游戏,每个小正方体的六个面都分别写着1、2、3、4、5、6.小红说:“将两个小正方体一起掷出看朝上两个数的和是多少。
小明说:“和是6,算小红胜;和是7,算小兰胜;和是8,算我胜。
专题01 概率进一步认识(四大类型)(题型专练)(解析版)

专题01 概率进一步认识(两大类型)【题型1 用列举法求概率】【题型2用频率估计概率】【题型1 用列举法求概率】1.(2023•西陵区模拟)将分别标有“最”、“美”、“宜”、“昌”四个汉字的小球装在一个不透明的口袋中,这些小球除汉字以外其它完全相同,每次摸球前先搅匀,随机摸出一球,不放回,再随机摸出一球,两次摸出的球上的汉字组成“宜昌”的概率是( )A.B.C.D.【答案】A【解答】解:画树状图如下:共有12种等可能的结果,其中两次摸出的球上的汉字组成“宜昌”的结果有2种,∴两次摸出的球上的汉字组成“宜昌”的概率为=,故选:A.2.(2023•萧县三模)将标有“最”“美”“安”“徽”的四个小球装在一个不透明的口袋中(每个小球上仅标一个汉字),这些小球除所标汉字不同外,其余均相同.从中随机摸出两个球,则摸到的球上的汉字可以组成“安徽”的概率是( )A.B.C.D.【答案】D【解答】解:画树状图如下:共有12种等可能的结果,其中两次摸出的球上的汉字可以组成“安徽”的结果有2种,∴两次摸出的球上的汉字可以组成“安徽”的概率为,故选:D.3.(2023春•海州区校级月考)如图,用圆中两个可以自由转动的转盘做“配紫色”游戏,若其中一个转出红色,另一个转出蓝色可配成紫色,那么可配成紫色的概率是( )A.B.C.D.【答案】C【解答】解:重新划分如下:画树状图为:共有6种等可能的结果数,其中一个为红色,另一个转出蓝色的占3种,所以可配成紫色的概率=,故选:C.4.(2023•庐阳区校级模拟)市内某公交站台有4个候车位(成一排),现有甲、乙、丙、丁4名伺学随机坐在某个座位上候车,则甲和乙恰好相邻的概率是( )A.B.C.D.【答案】C【解答】解:由题意知,所有等可能结果如下:(甲,乙,丙,丁),(甲,乙,丁,丙),(甲,丙,乙,丁),(甲,丙,丁,乙),(甲,丁,乙,丙),(甲,丁,丙,乙);(乙,甲,丙,丁),(乙,甲,丁,丙),(乙,丁,甲,丙),(乙,丁,丙,甲),(乙,丙,甲,丁),(乙,丙,丁,甲);(丙,甲,乙,丁),(丙,甲,丁,乙),(丙,丁,甲,乙),(丙,丁,乙,甲),(丙,乙,甲,丁),(丙,乙,丁,甲);(丁,甲,乙,丙),(丁,甲,丙,乙),(丁,乙,甲,丙),(丁,乙,丙,甲),(丁,丙,甲,乙),(丁,丙,乙,甲);所以所有等可能结果共24种结果,其中甲和乙恰好相邻的有12种,所以甲和乙恰好相邻的概率为=,故选:C.5.(2023•大连模拟)众所周知,“石头、剪刀、布”游戏规则是比赛时双方任意出“石头”、“剪刀”、“布”这三种手势中的一种.石头胜剪刀,剪刀胜布,布胜石头,若双方出相同手势,则算打平.小明和小红玩这个游戏,他们随机出一种手势,则小明获胜的概率为( )A.B.C.D.【答案】B【解答】解:画树状图得:∵共有9种等可能的结果,小明获胜的有3种情况,∴小明获胜的概率P==;故选:B.6.(2022秋•朝阳期末)现有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗匀.(1)若从中随机抽取一张,则抽到数字0的概率为 ;(2)记下(1)中所抽到的数字后卡片不放回,背面朝上洗匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为m,n,请利用画树状图或列表的方法,求点A(m,n)在第一象限的概率.【答案】(1);(2),求解过程见解析.【解答】解:(1)有四张分别标有数字﹣1,0,1,2的卡片,若从中随机抽取一张,则抽到0的概率是,故答案为:(2)画树状图如下:共有12种等可能的结果,点P(m,n)在第一象限(横坐标、纵坐标均为正数)的结果有2种(1,2),(2,1).∴点P(m,n)在第一象限的概率为.7.(2022秋•官渡区期末)从2025年起,云南省高考将采用“3+1+2”新模式:“3”是指语文、数学、外语3科为必选科目,“1”是指在物理、历史2科中任选1科,“2”是指在化学、生物、思想政治、地理4科中任选2科.(1)若小红在“1”中选择了物理,在“2”中选择了生物,则她选择化学的概率是 .(2)若小军在“1”中选择了历史,用画树状图或者列表的方法求他在化学、生物、思想政治、地理4科中任选2科.选中思想政治、地理的概率.【答案】(1);(2).【解答】解:(1)小红在“1”中选择了物理,在“2”中选择了生物,从剩下的化学、思想政治、地理三科中选一科,∴她选择化学的概率为,故答案为:;(2)把化学、生物、思想政治、地理4科分别记为A、B、C、D,画树状图如下:共有12种等可能的结果,其中小军选中思想政治、地理的结果有2种,∴小军选中思想政治、地理的概率为=.8.(2023•榆次区一模)【问题情境】大自然中的植物千姿百态,如果细心观察,就会发现:不同植物的叶子通常有着不同的特征,如果我们用数学的眼光来观察,会有什么发现呢?“数智”小组的四位同学开展了“利用树叶的特征对树木进行分类”的项目化学习活动.【实践发现】同学们从收集的杨树叶、柳树叶中各随机选取10片,通过测量得到这些树叶的长和宽(单位:cm)的数据后,分别计算长宽比,整理数据如下:序号12345678910杨树叶的长宽比2 2.4 2.1 2.4 2.8 1.8 2.4 2.2 2.1 1.7柳树叶的长宽比1.5 1.6 1.5 1.4 1.5 1.4 1.7 1.5 1.6 1.4【实践探究】分析数据如下:平均数中位数众数方差杨树叶的长宽比 2.19m 2.40.0949柳树叶的长宽比 1.51 1.5n0.0089【问题解决】(1)上述表格中:m= 2.15 ,n= 1.5 ;(2)①这两种树叶从长宽比的方差来看, 柳 树叶的形状差别较小;②该小组收集的树叶中有一片长为11.5cm,宽为5cm的树叶,这片树叶来自于 杨 树的可能性大;(3)该小组准备从四位成员中随机选取两名同学进行成果汇报,请用列表或画树状图的方法求成员小颖和小娜同时被选中的概率.【答案】(1)2.15,1.5;(2)①柳;②杨;(3).【解答】解:(1)杨树叶的长宽比的中位数为=2.15,即m=2.15;柳树叶的长宽比的众数为1.5,即n=1.5,故答案为:2.15,1.5;(2)①因为柳树叶的长宽比的方差小于杨树叶的长宽比的方差,所以柳树叶的形状差别较小;故答案为:柳;②长为11.5cm,宽为5cm的树叶的长宽比为2.3,而样本中柳树叶的长宽比都小于2.3,杨树叶的长宽比的众数为2.4,所以这片树叶来自于杨树的可能性大;故答案为:杨;(3)四位同学分别用A、B、C、D表示,其中A代表小颖,B代表小娜,画树状图为:共有12中等可能的结果,其中成员小颖和小娜同时被选中的结果数为2,所以成员小颖和小娜同时被选中的概率==.9.(2023•临县二模)某校组织全校学生进行了“航天知识竞赛”,教务处从中随机抽取了n名学生的竞赛成绩(满分100分,每名学生的成绩记为x分)分成如表中四组,并得到如下不完整的频数分布表、频数分布直方图和扇形统计图.根据图中信息,解答下列问题:分组频数A:60≤x<70aB:70≤x<8018C:80≤x<9024D:90≤x≤100b(1)n的值为 60 ,a的值为 6 ,b的值为 12 ;(2)请补全频数分布直方图并计算扇形统计图中表示“C”的圆心角的度数为 144 °;(3)竞赛结束后,九年级一班从本班获得优秀(x≥80)的甲、乙、丙、丁四名同学中随机为抽取两名宣讲航天知识,请用列表或画树状图的方法求恰好抽到甲、乙两名同学的概率.【答案】(1)60,6,12;(2)图形见解析,144;(3).【解答】解:(1)n=18÷30%=60,∴a=60×10%=6,∴b=60﹣6﹣18﹣24=12,故答案为:60,6,12;(2)补全频数分布直方图如下:扇形统计图中表示“C”的圆心角的度数为:360°×=144°,故答案为:144;(3)画树状图如下:共有12种等可能的结果,其中恰好抽到甲、乙两名同学的结果有2种,∴恰好抽到甲、乙两名同学的概率为=.10.(2023•开江县二模)目前“微信”、“支付宝”、“共享单车“和“网购”给我们的生活带来了很多便利,九年级数学兴趣小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种),并将调查结果绘制成如下不完整的统计图.(1)根据图中信息求出m= 100 ,n= 35 ;(2)请你帮助他们将这两个统计图补全;(3)已知A、B两位同学都最认可“微信”,C同学最认可“支付宝”,D 同学最认可“网购”,从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.【答案】见试题解答内容【解答】解:(1)∵被调查的总人数m=10÷10%=100人,∴支付宝的人数所占百分比n%=×100%=35%,即n=35,故答案为:100、35;(2)网购人数为100×15%=15人,微信对应的百分比为×100%=40%,补全图形如下:(3)根据题意画树状图如下:共有12种情况,这两位同学最认可的新生事物不一样的有10种,所以这两位同学最认可的新生事物不一样的概率为=.11.(2023•昭阳区一模)对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A,B,C,D四个小区进行检查,并且每个小区不重复检查.(1)甲组抽到A小区的概率是 ;(2)请用列表或画树状图的方法求甲组抽到A小区,同时乙组抽到C小区的概率.【答案】见试题解答内容【解答】解:(1)∵共有A,B,C,D,4个小区,∴甲组抽到A小区的概率是,故答案为:.(2)根据题意画树状图如下:∵共有12种等可能的结果数,其中甲组抽到A小区,同时乙组抽到C小区的结果数为1,∴甲组抽到A小区,同时乙组抽到C小区的概率为.12.(2023•深圳模拟)某中学对九年级学生开展了“我最喜欢的景区”的抽样调查(每人只能选一项):分别有A、B、C、D、E五个景区,根据收集的数据绘制了如图所示的两幅不完整的统计图,其中B对应的圆心角为90°,请根据图中信息解答下列问题.(1)抽取的九年级学生共有 200 人,并补全条形统计图;(2)扇形统计图中m= 10 ,表示E的扇形的圆心角是 72 度;(3)九年级准备在最喜欢A景区的5名学生中随机选择2名进行实地考察,这5名学生中有2名男生和3名女生,请用树状图或列表法求选出的2名学生都是女生的概率.【答案】(1)200,见解析;(2)10,72;(3).【解答】解:(1)∵B所对的圆心角为90°,∴B的占比为,∴总人数为(人),C﹣y+1﹣m=0的人数为200﹣60﹣50﹣20﹣40=30(人),补全统计图如图所示,故答案为:200;(2),E的扇形的圆心角是,故答案为:10,72.(3)画出树状图如图所示,∵共有20种情况,选出的两名学生都是女生的情况有6种,∴选出的两名学生都是女生的概率是.【题型2用频率估计概率】13.(2023•高州市校级二模)一个暗箱中放有a个除颜色外其他完全相同的球,这a个球中只有2个红球,每次将球搅拌均匀后,任意摸出1个球记下颜色,再放回暗箱,通过大量重复试验后发现,摸到红球的频率稳定在20%,那么可以估算a的值是( )A.15B.10C.4D.3【答案】B【解答】解:根据题意得:2÷20%=10(个),答:可以估算a 的值是10;故选:B .14.(2023•方城县模拟)北京2022年冬奥会的吉祥物为“冰墩墩”,冬残奥会的吉祥物为“雪容融”,体现了人与自然和谐共生,深受青少年的喜爱.现有两张正面印有吉祥物的不透明卡片,卡片除正面图案不同外,其余均相同,其中一张正面印有“冰墩墩”图案,另一张正面印有“雪容融”图案,将两张卡片正面向下洗匀,从中随机抽取一张卡片,小颖和同学抽取卡片获得的数据如下表:抽取卡片的次数/次100200300400500抽到冰墩墩的次数/次5398156201248若抽取卡片的次数为1000,则“抽到冰墩墩”的频数最接近( )A .250B .500C .700D .850【答案】B【解答】解:由表格知,随着抽取次数的增加,抽到冰墩墩的概率约为=0.496≈0.5,所以当抽取卡片的次数为1000时,“抽到冰墩墩”的频数最接近1000×0.5=500,故选:B .15.(2023•宝安区校级三模)在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中白球可能有( )A .15个B.20个C .30个D .35个【答案】D【解答】解:设袋中有黄球x 个,由题意得=0.3,解得x =15,则白球可能有50﹣15=35个.故选:D .16.(2023•高州市二模)在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他完全相同.通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( )A.6个B.15个C.12个D.13个【答案】C【解答】解:设白球个数为x个,∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,∴=,解得:x=12,经检验x=12是原方程的根,故白球的个数为12个.故选:C.17.(2023•琼中县一模)一个不透明的袋子中装有2个红球和若干个黄球,这些球除颜色外都相同.经过多次试验发现,摸出红球的频率稳定在左右,则袋子中的黄球个数最有可能是( )A.1B.2C.4D.6【答案】C【解答】解:设袋子中黄球的个数可能有x个,根据题意得:=,解得:x=4,经检验x=4是原方程的解,∴袋子中黄球的个数可能是4个.故选:C.18.(2023•市南区一模)两名同学在一次用频率估计概率的试验中统计了某一结果出现的频率,绘制出的统计图如图所示,则符合这一结果的试验可能是( )A.掷一枚正六面体的骰子,出现点数是偶数的概率B.抛一枚硬币,正面朝下的概率C.从装有2个红球和1个蓝球(3个球除颜色外均相同)的不透明口袋中,任取一个球恰好是蓝球的概率D.用一副去掉大、小王的扑克牌做摸牌游戏,随机抽取一张牌,花色为“红桃”的概率【答案】C【解答】解:A、掷一枚正六面体的骰子,出现点数是偶数的概率是,故此选项不符合题意;B、抛一枚硬币,出现正面朝下的概率为,故此选项不符合题意;C、从装有2个红球和1个蓝球(3个球除颜色外均相同)的不透明口袋中,任取一个球恰好是蓝球的概率是,故此选项符合题意.D、用一副去掉大、小王的扑克牌做摸牌游戏,随机抽取一张牌,花色为“红桃”的概率=,故此选项不符合题意;故选:C.19.(2023•蕉城区校级一模)在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则盒子中大约有白球( )个.A.10B.12C.15D.18【答案】B【解答】解:∵共摸了40次,其中10次摸到黑球,∴有30次摸到白球,∴摸到黑球与摸到白球的次数之比为1:3,∴口袋中黑球和白球个数之比为1:3,∴4÷=12(个).故选:B.20.(2022秋•武侯区校级期末)在一个不透明的盒子中有20个除颜色外均相同的小球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.5,由此可估计袋中红球的个数约为( )A.6个B.8个C.10个D.12个【答案】C【解答】解:设盒子中有红球x个,由题意可得:=0.5,解得:x=10,故选:C.21.(2022秋•丛台区校级期末)在一个不透明的盒子中装有a个球,这些球除颜色外无其他差别,这a个球中只有4个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在0.2左右,则a的值约为( )A.12B.16C.18D.20【答案】D【解答】解:根据题意得:=0.2,解得:a=20,经检验:a=20是原分式方程的解,答:a的值约为20;故选:D.22.(2022秋•渝中区期末)为了方便核酸检测,小刚将自己的核酸检测二维码打印在纸上,如图所示,为了估计图中黑色部分的面积,他在纸内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.5左右,测得二维码是边长为5dm的正方形,据此可以估计黑色部分的面积约为( )A.2.5dm2B.6.25dm2C.10dm2D.12.5dm2【答案】D【解答】解:经过大量重复试验,发现点落入黑色部分的频率稳定在0.5左右,据此可以估计黑色部分的面积为25×0.5=12.5(dm2),故选:D.23.(2023春•横山区期末)某小组做“当试验次数很大时,用频率估计概率”的试验时,统计了某一结果出现的频率,表格如下,则符合这一结果的试验最有可能是( )次数1002003004005006007008009001000频率0.600.300.500.360.420.380.410.390.400.40 A.掷一个质地均匀的骰子,向上的面点数是“6”B.掷一枚一元的硬币,正面朝上C.不透明的袋子里有2个红球和3个黄球,除颜色外都相同,从中任取一球是红球D.三张扑克牌,分别是3,5,5,背面朝上洗匀后,随机抽出一张是5【答案】C【解答】解:A、掷一个质地均匀的骰子,向上的面点数是“6”的概率为:,不符合题意;B、抛一枚硬币,出现反面的概率为,不符合题意;C、不透明的袋子里有2个红球和3个黄球,除颜色外都相同,从中任取一球是红球的概率是=0.4,符合题意;D、三张扑克牌,分别是3,5,5,背面朝上洗匀后,随机抽出一张是5的概率为,不符合题意,故选:C.24.(2023春•尉氏县月考)某玩具厂对一批毛绒玩具进行抽检的结果如下:2050100200500100015002000抽取的毛绒玩具数n19479118446292113791846优等品数m0.9500.9400.9100.9200.9240.9210.9190.923优等品的频率从这批毛绒玩具中,任意抽取的一个优等品的概率约是 0.92 .(精确到0.01)【答案】0.92.【解答】解:从这批毛绒玩具中,任意抽取的一个优等品的概率约是0.92,故答案为:0.92.25.(2023•西陵区模拟)如图,平整的地面上有一个不规则图案(图①的阴影部分),小明想了解该图案的面积是多少,他采取了如下方法:用一个面积为20cm2的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计试验结果),他将若干次有效试验的结果绘制成了图②所示的折线统计图,由此他估计不规则图案的面积大约为 7 cm2.【答案】7.【解答】解:假设不规则图案面积为xm2,已知长方形面积为20m2,根据几何概率公式小球落在不规则图案的概率为:,当事件A试验次数足够多,即样本足够大时,其频率可作为事件A发生的概率估计值,故由折线图可知,小球落在不规则图案的概率大约为0.35,综上有:=0.35,解得x=7.故答案为:7.26.(2023春•思明区校级期末)在一个不透明的袋子里有若干个白球,为估计白球个数,小东向其中投入8个黑球(与白球除颜色外均相同),搅拌均匀后随机摸出一个球,记下颜色,再把它放入袋中,不断重复这一过程,共摸球100次,发现有50次摸到黑球.则可估计这个袋中白球的个数约为 8 个.【答案】8.【解答】解:由题意可得,袋中球的总数为:8÷=16(个),则白球约为16﹣8=8(个),故答案为:8.27.(2023春•太仓市期末)一只不透明的袋子中装有若干个红球和8个白球,这些球除颜色外都相同,将球摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大盘重复摸球试验后发现,摸到白球的频率稳定在0.4,则袋子中有红球 12 个.【答案】12.【解答】解:由题意知,袋中球的总个数约为8÷0.4=20(个),所以袋子中有红球20﹣8=12(个),故答案为:12.。
初中数学概率专题复习题及答案

初中数学概率专题复习题及答案1、宇宙飞船的速度比飞机的速度快是事件。
2、两直线平行,同旁内角相等,这个事件是事件。
3、过平面内三点作一条直线是事件。
4、在一个袋子中装有10个红球,2个黄球,每个球除颜色外都相同,搅匀后,摸到色的球可能性大。
5、有10张形状、大小都一样的卡片,分别写有1至10十个数,将它们反面朝上洗匀后,任意抽一张,抽得偶数的成功率为。
6、一只袋内装有2个红球,3个白球,5个黄球(这些球除颜色外没有其他区别),从中任意取出一球,那么取得红球的成功率是。
7、如图11-1所示,准备了三张大小相同的纸片,其中两张纸片上各画一个半径相等的半圆,另一张纸片画一个正方形,将这三张纸片放在一个盒子里摇匀,随机地抽取两张纸片,假设可以拼成一个圆形(取出的两张纸片都画有半圆形)那么甲方赢;假设可以拼成一个蘑菇形(取出一张纸片画有半圆、一张纸片画有正方形)那么乙赢.你认为这个游戏公平吗?假设不公平,有利于谁?.8、如果把抢30改成抢40,其他规那么不变,甲先取,乙后取,那么对有利.9、小华从一副完整的中国象棋中摸出5枚炮是事件.10、任意掷一枚普通骰子,出现了的点数不大于6这是事件。
11、同时抛掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1至6的点数,以下事件中是不可能事件的是()A.点数之和为12B.点数之和小于8C.点数之和大于4小于8D.点数之和为1312、以下事件不可能发生的是()A.翻开电视机,CCTV-1正在播放新闻B.我们班的同学将来会有人中选为劳动模范C.在空气中,光的传播速度比声音的传播速度快D.假设实数,那么13、以下事件中,属于必然事件的是()A.明天我市下雨B.我走出校门,看到的第一辆汽车的牌照的末位数字是偶数C.抛一枚硬币,正面朝上D.一口袋中装有2个红球和1个白球,从中摸出2个球,其中必有红球14、某超级市场失窃,大量的商品在夜间被罪犯用汽车运走,三个嫌疑犯被警察局传讯,警察已经掌握了以下事实;(1)罪犯不在A、B、C三人之外;(2)C作案时总得有A作从犯;(3)B不会开车。
专题25.1 概率初步(章节复习+能力强化卷)学生版-2024-2025学年九年级数学上册真题汇编专

2024-2025学年人教版数学九年级上册同步专题热点难点专项练习专题25.1 概率初步(章节复习+能力强化卷)知识点01:必然事件、不可能事件和随机事件1.定义:(1)必然事件在一定条件下重复进行试验时,,叫做必然事件.(2)不可能事件叫做不可能事件.(3)随机事件在一定条件下,,称为随机事件.细节剖析:均为“确定事件”,随机事件又称为2.要知道事件发生的可能性大小首先要确定 .一般地,发生的可能性最大,发生的可能性最小,的可能性有大有小,不同的随机事件发生的可能性的大小有可能不同.知识点02:概率的意义概率是从数量上刻画了一个随机事件发生的可能性的大小.一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数附近,那么这个常数就叫做事件A的概率(probability),记为.细节剖析:(1)概率是,而频率是;(2)概率反映了;(3) 事件A的概率是一个大于等于0,且小于等于1的数,,即,其中P(必然事件)=1,P(不可能事件)=0,0<P(随机事件)<1.知识点03:古典概型满足下列两个特点的概率问题称为古典概型.(1)一次试验中,是有限的;(2)一次试验中,各种结果发生的 .古典概型可以从事件所包含的各种可能的结果在全部可能的试验结果中所占的比例分析事件的概率. 细节剖析:如果在一次试验中,有n种可能的结果,并且它们发生的可能性相等,事件A包含其中的m种结果,那么事件A发生的概率为P(A)=mn.知识点04:用列举法求概率常用的列举法有两种:列表法和树形图法.1.列表法:当一次试验要涉及,并且可能时,为地列出所有可能的结果,通常采用列表法.列表法是用反映事件发生的各种情况出现的次数和方式,以及某一事件发生的可能的次数和方式,并求出概率的方法.细节剖析:(1)列表法适用于各种情况出现的不是很大时,求概率的问题;(2)列表法适用于涉及的随机事件发生的概率.2.树形图:当一次试验要涉及时,为了不重不漏地列出所有可能的结果,通常采用树形图.树形图是出现的次数和方式,以及某一事件发生的可能的次数和方式,并求出概率的方法.细节剖析:(1) 树形图法同样适用于;(2)在用列表法或树形图法求时,应注意各种情况出现的可能性务必相同.知识点05:利用频率估计概率,或时,一般用统计频率的方法来估计概率.细节剖析:用试验去估计随机事件发生的概率应尽可能多地增加试验次数,当试验次数很大时,结果将较为精确.一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2023•乐平市校级开学)如图,口袋里有10个大小、形状都相同的球,菲菲闭上眼睛任意摸出1个球,下列说法正确的是()A.可能出现3种结果B.摸出红色球的可能性最大C.摸出蓝色球的可能性最小2.(2分)(2022秋•黄陂区校级期末)在一个不透明的口袋中有红色、黄色和绿色球共60个,它们除颜色外,其余完全相同.在不倒出球的情况下,要估计袋中各种颜色球的个数.同学们通过大量的摸球试验后,发现摸到红球、黄球和绿球的频率分别稳定在20%,40%和40%.由此,推测口袋中黄色球的个数有()A.15个B.20个C.21个D.24个3.(2分)(2022秋•鼓楼区校级期末)下列说法错误的是()A.同时抛两枚普通正方体骰子,点数都是4的概率为B.不可能事件发生的概率为0C.买一张彩票会中奖是随机事件D.一个盒子装有3个红球和1个白球,除颜色外其它完全相同,同时摸出两个球,一定会摸到红球4.(2分)(2023•东城区校级模拟)不透明的袋子中装有红、绿小球各一个,除颜色外两个小球无其他差别,从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么第一次摸到红球、第二次摸到绿球的概率是()A.B.C.D.5.(2分)(2023•南宁模拟)一个口袋中有红球、白球共20个,这些球除颜色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有40次摸到白球.请你估计这个口袋中有()个白球.A.4 B.6 C.8 D.126.(2分)(2023•兴宁市二模)桌面上有5本书,2本为数学书,2本为物理书,1本为化学书,小明分2次从桌上抽走2本书,则小明2次抽走的都是数学书的概率为()A.B.C.D.7.(2分)(2023•海淀区校级四模)不透明的袋子中装有3个红球、2个白球,除颜色外小球无其他差别.从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么两次都摸到红球的概率是()A.B.C.D.8.(2分)(2022秋•建昌县期末)下列事件中,属于必然事件的是()A.明日气温下降B.三角形的内角和为180°C.购买一张彩票,中奖D.发射一枚导弹,击中目标9.(2分)(2023•小店区校级模拟)如图所示,电路图上有3个开关S1,S2,S3和2个小灯泡L1,L2,同时闭合开关S1,S2,S3可以使小灯泡L1,L2发光.对于“小灯泡发光”这个事件,下列结论错误的是()A.闭合开关S1,S2,S3中的1个,灯泡L1发光是不可能事件B.闭合开关S1,S2,S3中的2个,灯泡L2发光是随机事件C.闭合开关S1,S2,S3中的2个,灯泡L1发光是必然事件D.闭合开关S1,S2,S3中的2个,灯泡L1、L2发光的概率相同10.(2分)(2023•方城县模拟)信阳是河南传统餐饮历史文化名城,信阳菜历经千年的积淀和发展,以鲜、香、爽、醇、中的独特味道传遍大江南北.某游客慕名而来,决定从“筒鲜鱼”“固始鹅块”“石凉粉”“罗山大肠汤“闷罐肉”这5个特色美食中随机选取2个进行品尝,则他抽到“筒鲜鱼”和“固始鹅块”的概率为()A.B.C.D.二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2023•西安校级开学)西安有“碳水之都”的美誉,现有4张卡片正面分别写着“碳”“水”“之”“都”,卡片除汉字不同其他别无二致,将卡片正面朝下洗匀,然后同时随机抽取2张,刚好抽到“碳”“水”二字的概率是.12.(2分)(2023•铜梁区校级一模)将分别标有数字1,2,3的三个小球放入一个不透明的袋子中,这些小球除数字外其他都相同.从中随机摸出一个小球记下数字后放回,再从中随机摸出一个小球并记下数字,则两次摸出的小球数字不同的概率.13.(2分)(2023春•沙坪坝区校级期末)两人做游戏:不透明的盒子里面有3张纸片,上面分别写着0,1,2(纸片除数字外其余均相同),第一位随机抽取一张,记下数字且不放回,第二位再从中随机抽取一张.将两人所写整数相加,和是1的概率是.14.(2分)(2023•剑阁县二模)在一个不透明的布袋中,有红球、黑球、白球共60个,它们除颜色外其他都相同.小明从中任意摸出一个球,查看色后放回并摇匀,通过多次摸球试验后,发现摸到红球、黑球的频率分别稳定在0.15和0.45,则他估计布袋中白球的个数约是个.15.(2分)(2023春•沙坪坝区校级月考)有四张除数字外其它完全一样的卡片,正面写有数字0,﹣1,2,﹣3.把它们全部背面朝上,抽出一张记为数m作为点A的横坐标,不放回,再抽一张记为数n作为点A 的纵坐标.则点A(m,n)在第四象限内的概率为.16.(2分)(2023•历城区模拟)一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上,每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是.17.(2分)(2023•西湖区校级二模)袋子里有四个完全相同的球,球上分别标有数字﹣1,﹣3,1,4,随机摸出一个球,记下数字为k:不放回,再随机摸出一个球,记下数字为b,则y=kx+b的图象经过第三象限的概率为.18.(2分)(2023•山西)中国古代的“四书”是指《论语》《孟子》《大学》《中庸》,它是儒家思想的核心著作,是中国传统文化的重要组成部分.若从这四部著作中随机抽取两本(先随机抽取一本,不放回,再随机抽取另一本),则抽取的两本恰好是《论语》和《大学》的概率是.19.(2分)(2023•花溪区校级一模)化学课上,小红学到了这样一个知识:将二氧化碳通入澄清石灰水,澄清石灰水会变浑浊.以下为常考的四个实验:A.高锰酸钾制取氧气,B.电解水,C.木炭还原氧化铜,D.一氧化碳还原氧化铜,已知这四个实验中,C,D两个实验均能产生二氧化碳,若小华从四个实验中任意选做两个,则两个实验所产生的气体均能使澄清石灰水变浑浊的概率为.20.(2分)(2022秋•昌图县期末)一个不透明的袋中有若干个除颜色外完全相同的小球,其中黄球有6个.将袋中的球摇匀后,从中随机摸出一个球,记下它的颜色后再放回袋中,通过大量重复摸球试验后发现,摸到黄球的频率稳定在0.3左右,则袋中小球的个数为.三.解答题(共8小题,满分60分)21.(6分)(2023•青岛)为了解我国的数学文化,小明和小红从《九章算术》《孙子算经》《海岛算经》(依次用A、B、C表示)三本书中随机抽取一本进行阅读,小明先随机抽取一本,小红再从剩下的两本中随机抽取一本.请用列表或画树状图的方法表示所有可能出现的结果.并求抽取两本书中有《九章算术》的概率.22.(6分)(2023•芝罘区一模)为了丰富校园生活、提高学生综合素质,某校开设了无人机、交响乐、诗词会、乒乓球四个社团,分别记为A、B、C、D.为了解学生对这四个社团的喜爱情况,对学生进行了随机问卷调查,将调查结果整理后绘制成两幅均不完整的统计图表.校本课程频数频率A:无人机36 0.45B:交响乐团0.25C:诗歌鉴赏16 bD:木工制作8合计a 1请根据图表中提供的信息解答下列问题:(1)统计表中的a=,b=;(2)求D对应扇形的圆心角的度数;(3)甲、乙两位同学参加社团活动,若每人从A、B、C、D四种社团中随机选取一种,请用画树状图或列表格的方法,求两人恰好选中同一社团的概率.23.(8分)(2023•凤凰县三模)整理错题是一种优秀的学习习惯和学习方法,为此某校教务处就这项优秀的学习习惯对部分九年级学生进行了问卷调查.设计的调查问题:对自己做错的题目进行整理、分析、改正情况;答案选项为:A、很少,B、有时,C、常常,D、总是.将调查结果的数据进行了整理、绘制成部分统计图:请根据图中信息,解答下列问题:(1)求a、b的值及“常常”所对应扇形的圆心角度数;(2)请你补全条形统计图;(3)为了共同进步,王老师从被调查的A类和D类学生中各选出两人,再从四人中选取两位学生进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位学生恰好组合成功(即“很少”和“总是”的两人为一组)的概率.24.(8分)(2023•钟楼区校级模拟)中国共产党的早期领导人瞿秋白、张太雷、恽化英都是江苏常州共产党员,故被称为“常州三杰”.为弘扬“常州三杰”红色精神,某校九年级的甲、乙、丙、丁4位同学抽签到三个纪念馆(A.瞿秋白纪念馆、B.张太雷纪念馆、C.恽代英纪念馆)参加志愿服务活动.(1)若每人只能去一个纪念馆,则甲同学参加瞿秋白纪念馆志愿服务的概率为;(2)从4人中选派2人去张太雷纪念馆,试求出恰好抽到甲和乙的概率(用画树状图或列表求解).25.(8分)(2022秋•鸡泽县期末)邮票素有“国家名片”之称,方寸之间,包罗万象.为宣传北京2022年冬奥会,中国邮政发行了一套展现雪上运动的纪念邮票,如图所示:某班级举行冬奥会有奖问答活动,答对的同学可以随机抽取邮票作为奖品.现将四枚邮票背面朝上充分混匀,嘉琪随机从中抽出一枚,记录抽到邮票的标号后放回并再次充分混匀,再从中抽出一枚记录标号,又放回…嘉琪抽取了60次,结果统计如下:标号4﹣1 4﹣2 4﹣3 4﹣3次数16 14 20 10 (1)上述试验中,嘉琪摸取到“高山滑雪”的频率是;嘉琪下一次抽取邮票,抽到“高山滑雪”邮票的概率是;(2)在抢答环节中,若答对两题,可从4枚邮票中任意抽取2枚作为奖品,请用列表或画树状图的方法,求恰好抽到“高山滑雪”和“自由式滑雪”的概率.26.(8分)(2023•西湖区校级二模)端午节是中国的传统节日.今年端午节前夕,杭州市某食品厂抽样调查了某居民区市民对A、B、C、D四种不同口味粽子样品的喜爱情况,并将调查情况绘制成如图两幅不完整统计图:(1)根据题中信息补全条形统计图,并求出喜欢C种口味粽子的人数所占圆心角为度.(2)若有外型完全相同的A、B、C、D四种不同口味的粽子各一个,煮熟后,小李吃了两个,请用列表或画树状图的方法,求出小李第二个吃的粽子恰好是A种粽子的概率.27.(8分)(2023•浑江区一模)在一个不透明的口袋里装有分别标有数字1、2、3、4的四个小球,除数字不同外,小球没有任何区别,每次试验前先搅拌均匀.(1)若从中任取一球,球上数字为偶数的概率是多少?(2)若从中任取一球(不放回),再从中任取一球,请用画树状图或列表格的方法求出两个球上的数字之和为偶数的概率.28.(8分)(2022秋•长寿区期末)甲口袋中装有两个相同的小球,它们分别写有数字1和2;乙口袋中装。
专题07 概率统计(名师点睛+能力提升)(学生版)

2020年中考考点总动员之三轮冲刺聚焦考点+名师点睛+能力提升专题07 概率统计讲练测模块一:概率初步【例1】某地气象局预报称:明天A地区降水概率为80%,这句话指的是()A.明天A地区80%的时间都下雨B.明天A地区的降雨量是同期的80%C.明天A地区80%的地方都下雨D.明天A地区下雨的可能性是80%【例2】下列事件中,是确定事件的是()A.上海明天会下雨B.将要过马路时恰好遇到红灯C.有人把石头孵成了小鸭D.冬天,盆里的水结成了冰【例3】一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为( )A.16B.13C.12D.23【例4】从1到10的十个自然数中,随意取出一个数,该数为3的倍数的概率是______.【例5】某班进行一次班级活动,要在2名男同学和3名女同学中,随机选出2名学生担任主持人,那么选出的2名学生恰好是1男1女的概率是______.【例6】将一枚质地均匀的硬币抛掷2次,硬币正面均朝上的概率是___________.【例7】从小敏、小杰等3名同学中任选2名同学担任校运动会的志愿者,那么恰好选中小敏和小杰的概率为______.【例8】如果从1、2、3这三个数字中任意选取两个数字组成一个两位数,那么这个两位数是素数的概率等于()A.12B.13C.14D.16【例9】有五张分别印有等边三角形、直角三角形(非等腰)、直角梯形、正方形、圆图形的卡片(卡片中除图案不同外,其余均相同)现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有轴对称图案的卡片的概率是______.【例10】 如图,在22⨯的正方形网格中四个小正方形的顶点叫格点,已经取定格点A 和B ,在余下的格点中任取一点C ,使ABC ∆为直角三角形的概率是______.【例11】 从1、2、3、4四个整数中任取两个数作为一个点的坐标,那么这个点恰好在抛物线2y x =上的概率是( )A .124B .112C .16D .14【例12】 在分别写有数字1-、0、2、3的四张卡片中随机抽取一张,放回后再抽取一张,如果以第一次抽取的数字作为横坐标,第二次抽取的数字作为纵坐标,那么所得点落在第一象限的概率为______.【例13】 袋子里有4个黑球,m 个白球,它们除颜色外都相同.经过大量实验,从中任取一个球恰好是黑球的概率是12,则m 的值是______.【巩固1】(2019•上海)一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的点数大于4的概率是 . 【巩固2】(2018•上海)从27,π,3这三个数中选一个数,选出的这个数是无理数的概率为 . 【巩固3】(2019•虹口区二模)下列事件中,必然事件是( ) A .在体育中考中,小明考了满分B .经过有交通信号灯的路口,遇到红灯C .抛掷两枚正方体骰子,点数和大于1D .四边形的外角和为180度.【巩固4】(2019•青浦区二模)将分别写有“创建”、“智慧”、“校园”的三张大小、质地相同的卡片随机排列,那么恰好排列成“创建智慧校园”的概率是 .【巩固5】(2019•浦东新区二模)从1、2、3这三个数中任选两个组成两位数,在组成的所有两位数中任意抽取一个数,这个数恰好是偶数的概率是 .【巩固6】(2019•静安区二模)从0,1,2,3这四个数字中任取3个数,取得的3个数中不含2的概率是 . 【巩固7】(2019•虹口区二模)一个不透明的袋中装有4个白球和若干个红球,这些球除颜色外其他都相同,摇匀后随机摸出一个球,如果摸到白球的概率为0.4,那么红球有 个.AB【巩固8】(2019•嘉定区二模)不透明的袋中装有8个小球,这些小球除了有红白两种颜色外其它都一样,其中2个小球为红色,6个小球为白色,随机地从袋中摸取一个小球是红球的概率为.【巩固9】(2019•松江区二模)在不透明的盒子中装有4个黑色棋子和若干个白色棋子,每个棋子除颜色外其它完全相同,从中随机摸出一个棋子,摸到黑色棋子的概率是13,那么白色棋子的个数是.【巩固10】(2019•徐汇区二模)在不透明的盒子中装有5个黑色棋子和15个白色棋子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑色棋子的概率是.【巩固11】(2019•金山区二模)从方程20x=1-,2240x x-+=中,任选一个方程,选出的这个方程无实数解的概率为.【巩固12】(2019•普陀区二模)如图,一个大正方形被平均分成9个小正方形,其中有2个小正方形已经被涂上阴影,在剩余的7个白色小正方形中任选一个涂上阴影,使图中涂上阴影的三个小正方形组成轴对称图形,这个事件的概率是.【巩固13】(2019•闵行区二模)从一副52张没有大小王的扑克牌中任意抽取一张牌,那么抽到A的概率是.【巩固14】(2019•黄浦区二模)掷一枚质地均匀的正方体骰子,骰子的六个面分别标有1到6的点数,向上的一面出现的点数是2的倍数的概率是.【巩固15】(2019•长宁区二模)掷一枚材质均匀的骰子,掷得的点数为素数的概率是.【巩固16】(2019•杨浦区三模)在“石头、剪刀、布”的游戏中,两人打出相同标识手势的概率是.【巩固17】(2019•崇明区二模)从1、2、3、4、5、6、7、8这八个数中,任意抽取一个数,那么抽得的数是素数的概率是.模块二:统计初步【例14】下列统计图中,可以直观地反映出数据变化的趋势的统计图是( )A.折线图B.扇形图C.条形图D.频数分布直方图【例15】一鞋店销售一种新鞋,试销期间卖出情况如下表,对于鞋店经理来说最关心哪种尺码的鞋畅销,那么下列统计量对该经理来说最有意义的是( )尺码2222.52323.52424.525数量(双)351015832A.平均数B.中位数C.众数D.方差【例16】下列说法中,正确的个数有( )①一组数据的平均数一定是该组数据中的某个数据;②一组数据的中位数一定是该组数据中的某个数据;③一组数据的众数一定是该组数据中的某个数据.A.0个B.1个C.2个D.3个【例17】某老师在试卷分析中说:参加这次考试的82位同学中,考91分的人数最多,有11人之众,但是十分遗憾最低的同学仍然只得了56分.这说明本次考试分数的众数是( )A.82 B.91 C.11 D.56【例18】一组数据3,3,2,5,8,8的中位数是( )A.3 B.4 C.5 D.8【例19】一组数据1、2、3、4、5、15的平均数和中位数分别是( )A.5、5 B.5、4 C.5、3.5 D.5、3【例20】甲、乙、丙、丁四位同学五次数学测验成绩统计如下表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加上海市初中数学竞赛,那么应选______同学.甲乙丙丁平均数70 85 85 70标准差 6 .5 6.5 7.6 7.6【例21】下图是上海今年春节七天最高气温(℃)的统计结果:这七天最高气温的众数和中位数是:( )A.15,17B.14,17C.17,14D.17,15【例22】 如图,反映的是某中学九(3)班学生外出方式(乘车、步行、骑车)的频数(人数)分布直方图(部分)和扇形分布图,那么下列说法正确的是( )A .九(3)班外出的学生共有42人B .九(3)班外出步行的学生有8人C .在扇形图中,步行的学生人数所占的圆心角为82ºD .如果该校九年级外出的学生共有500人,那么估计全年级外出骑车的学生约有140人【例23】 2019年1月份,某区体委组织“迎新春长跑活动”,现将报名的男选手分成:青年组、中年组、老年组.各组人数所占比例如图所示,已知青年组120人,则中年组的人数是______.【例24】 崇明县校园足球运动正在蓬勃发展,已知某校学生“足球社团”成员的年龄与人数情况如下表所示:那么“足球社团”成员年龄的中位数是______岁.【例25】 某小区开展“节约用水,从我做起”活动,下表是从该小区抽取的10个家庭与上月比较的一个月的节水情况统计:那么这10个家庭的节水量(m 3)的平均数和中位数分别是( ) A .0.42和0.4B .0.4和0.4C .0.42和0.45D .0.4和0.45【例26】 饭店为某公司提供“白领午餐”,有12元、15元、18元三种价格的套餐可供选择,每人限购一份.本中年 ?老年20%青年60%年龄(岁)11 12 13 14 15 人数3371214节水量(m 3) 0.2 0.3 0.4 0.5 0.6 家庭数(个)12241乘车步行 骑车乘步骑20 12频数(人) 出行方式周销售套餐共计500份,其中12元的占总份数的20%,15元的卖出180份,其余均为18元的,那么所购买的盒饭费用的中位数和众数分别是( )A .15元和18元B .15元和15元C .18元和15元D .18元和18元【例27】 甲乙两位运动员在一次射击训练中各打五发,成绩的平均环数相同,甲的方差为1.6;乙的成绩(环)为:7,8,10,6,9,那么这两位运动员中______的成绩较稳定.【例28】 已知两组数据:2、3、4和3、4、5,那么下列说法正确的是( )A .中位数不相等,方差不相等B .平均数相等,方差不相等C .中位数不相等,平均数相等D .平均数不相等,方差相等【例29】 某班40名全体学生参加了一次“献爱心一日捐”活动,捐款人数与捐款额如图所示,根据图中所提供的信息,你认为这次捐款活动中40个捐款额的中位数是______元.【例30】 为了了解某区5500名初三学生的的体重情况,随机抽测了400名学生的体重,统计结果列表如下: 那么样本中体重在50 - 55范围内的频率是______.【例31】 一组数据:1 ,1,3,4,a ,若它们的平均数为2,则这组数据的众数为( ) A .1B .2C .3D .4【例32】 某工厂对一个小组生产的零件进行调查.在10天中,这个小组出次品的情况如下表所示: 体重(千克) 频数 频率 40—45 44 45—50 66 50—55 84 55—60 86 60—65 72 65—70 48每天出次品的个数234元5 人数10 15 20 2546 8 10 12那么在这10天中这个小组每天所出次品数的标准差是______.【例33】 为了了解某中学学生的上学方式,从该校全体学生900名中,随机抽查了60名学生,结果显示有15名学生“步行上学”.由此,估计该校全体学生中约有______名学生“步行上学”.【例34】 某服装厂从20万件同类产品中随机抽取了100件进行质检,发现其中有2件不合格,那么你估计该厂这20万件产品中合格品约为______万件.【例35】 某区有6000名学生参加了“创建国家卫生城市”知识竞赛.为了了解本次竞赛成绩分布情况,竞赛组委会从中随机抽取部分学生的成绩(得分都是整数)作为样本,绘制成频率分布直方图.请根据提供的信息估计该区本次竞赛成绩在89.5分~99.5分的学生大约有______名.【例36】 为了解本区初中学生的视力情况,教育局有关部门采用抽样调查的方法,从全区2万名中学生中注:(4.3~4.5之间表示包括4.3及4.5))根据图表完成下列问题:(1) 填完整表格及补充完整图一;(2) “类型D ”在扇形图(图二)中所占的圆心角是度; (3) 本次调查数据的中位数落在类型内;(4) 视力在5.0以下(不含5.0)均为不良,那么全区视力不良的初中学生估计人.【巩固1】(2019•上海)甲、乙两名同学本学期五次引体向上的测试成绩(个数)成绩如图所示,下列判断正确的是( )A .甲的成绩比乙稳定B .甲的最好成绩比乙高C .甲的成绩的平均数比乙大D .甲的成绩的中位数比乙大【巩固2】(2018•上海)据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是( ) A .25和30 B .25和29C .28和30D .28和2910 80100 80 60 40 20 0ABCD视力 类型人数图一图二AB 10%C 40%D【巩固3】(2019•浦东新区二模)某运动队在一次队内选拔比赛中,甲、乙、丙、丁四位运动员的平均成绩相等,方差分别为0.85、1.23、5.01、3.46,那么这四位运动员中,发挥较稳定的是( ) A .甲B .乙C .丙D .丁【巩固4】(2019•静安区二模)小明和小丽暑期参加工厂社会实践活动,师傅将他们工作第一周每天生产的合格产品的个数整理成如表1两组数据.那么关于他们工作第一周每天生产的合格产品个数,下列说法中正确的是( )A .小明的平均数小于小丽的平均数B .两人的中位数相同C .两人的众数相同D .小明的方差小于小丽的方差【巩固5】(2019•闵行区二模)下列各统计量中,表示一组数据离散程度的量是( ) A .平均数B .众数C .方差D .频数【巩固6】(2019•金山区二模)数据2、1、0、2-、0、1-的中位数与众数分别是( ) A .0和0B .1-和0C .0和1D .0和2【巩固7】(2019•嘉定区二模)现有甲、乙两个合唱队,队员的平均身高都是175cm ,方差分别是2S 甲、2S 乙,如果22S S >乙甲,那么两个队中队员的身高较整齐的是( )A .甲队B .乙队C .两队一样整齐D .不能确定【巩固8】(2019•徐汇区二模)今年3月12日,学校开展植树活动,植树小组16名同学的树苗种植情况如下表:那么这16名同学植树棵树的众数和中位数分别是( ) A .5和6B .5和6.5C .7和6D .7和6.5【巩固9】(2019•杨浦区三模)某班10名学生校服尺寸与对应人数如图所示,那么这10名学生校服尺寸的中位数为 cm .【巩固10】(2019•嘉定区二模)在一次有12人参加的测试中,得100分、95分、90分、85分、75分的人数分别是1、4、3、2、2,那么这组数据的众数是分.【巩固11】(2019•松江区二模)某校初三(1)班40名同学的体育成绩如表所示,则这40名同学成绩的中位数是.【巩固12】(2019•长宁区二模)为了解某校九年级学生每天的睡眠时间,随机调查了其中20名学生,将所得数据整理并制成如表,那么这些测试数据的中位数是小时.【巩固13】(2019•奉贤区二模)下表是某班所有学生体育中考模拟测试成绩的统计表,表格中的每个分数段含最小值,不含最大值,根据表中数据可以知道,该班这次体育中考模拟测试成绩的中位数落在的分数段是.【巩固14】(2019•闵行区二模)一射击运动员在一次射击练习中打出的成绩如表所示,那么这个射击运动员这次成绩的中位数是.【巩固15】(2019•上海)小明为了解所在小区居民各类生活垃圾的投放情况,他随机调查了该小区50户家庭某一天各类生活垃圾的投放量,统计得出这50户家庭各类生活垃圾的投放总量是100千克,并画出各类生活垃圾投放量分布情况的扇形图(如图所示),根据以上信息,估计该小区300户居民这一天投放的可回收垃圾共约千克.【巩固16】(2018•上海)某校学生自主建立了一个学习用品义卖平台,已知九年级200名学生义卖所得金额的频数分布直方图如图所示,那么2030元这个小组的组频率是.【巩固17】为了解某校初三学生的体重情况,从中随机抽取了80名初三学生的体重进行统计分析.在此问题中,样本是指()A.80B.被抽取的80名初三学生C.被抽取的80名初三学生的体重D.该校初三学生的体重【巩固18】(2019•杨浦区三模)将样本容量为100的样本编制成组号①~⑧的八个组,简况如表所示:那么第⑤组的频率是()A.14B.15C.0.14D.0.15【巩固19】(2019•长宁区二模)某校随机抽查若干名学生,测试了1分钟仰卧起坐的次数,把所得数据绘制成频数分布直方图(如图),则仰卧起坐次数不小于15次且小于20次的频率是()A.0.1B.0.2C.0.3D.0.4【巩固20】(2019•奉贤区二模)学校环保小组的同学随机调查了某小区10户家庭一周内使用环保方便袋的数量,数据如下(单位:只):6,5,7,8,7,5,7,10,6,9.利用学过的统计知识,根据上述数据估计该小区200户家庭一周内共需要环保方便袋约()A.200只B.1400只C.9800只D.14000只【巩固21】(2019•青浦区二模)A班学生参加“垃圾分类知识”竞赛,已知竞赛得分都是整数,竞赛成绩的频数分布直方图,如图所示,那么成绩高于60分的学生占A班参赛人数的百分率为.【巩固22】(2019•浦东新区二模)某校有560名学生,为了解这些学生每天做作业所用的时间,调查人员在这所学校的全体学生中随机抽取了部分学生进行问卷调查,并把结果制成如图的统计图,根据这个统计图可以估计这个学校全体学生每天做作业时间不少于2小时的人数约为名.【巩固23】(2019•静安区二模)为了解某校九年级男生1000米跑步的水平情况,从中随机抽取部分男生进行测试,并把测试成绩分为D、C、B、A四个等次绘制成如图所示的不完整的统计图,那么扇形统计图中表示C等次的扇形所对的圆心角的度数为度.【巩固24】(2019•虹口区二模)为了了解初三毕业班学生一分钟跳绳次数的情况,某校抽取了一部分初三毕业生进行一分钟跳绳次数的测试,将所得数据进行处理,共分成4组,频率分布表(不完整)如下表所示.如果次数在110次(含110次)以上为达标,那么估计该校初三毕业生一分钟跳绳次数的达标率约为.【巩固25】(2019•徐汇区二模)某校九年级学生共300人,为了解这个年级学生的体能,从中随机抽取50名学生进行1分钟的跳绳测试,结果统计的频率分布如图所示,其中从左至右前四个小长方形的高依次为0.004、0.008、0.034、0.03,如果跳绳次数不少于135次为优秀,根据这次抽查的结果,估计全年级达到跳绳优秀的人数为.【巩固26】(2019•普陀区二模)张老师对本校参加体育兴趣小组的情况进行调查,图1和图2是收集数据后绘制的两幅不完整统计图,已知参加体育兴趣小组的学生共有80名,其中每名学生只参加一个兴趣小组,根据图中提供的信息,可知参加排球兴趣小组的人数占体育兴趣小组总人数的百分数是.【巩固27】(2019•崇明区二模)为了了解全区近3600名初三学生数学学习状况,随机抽取600名学生的测试成绩作为样本,将他们的成绩整理后分组情况如下:(每组数据含最低值,不含最高值)根据上表信息,由此样本请你估计全区此次成绩在70~80分的人数大约是.【巩固28】(2019•金山区二模)100克鱼肉中蛋白质的含量如图表,每100克草鱼、鲤鱼、花鲢鱼鱼肉的平均蛋白质含量为16.8克,那么100克鲤鱼肉的蛋白质含量是克.【巩固29】(2019•黄浦区二模)秋季新学期开学时,某中学对六年级新生掌握“中学生日常行为规范”的情况进行了知识测试,测试成绩全部合格,现学校随机选取了部分学生的成绩,整理并制作成了不完整的图表(如表所示),图表中c=.x<6070x<7080x<8090x90100【巩固30】某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动.以下是根据调查结果绘制的统计图表的一部分.类别A类型足球那么,其中最喜欢足球的学生数占被调查总人数的百分比为%.【巩固31】(2019•宝山区二模)为了解全区5000名初中毕业生的体重情况,随机抽测了400名学生的体重,频率分布如图所示(每小组数据可含最小值,不含最大值),其中从左至右前四个小长方形的高依次为0.02、0.03、0.04、0.05,由此可估计全区初中毕业生的体重不小于60千克的学生人数约为人.【巩固32】(2018•浦东新区二模)近年来,出境旅游成为越来越多中国公民的假期选择,将2017年某小区居民出境游的不同方式的人次情况画成扇形图和条形图,如图所示,那么2017年该小区居民出境游中跟团游的人数为.【巩固33】(2018•普陀区二模)2018年春节期间,反季游成为出境游的热门,中国游客青睐的目的地仍主要集中在温暖的东南亚地区.据调查发现2018年春节期间出境游约有700万人,游客目的地分布情况的扇形图如图所示,从中可知出境游东南亚地区的游客约有万人.【习题1】布袋中有2个红球和3个黑球,它们除颜色外其他都相同,那么从布袋中取出1个球恰好是红球的概率为______.【习题2】某中学九(1)班5个同学在体育测试“1分钟跳绳”项目中,跳绳个数如下:126,134,118,152,148.这组数据中,中位数是______.【习题3】该投篮进球数据的中位数是( )A .2B .3C .4D .5【习题4】某校为了发展校园足球运动, 组建了校足球队,队员年龄分布如图所示,则这些队员年龄的众数是______.【习题5】 已知某班学生理化实验操作测试成绩的统计结果如下表:则这些学生成绩的众数是______分.【习题6】 某校八年级共四个班,各班寒假外出旅游的学生人数如图所示,那么三班外出旅游学生人数占全年级外出旅游学生人数的百分比为______.【习题7】 一个不透明纸箱中装有形状、大小、质地等完全相同的7个小球,分别标有数字1、2、3、4、5、6、7,从中任意摸出一个小球,这个小球上的数字是奇数的概率是______.【习题8】 一个口袋中装有3个完全相同的小球,它们分别标有数字0,1,3,从口袋中随机摸出一个小球记下数字后不放回,摇匀后再随机摸出一个小球,那么两次摸出小球的数字的和为素数的概率是______.成绩(分) 4 5 6 7 8 9 10 人数12269119人数年龄2684212 13 14 15 16一班二班三班四班 人数(人)1282010【习题9】 一个不透明的袋子中装有若干个除颜色外形状大小完全相同的小球,如果其中有2个白球,n 个黄球,从中随机摸出白球的概率是23,那么n =______.【习题10】 某公园正在举行郁金香花展,现从红、黄两种郁金香中,各抽出6株,测得它们离地面的高度分别如下(单位cm ):红:54、44、37、36、35、34;黄:48、35、38、36、43、40;已知它们的平均高度均是40cm ,请判断哪种颜色的郁金香样本长得整齐?______.(填“红”或“黄”)【习题11】 一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是______.【习题12】 为了解某山区金丝猴的数量,科研人员在该山区不同的地方捕获了15只金丝猴,并在它们的身上做上标记后放回该山区.过段时间后,在该山区不同的地方又捕获了32只金丝猴,其中4只身上有上次做的标记,由此可以估计该山区金丝猴的数量约有______只.【习题13】 9月22日世界无车日,某校开展了“倡导绿色出行”为主题的调查,随机抽查了部分师生,将收集的数据绘制成下列不完整的两种统计图.已知随机抽查的教师人数为学生人数的一半,根据图中信息,乘私家车出行的教师人数是______.【习题14】 某校为了解本校学生每周阅读课外书籍的时间,对本校全体学生进行了调查,并绘制如图所示的频率分布直方图(不完整),则图中m 的值是______.乘公车 y % 步行 x %骑车 25%私家车 15% 乘公车 步行 骑车 20 5人数 出行方式15 私家车 2510 学生 教师24912 1533学生出行方式扇形统计图师生出行方式条形统计图 m0.075 0.125 0246810小时数0.2 0.3 0.25。
专题36 独立事件及随机变量的概率分布(学生版)
专题36 独立事件及随机变量的概率分布1. 事件的相互独立性(1)定义:设A ,B 为两个事件,如果P(AB)=P(A)P(B),那么称事件A 与事件B 相互独立. (2)性质:①若事件A 与B 相互独立,则P(AB)=P(A)P(B).①如果事件A 与B 相互独立,那么A 与B ,A 与B ,A 与B 也相互独立.(3)独立重复试验:在相同条件下重复做的n 次试验称为n 次独立重复试验,在n 次独立重复试验中,事件A恰好发生k 次的概率为P(X =k)=C k n p k ()1-p n -k (k =0,1,2,…,n). 2. 随机变量的有关概念(1)随机变量:随着试验结果变化而变化的变量,常用字母X ,Y ,ξ,η,…表示. (2)离散型随机变量:所有取值可以一一列出的随机变量. 3. 离散型随机变量的概率分布及其性质(1)一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n)的概率P(X =x i )=p i ,则表=x i )=p i ,i =1,2,…,n 表示X 的概率分布.(2)离散型随机变量概率分布的性质①p i ≥0(i =1,2,…,n);①p 1+p 2+…+p n =1. 4. 常见离散型随机变量的概率分布 (1)两点分布:若随机变量X 服从两点分布,即其概率分布为其中p =P(X =1)称为成功概率. (2)超几何分布:在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件“X =r”发生的概率为P(X =r)=C r M C n -rN -MC nN,r =0,1,2,…,m ,其中m =min {M ,n},且n≤N ,M≤N ,n ,M ,N①N *,称分布列为超几何分布.(3)二项分布X~B(n5.(1)明确随机变量X取哪些值;(2)求X取每一个值的概率;(3)列成表格.考点一、古典概型例1、我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A.112B.114C.115D.118变式1、将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是_____.变式2、齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.现齐王与田忌各出上等马、中等马、下等马一匹,共进行三场比赛,规定:每一场双方均任意选一匹马参赛,且每匹马仅参赛一次,胜两场或两场以上者获胜.则田忌获胜的概率为()A.13B.16C.19D.136变式3、中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)的一种,现有十二生肖的吉祥物各一个,甲、乙、丙三位同学依次选一个作为礼物,甲同学喜欢牛、马和羊,乙同学喜欢牛、兔、狗和羊,丙同学哪个吉祥物都喜欢,则让三位同学选取的礼物都满意的概率是()A .166B .155C .566D .511变式4、“总把新桃换旧符”(王安石)、“灯前小草写桃符”(陆游),春节是中华民族的传统节日,在宋代人们用写“桃符”的方式来祈福避祸,而现代人们通过贴“福”字、贴春联、挂灯笼等方式来表达对新年的美好祝愿,某商家在春节前开展商品促销活动,顾客凡购物金额满50元,则可以从“福”字、春联和灯笼这三类礼品中任意免费领取一件,若有4名顾客都领取一件礼品,则他们中有且仅有2人领取的礼品种类相同的概率是( ) A .59B .49C .716D .916考点二、相互独立事件例2、已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_________;甲、乙两球至少有一个落入盒子的概率为_________.变式1、两个实习生每人加工一个零件.加工为一等品的概率分别为56和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( )A .12B .13C .512D .16变式2、(多选题)某市有A ,B ,C ,D 四个景点,一位游客来该市游览,已知该游客游览A 的概率为23,游览B ,C 和D 的概率都是12,且该游客是否游览这四个景点相互独立.用随机变量X 表示该游客游览的景点的个数,下列正确的( )A .游客至多游览一个景点的概率14B .()328P X == C .()1424P X == D .()136E X =考点三、超几何分布例3、设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X的分布列和数学期望;(2)设M为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M发生的概率.变式1、某企业拥有3条相同的生产线,每条生产线每月至多出现一次故障.各条生产线是否出现故障相互独立,且出现故障的概率为13. (1)求该企业每月有且只有1条生产线出现故障的概率;(2)为提高生产效益,该企业决定招聘名维修工人及时对出现故障的生产线进行维修.已知每名维修工人每月只有及时维修1条生产线的能力,且每月固定工资为1万元.此外,统计表明,每月在不出故障的情况下,每条生产线创造12万元的利润;如果出现故障能及时维修,每条生产线创造8万元的利润;如果出现故障不能及时维修,该生产线将不创造利润,以该企业每月实际获利的期望值为决策依据,在1n =与2n =之中选其一,应选用哪个?(实际获利=生产线创造利润-维修工人工资)实战演练1、某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为__________.2、某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是 A .62% B .56% C .46%D .42%3、在一组样本数据中,1,2,3,4出现的频率分别为1234,,,p p p p ,且411i i p ==∑,则下面四种情形中,对应样本的标准差最大的一组是A .14230.1,0.4p p p p ====B .14230.4,0.1p p p p ====C .14230.2,0.3p p p p ====D .14230.3,0.2p p p p ====4、吸烟有害健康,小明为了帮助爸爸戒烟,在爸爸包里放一个小盒子,里面随机摆放三支香烟和三支跟香烟外形完全一样的“戒烟口香糖”,并且和爸爸约定,每次想吸烟时,从盒子里任取一支,若取到口香糖则吃一支口香糖,不吸烟;若取到香烟,则吸一支烟,不吃口香糖,假设每次香烟和口香糖被取到的可能性相同,则“口香糖吃完时还剩2支香烟”的概率为( ) A .15 B .815 C .35 D .3205、某公司有A ,B ,C ,D 四辆汽车,其中A 车的车牌尾号为0,B ,C 两辆车的车牌尾号为6,D 车的车牌尾号为5,已知在非限行日,每辆车都有可能出车或不出车.已知A ,D 两辆汽车每天出车的概率为34,B ,C 两辆汽车每天出车的概率为12,且四辆汽车是否出车是相互独立的.该公司所在地区汽车限行规定如下:(1) 求该公司在星期四至少有2辆汽车出车的概率;(2) 设ζ表示该公司在星期一和星期二两天出车的车辆数之和,求ζ的分布列和数学期望.6、某学生参加4门学科的学业水平测试,每门得A 等级的概率都是14,该学生各学科等级成绩彼此独立.规定:有一门学科获A 等级加1分,有两门学科获A 等级加2分,有三门学科获A 等级加3分,四门学科获A 等级则加5分.记ξ1表示该生的加分数,ξ2表示该生获A 等级的学科门数与未获A 等级学科门数的差的绝对值.(1) 求ξ1的数学期望; (2) 求ξ2的分布列.。
中考专题训练--概率专题训练(A)答案
概率专题训练(A )答案1.答案 B 解析 据绝对值的意义,一个数的绝对值是一个非负数,|a |≥0.2.答案 C 解析 摸到红球的概率是P =55+3=58.3、答案 C 解析 列表可知两次所取球的编号相同的概率P =39=13.4答案 B 解析 连接BE ,(其他情况类似) ∵正五边形ABCDE ,∴BC =DE =CD =AB =AE ,根据多边形的内角和定理得:∠A =∠ABC =∠C =∠D =∠AED =(5-2)×180°5=108°,∴∠ABE =∠AEB =12(180°-∠A )=36°,∴∠CBE =∠ABC -∠ABE =72°, ∴∠C +∠CBE =180°, ∴BE ∥CD ,∴四边形BCDE 是等腰梯形, 即事件M 是必然事件. 5、答案 C解析 列表知两指针可指数字的积为偶数的有12种情形,乙获胜的概率是1216=34.6.答案 随机解析 打开一本200页的书,正好是第35页可能发生也可能不发生,应是随机事件.7.答案 13解析 在-1,1,2三个数中任选2个,有(-1,1),(-1,2),(1,-1),(1,2),(2,-1),(2,1)六种情况,只有点(1,2),(2,1)在第一象限,使双曲线位于第一、三象限,所以概率P =26=13.8.答案 1116 解析 红色棋子共有1+5+2×5=16个,不是士、象、帅的棋子有16-2-2-1=11个,所以概率P =1116. 9.答案 13解析 阴影圆环的面积是π×42-π×22=12 πcm 2,而总面积是π×62=36π cm 2,所以概率P =12π36π=13. 10.答案 13解析 在9886中随机划去两个有98、98、96、88、86、86六种情形,选中86的有两种,其概率P =26=13.11. 同B 卷 12.总共有3618种,两数字之和为奇数的有18种,每人获胜的概率均为12,所以游戏是公平的.13.解 (1)列表如下: ∴两次摸牌所有可能出现的结果共有20种. (用树状图解亦可) (2)两次摸牌所有可能出现的结果共有20种,其中满足△ABC ≌△DEF 的有18种可能,∴P (能满足△ABC ≌△DEF )=1820=910.14.解 (1)列表如下: 或画树状图如下: (2)由树状图或表格可知,点P ()m ,n 共有36种可能的结果,且每种结果出现的可能性相同,点(3,4),(4,3),(2,6),(6,2)在反比例函数y =12x 的图象上,点 (2,3),(3,2),(1,6),(6,1)在反比例函数y =6x 的图象上;故点P ()m ,n 在反比例函数y =12x 和y =6x 的图象上的概率相同,都是436=19.所以小芳的观点正确. 15.解 (1)设D 地车票有x 张,则x =(x +20+40+30)×10%,解得x =10. 即D 地车票有10张.补全统计图,如下图所示.(2)小胡抽到去A 地的概率为2020+40+30+10=15.(3)由此可知,共有16种等可能结果.其中小王掷得数字比小李掷得数字小的有6种:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).∴小王掷得数字比小李掷得数字小的概率为616=38.则小王掷得数字不小于小李掷得数字的概率为1-38=58.所以这个规则对双方不公平.。
中考专题之概率初步与统计初步-学生版
(C )被抽查的1 000名学生(D )被抽查的1 000名学生的数学成绩7、如果x 1与x 2的平均数是6,那么x 1+1与x 2+3的平均数是 ( ) (A )4 (B )5 (C )6 (D )8 8、甲、乙两个样本的方差分别是=6.06,=14.31,由此可反映……( )(A )样本甲的波动比样本乙大(B )样本甲的波动比样本乙小(C )样本甲和样本乙的波动大小一样(D )样本甲和样本乙的波动大小关系,不能确定9、在公式s 2=[(x 1-)2+(x 2-)2+…+(x n -)2]中,符号S 2,n ,依次表示样本的……………………………………………………………………( ) (A )方差,容量,平均数 (B )容量,方差,平均数 (C )平均数,容量,方差 (D )方差,平均数,容量 精解名题一、概率初步问题例1. 下列事件中是必然事件的是( )A. 打开电视机,正在播广告.B. 从一个只装有白球的缸里摸出一个球,摸出的球是白球.C. 从一定高度落下的图钉,落地后钉尖朝上.D. 今年10月1日 ,厦门市的天气一定是晴天. 例2. 随机掷一枚均匀的硬币两次,两次正面都朝上 的概率是( ) A 、41B 、21 C 、43 D 、1例3 .从一副扑克牌中抽出5张红桃,4张梅花,3张黑桃放在一起洗匀后,从中一次随机抽出10张,恰好红桃、梅花、黑桃3种牌都抽到,这件事情( )A 、可能发生B 、不可能发生C 、很有可能发生D 、必然发生 例4. 下列说法正确的是( )A 、可能性很小的事件在一次实验中一定不会发生;B 、可能性很小的事件在一次实验中一定发生;C 、可能性很小的事件在一次实验中有可能发生;D 、不可能事件在一次实验中也可能发生例5. 同时掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,下列事件中是不可能事件的是( )A. 点数之和为12B. 点数之和小于3C. 点数之和大于4且小于8D. 点数之和为13二、求平均数与众数,中位数1、一组数据4,5,6,7,7,8的中位数和众数分别是( )A .7,7B .7,6.5C .5.5,7D .6.5,72、某校七年级有13名同学参加百米竞赛,预赛成绩各不相同,要取前6名参加决赛,小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的()A.中位数B.众数C.平均数D.极差3、在一次青年歌手大奖赛上,七位评委为某位歌手打出的分数如下:9.5,9.4,9.6,9.9,9.3,9.7,9.0,去掉一个最高分和一个最低分后,所剩数据的平均数是()A.9.2 B.9.3 C.9.4 D.9.54、为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码的统计如下表所示,则这10双运动鞋尺码的众数和中位数分别为().A、25.6 26B、26 25.5C、26 26D、25.5 25.55、数据1,2,2,3,5的众数是()A.1 B.2 C.3 D.56、某学习小组7个男同学的身高(单位:米)为:1.66、1.65、1.72、1.58、1.64、1.66、1.70,那么这组数据的众数为()A.1.65 B.1.66 C.1.67 D.1.707、有19位同学参加歌咏比赛,所得的分数互不相同,取得分前10位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学成绩的()A.平均数B.中位数C.众数D.方差8、为参加2010年“上海市初中毕业生升学体育考试”,小刚同学进行了刻苦的练习,在投掷实心球时,测得5次投掷的成绩(单位:m)为:8,8.5,9,8.5,9.2.这组数据的众数、中位数依次是()A.8.5,8.5B.8.5,9C.8.5,8.75D.8.64,99、在一次“爱心互助”捐款活动中,某班第一小组7名同学捐款的金额(单位:元)分别为:6,3,6,5,5,6,9.这组数据的中位数和众数分别是()A.5,5 B.6,5 C.6,6 D.5,6三、数据波动状况-方差与标准差1、我国发现的首例甲型H1N1流感确诊病例在成都某医院隔离观察,要掌握他在一周内的体温是否稳定,则医生需了解这位病人7天体温的()A.众数B.方差C.平均数D.频数2、我市统计局发布的统计公报显示,2004年到2008年,我市GDP增长率分别为9.6%、10.2%、10.4%、10.6%、10.3%. 经济学家评论说,这5年的年度GDP增长率相当平稳,从统计学的角度看,“增长率相当平稳”说明这组数据的比较小.A.中位数B.平均数C.众数D.方差3、某一段时间,小芳测得连续五天的日最低气温后,整理得出下表(有两个数据被遮盖).日期一二三四五方差平均气温最低气温1℃-1℃2℃0℃■■1℃被遮盖的两个数据依次是()A.3℃,2 B.3℃,65C.2℃,2 D.2℃,85四、全面调查与抽样调查,样本容量1、要了解全校学生的课外作业负担情况,你认为以下抽样方法中比较合理的是()A.调查全体女生B.调查全体男生C.调查九年级全体学生D.调查七、八、九年级各100名学生2、下列调查适合作普查的是()A.了解在校大学生的主要娱乐方式B.了解宁波市居民对废电池的处理情况C.日光灯管厂要检测一批灯管的使用寿命D.对甲型H1N1流感患者的同一车厢的乘客进行医学检查3、下列调查适合作抽样调查的是()A.了解义乌电视台“同年哥讲新闻”栏目的收视率B.了解某甲型H1N1确诊病人同机乘客的健康状况C.了解某班每个学生家庭电脑的数量D.“神七”载人飞船发射前对重要零部件的检查4、要了解一批电视机的使用寿命,从中任意抽取40台电视机进行试验,在这个问题中,40是()A.个体B.总体C.样本容量D.总体的一个样本5、要调查某校九年级550名学生周日的睡眠时间,下列调查对象选取最合适的是()A.选取该校一个班级的学生B.选取该校50名男生C.选取该校50名女生D.随机选取该校50名九年级学生五、统计图、频率,直方图,折线图,扇形图(饼状图),条形图1、要反映上海市一天内气温的变化情况宜采用()A.条形统计图B.扇形统计图C.频数分布直方图D.折线统计图2、如图是某市某一天内的气温变化图,根据图4,下列说法中错误..的是()(A)这一天中最高气温是24℃(B)这一天中最高气温与最低气温的差为16℃(C)这一天中2时至14时之间的气温在逐渐升高(D)这一天中只有14时至24时之间的气温在逐渐降低3、某校为了了解九年级学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起座的次数,并绘制成如图所示的频数分布直方图,请根据图示计算,仰卧起座次数在15~20次之间的频率是()A.0.1 B.0.17 C.0.33 D.0.44、甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为0.56s2甲,0.60s2乙,20.50s丙,20.45s丁,则成绩最稳定的是()A.甲B.乙C.丙D.丁5、“只要人人都献出一点爱,世界将变成美好的人间”.在今年的慈善一日捐活动中,上海市某中学八年级三班50名学生自发组织献爱心捐款活动.班长将捐款情况进行了统计,并绘制成了统计图.根据右图提供的信息,捐款金额..的众数和中位数分别是()A.20、20B.30、20C.30、30D.20、306、某校为了了解九年级学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起座的次数,并绘制成如图所示的频数分布直方图,请根据图示计算,仰卧起座次数在15~20次之间的频率是()人数121050 15 20 25 30 35 次数A .0.1B .0.17C .0.33D .0.4解答题:1、为了解某地区30万电视观众对新闻、动画、娱乐三类节目的喜爱情况,根据老年人、成年人、青少年各年龄段实际人口的比例3∶5∶2,随机抽取一定数量的观众进行调查,得到如下统计图.(1)上面所用的调查方法是________(填“全面调查”或“抽样调查”);(2)写出折线统计图中A 、B 所代表的值; A :_____________;B :_____________;(3)求该地区喜爱娱乐类节目的成年人的人数.2、如图,将小王某月手机费中各项费用的情况制成扇形统计图,则表示短信费的扇形圆心角的度数为 .3、某校为了举办“庆祝建国60周年”的活动,调查了本校所有学生,调查的结果如图3所示,根据图中给出的信息,这所学校赞成举办演讲比赛的学生有 人.青少年 老年人节目 人数/人 图一:观众喜爱的节目统计图新闻 娱乐 动画 02468100 3469 A B 图二:成年人喜爱的节目统计图 新闻娱乐 动画108°活动形式A B C人数160(图3)A :文化演出B :运动会C :演讲比赛C A B 40%35%人数 12 10 50 15 20 25 30 35 次数根据上述信息,回答下列问题:(1)该地区2004至2007年四年的年旅游收入的平均数是 亿元;(2)据了解,该地区2006年、2007年入境旅游人数的年增长率相同,那么2006年入境旅游人数是 万;(3)根据第(2)小题中的信息,把图10补画完整.7、为了了解某校初中男生的身体素质状况,在该校六年级至九年级共四个年级的男生中,分别抽取部分学生进行“引体向上”测试.所有被测试者的“引体向上”次数情况如表一所示;各年级的被测试人数占所有被测试人数的百分率如图5所示(其中六年级相关数据未标出). 次数 0 1 2 3 4 5 6 7 8 9 10 人数1122342221表一根据上述信息,回答下列问题(直接写出结果):(1)六年级的被测试人数占所有被测试人数的百分率是 ; (2)在所有被测试者中,九年级的人数是 ;(3)在所有被测试者中,“引体向上”次数不小于6的人数所占的百分率是 ; (4)在所有被测试者的“引体向上”次数中,众数是 .8、某环保小组为了解世博园的游客在园区内购买瓶装饮料数量的情况,一天,他们分别在A 、B 、C 三个出口处,对离开园区的游客进行调查,其中在A 出口调查所得的数据整理后绘成图6.九年级 八年级 七年级六年级25%30% 25% 图52004 2005 2006 2007 年份 年旅游收入 (亿元) 90 7050 3010 图9 旅游收入图 图10创新三维学习法让您全面发展~ 11~。
专题09 概率(专题测试)--解析版
专题09 概率(专题测试) 【基础题】 1.(2021·全国高一单元测试)从数字1,2,3,4中任取三个不同的数字,则所抽取的三个数字之和能被6整除的概率为( ) A .12 B .15 C .14 D .25【答案】C【分析】利用列举法,结合古典概型概率计算公式,计算出所求概率.【详解】从数字1,2,3,4中任取三个不同的数字,方法有:123,124,134,234++++++++共4种, 其中所抽取的三个数字之和能被6整除的有:1236++=共1种,故所求概率为14. 故选:C2.(2021·全国高三专题练习(文))在新冠疫情的冲击下,全球经济受到重创,右图是各国公布的2020年第二季度国内生产值(GDP )同比增长率,现从这5个国家中任取2个国家,则这2个国家中第二季度GDP 同比增长率至少有1个低于15%-的概率为( )A .310B .12C .35D .710 【答案】D【分析】利用列举法求解即可【详解】令中国、澳大利亚、印度、英国、美国的2020年第二季度国内生产值(GDP )同比增长率分别为A ,B ,C ,D ,E ,其中C ,D 都低于15%-,则从这5个国家中任取2个国家有:AB ,AC ,AD ,AE ,BC ,BD ,BE ,CD ,CE ,DE 共10种,其中至少有1个低于15%-有AC ,AD ,BC ,BD ,CD ,CE ,DE 共7种,所以所求概率为710.故选:D.3.(2020·广西玉林市·北流市实验中学高二期中(理))从1,2,3,4,5这五个数中任取两个不同的数,则这两个数都是奇数的概率是( )A .0.1B .0.2C .0.3D .0.6【答案】C【分析】根据题中条件,列举出总的基本事件,以及满足条件的基本事件,基本事件的个数比即为所求概率.【详解】从1,2,3,4,5这五个数中任取两个数,包含的基本事件有:()1,2,()1,3,()1,4,()1,5,()2,3,()2,4,()2,5,()3,4,()3,5,()4,5,共10个;则这两个数都是奇数包含的基本事件有:()1,3,()1,5,()3,5,共3个;所以这两个数都是奇数的概率是310P =.故选:C. 4.(2021·全国高一课时练习)把分别写有1,2,3,4的四张卡片全部分给甲、乙、丙三个人,每人至少一张,且若分得的卡片超过一张,则必须是连号,那么2,3连号的概率为( )A .23B .13C .35D .14【答案】B【分析】根据列举法,列举出总的基本事件,以及满足条件的基本事件,基本事件个数之比即为所求概率.【详解】分三类情况,第一类1,2连号,则甲、乙、丙三个人拿到的卡片可能为()12,3,4,()12,4,3,()3,12,4,()4,12,3,()3,4,12,()4,3,12,有6种分法;第二类2,3连号,则甲、乙、丙三个人拿到的卡片可能为()1,23,4,()4,23,1,()23,1,4,()23,4,1,()1,4,23,()4,1,23,有6种分法;第三类3,4连号,则甲、乙、丙三个人拿到的卡片可能为()1,2,34,()2,1,34,()34,1,2,()34,2,1,()1,34,2,()2,34,1,有6种分法;共有18种分法,则2,3连号的概率为61183P ==.故选:B . 【点睛】本题主要考查求古典概型的概率,属于基础题型.5.(2021·浙江高一单元测试)从一批产品中随机抽取3件产品进行质量检测,记“3件产品都是次品”为事件A ,“3件产品都不是次品”为事件B ,“3件产品不都是次品”为事件C ,则下列说法正确的是( ) A .任意两个事件均互斥B .任意两个事件均不互斥C .事件A 与事件C 对立D .事件A 与事件B 对立【答案】C【分析】根据互斥事件和对立事件的概念可得选项.【详解】由题意知:事件C 包括三种情况,一是有两个次品一个正品,二是有一个次品两个正品,三是三件都是正品,没有次品.由此知: A 与C 是互斥事件,并且是对立事件; B 与C 是包含关系,不是互斥事件,不是对立事件;A 与B 是互斥事件,但不对立事件.故选:C.【点睛】本题考查互斥事件、对立事件的概念和辨析,属于基础题.6.(2021·浙江高一单元测试)设事件A ,B ,已知P (A )=15,P (B )=13,P (A ∪B )=815,则A ,B 之间的关系一定为( )A .两个任意事件B .互斥事件C .非互斥事件D .对立事件【答案】B【分析】由题意先求P (A )+P (B ),然后检验P (A )+P (B )是否与P (A ∪B )相等,从而可判断是否满足互斥关系【详解】因为P (A )+P (B )=1185315+==P (A ∪B ),所以A ,B 之间的关系一定为互斥事件.故选:B 【点睛】此题考查了互斥事件的概率公式的简单应用,属于基础题7.(2020·全国高一单元测试)对于总数N 的一批零件,抽取一个容量为30的样本.若每个零件被抽到的可能性均为25%,则N =( )A .120B .150C .200D .240 【答案】A【分析】根据每个个体被抽到的概率及样本容量,即可求得总体个数.【详解】∵对于总数为N 的一批零件,抽取一个容量为30的样本,每个零件被抽到的可能性均为25%, ∴3025%N=,解得120N =.故选:A. 【点睛】本题考查了样本容量与抽样概率的关系,属于基础题.8.(2021·全国高一课时练习)若A ,B 为对立事件,则下列式子中成立的是( )A .()()1P A PB +< B .()()1P A P B +>C .()()0P A P B +=D .()()1P A P B +=【答案】D【分析】根据事件的对立关系,结合概率的加法公式即可求解.【详解】若事件A 与事件B 是对立事件,则A B 为必然事件,再由概率的加法公式得()()1P A P B +=.故选:D.【点睛】此题考查对立事件的概率关系,关键在于弄清对立事件的特点及性质.9.(2020·全国高一课时练习)某射手在一次射击中,射中10环,9环,8环的概率分别是0.20, 0.30, 0.10.则此射手在一次射击中不够8环的概率为A .0.30B .0.40C .0.60D .0.90【答案】B【分析】先求出此射手在一次射击中大于等于8环的概率,即可求出结果.【详解】记“此射手在一次射击中大于等于8环”为事件A ,由题意可得()0.200.300.100.60P A =++=,所以,此射手在一次射击中不够8环的概率为()10.40P P A =-=.故选B【点睛】本题主要考查对立事件,熟记对立事件的性质即可,属于基础题型.10.(多选题)(2020·全国高一)中国篮球职业联赛(CBA )中,某男篮球运动员在最近几次参加的比赛中的得分情况如下表:记该运动员在一次投篮中,投中两分球为事件A ,投中三分球为事件B ,没投中为事件C ,用频率估计概率的方法,得到的下述结论中,正确的是( )A .()0.55P A =B .()0.18P B =C .()0.27P C =D .()0.55P B C += 【答案】ABC【分析】求出各事件的概率,并结合对立事件的概率公式可判断出各选项的正误.【详解】由题意可知,()550.55100P A ==,()180.18100P B ==, 事件A B +与事件C 为对立事件,且事件A 、B 、C 互斥,()()()()110.27P C P A B P A P B ∴=-+=--=,()()()0.45P B C P B P C +=+=.故选:ABC.【点睛】本题考查事件的概率,涉及互斥事件和对立事件概率公式的应用,考查计算能力,属于基础题. 11.(2021·浙江高一单元测试)某校参加夏令营的同学有3名男同学,,A B C 和3名女同学,,X Y Z ,其所属年级情况如下表:现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同)(1)用表中字母写出这个试验的样本空间;(2)设M 为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,写出事件M 的样本点,并求事件M 发生的概率.【答案】(1)答案见解析;(2)答案见解析;25. 【分析】(1)根据样本空间的概念写出即可;(2)利用列举法写出样本点,然后根据古典概型的概率公式求出概率即可得.【详解】(1)这个试验的样本空间为: {}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{},,,,,,,,,,,,,,,,,,,,,,,,,,,,,A B A C A X A Y A Z B C B X B Y B Z C X C Y C Z X Y X Z Y Z . (2)选出的2人来自不同年级且恰有1名男同学和1名女同学的所有可能结果为;{},A Y ,{},A Z ,{},B X ,{},B Z ,{},C X ,{},C Y 共6种,因此事件M 发生的概率()62155P M ==. 【点睛】本题考查了样本空间的概念,考查了用列举法求古典概型的概率,属于基础题.12.(2021·全国高一课时练习)5张奖券中有2张是中奖的,先由甲抽1张,然后由乙抽1张,抽后不放回,求:(1)甲中奖的概率()P A ; (2)甲、乙都中奖的概率()P B ;(3)只有乙中奖的概率(C)P ; (4)乙中奖的概率()P D .【答案】(1)25;(2)110;(3)310;(4)25 【分析】(1)写出所有的基本事件,找出甲中奖的基本事件有8种,所以可求甲中奖的概率为25; (2)写出所有的基本事件,找出甲、乙都中奖的基本事件,然后可得概率;(3)写出所有的基本事件,找出只有乙中奖的基本事件,然后可得概率;(4)写出所有的基本事件,找出乙中奖的基本事件,然后可得概率.【详解】将5张奖券编号为1,2,3,4,5,其中4,5为中奖奖券,用(,)x y 表示甲抽到号码x ,乙抽到号码y ,则所有可能的结果为(1,2),(1,3),(1,4),(1,5),(2,1),(2,3),(2,4),(2,5),(3,1),(3,2),(3,4), (3,5),(4,1),(4,2),(4,3),(4,5),(5,1),(5,2),(5,3),(5,4),共20种.(1)甲中奖包含8个基本事件:(4,1),(4,2),(4,3),(4,5),(5,1),(5,2),(5,3),(5,4), 82()205P A ∴==. (2)甲、乙都中奖包含2个基本事件:(4,5),(5,4), 21()2010P B ∴==. (3)只有乙中奖包含6个基本事件:(1,4),(1,5),(2,4),(2,5),(3,4), (3,5), ∴63()2010P C ==. (4)乙中奖包含8个基本事件:(1,4),(1,5),(2,4),(2,5),(3,4), (3,5),(4,5),(5,4), ∴82()205P D ==. 【点睛】本题主要考查古典概率的求解,列出基本事件空间和各类事件所包含的基本事件是求解的关键,注意抽取方式的不同对结果的影响,侧重考查数学运算的核心素养.【提升题】13.(2021·全国高一单元测试)齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马.某天,齐王与田忌赛马,双方约定:比赛三局,每局各出一匹,每匹马赛一次,赢得两局者为胜,则田忌获胜概率为( ).A .112B .16C .14D .13【答案】B【分析】设齐王的三匹马分别为123,,a a a ,田忌的三匹马分别为123,,b b b ,列举所有比赛的情况,利用古典概型的概率公式计算即可得出结果.【详解】设齐王的三匹马分别为123,,a a a ,田忌的三匹马分别为123,,b b b ,所有比赛的情况::11()a b ,、22(,)a b 、33(,)a b ,齐王获胜三局;11()a b ,、23(,)a b 、32(,)a b ,齐王获胜两局;12(,)a b 、21(,)a b 、33(,)a b ,齐王获胜两局;12(,)a b 、23(,)a b 、31(,)a b ,齐王获胜两局;13(,)a b 、21(,)a b 、32(,)a b ,田忌获胜两局;13(,)a b 、22(,)a b 、31(,)a b ,齐王获胜两局,共6种情况,则田忌胜1种情况,故概率为16P =,故选:B 【点睛】本题考查了古典概型的概率计算问题,考查了理解辨析和数学运算能力,属于中档题目. 14.(2021·全国高一课时练习)抛掷一个质地均匀的骰子的试验,事件A 表示“小于5的偶数点出现”,事件B 表示“不小于5的点数出现”,则一次试验中,事件A 或事件B 至少有一个发生的概率为( ) A .23 B .13 C .12 D .56【答案】A【分析】由古典概型概率公式分别计算出事件A 和事件B 发生的概率,又通过列举可得事件A 和事件B 为互斥事件,进而得出事件A 或事件B 至少有一个发生的概率即为事件A 和事件B 的概率之和.【详解】事件A 表示“小于5的偶数点出现”,事件B 表示“不小于5的点数出现”,∴P (A )2163==,P (B )2163==, 又小于5的偶数点有2和4,不小于5的点数有5和6,所以事件A 和事件B 为互斥事件, 则一次试验中,事件A 或事件B 至少有一个发生的概率为P (A ∪B )=P (A )+P (B )112333=+=, 故选:A .【点睛】本题主要考查古典概型计算公式,以及互斥事件概率加法公式的应用,属于中档题.15.(2021·浙江高一单元测试)洛书,古称龟书,是阴阳五行术数之源.在古代传说中有神龟出于洛水,其甲壳上心有此图象,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四隅黑点为阴数,其各行各列及对角线点数之和皆为15.如图,则甲壳上所有阴阳数之和__________;若从五个阳数中随机抽取三个数,则能使得这三个数之和等于15概率是__________.【答案】45 15【分析】由洛书上所有数相加即得和,用列举法列出从五个阳数中随机抽取三个数的所有基本事件,求和后知和为15的基本事件的个数,从而可得概率.【详解】甲壳上所有阴阳数之和为12945++=(或15345⨯=),五个阳数是1,3,5,7,9,任取3个数所得基本事件有:135,137,139,157,159,179,357,359,379,579共10个,其中和为15的有159,357共2个,所求概率为21105P ==.故答案为:45;15. 【点睛】本题考查数学文化,考查古典概型,用列举法是解决古典概型的常用方法.通过中国古代数学文化激发学生的学习兴趣,激发学生求知欲和创新意识,拓展学生的思维,培养学生的爱国情怀. 16.(2021·全国高一单元测试)A ,B 是治疗同一种疾病的两种药,用若干试验组进行对比试验,每个试验组由4只小白鼠组成,其中2只服用A ,另2只服用B ,然后观察疗效,若在一个试验组中,服用A 有效的白鼠的只数比服用B 有效的多,就称该试验组为甲类组,设每只小白鼠服用A 有效的概率为23,服用B 有效的概率为12. (1)求一个试验组为甲类组的概率;(2)观察3个试验组,求这3个试验组中至少有一个甲类组的概率.【答案】(1)49;(2)604729. 【分析】(1)由题意知本题是一个独立重复试验,根据所给的两种药物对小白鼠有效的概率,计算出小白鼠有效的只数的概率,对两种药物有效的小白鼠进行比较,得到甲类组的概率.(2)根据对立事件的概率公式计算可得;【详解】(1)设i A 表示事件:一个试验组中,服用A 有效的小鼠有i 只,0i =,1,2,i B 表示事件“一个试验组中,服用B 有效的小鼠有i 只“,0i =,1,2, 依题意有:1124()2339P A =⨯⨯=,2224()339P A =⨯=.0111()224P B =⨯=, 1111()2222P B =⨯⨯=,所求概率为:010212()()()P P B A P B A P B A =++14141444949299=⨯+⨯+⨯= (2)依题意这3个试验组中至少有一个甲类组的对立事件为这3个试验组中没有一个甲类组的.所以概率34604119729P ⎛⎫=--= ⎪⎝⎭; 【点睛】本题考查相互独立事件的概率公式的应用,以及对立事件的概率计算,属于中档题.【拓展题】(选用)17.(2021·全国高一单元测试)某社区举办《“环保我参与”有奖问答比赛》活动,某场比赛中,甲、乙、丙三个家庭同时回答一道有关环保知识的问题.已知甲家庭回答正确这道题的概率是34,甲、丙两个家庭都回答错误的概率是112,乙、丙两个家庭都回答正确的概率是14.若各家庭回答是否正确互不影响. (1)求乙、丙两个家庭各自回答正确这道题的概率;(2)求甲、乙、丙三个家庭中不少于2个家庭回答正确这道题的概率.【答案】(1)乙:38;丙:23;(2)2132 . 【分析】(1)记“甲回答对这道题”、“乙回答对这道题”、“丙回答对这道题”分别为事件A 、B 、C ,则()34P A =,且有1()?()121()()4P A P C P B P C ⎧=⎪⎪⎨⎪=⎪⎩,由此能求出乙、丙两人各自回答对这道题的概率. (2)首先计算出0个家庭回答正确这道题的概率与1个家庭回答正确这道题的概率,再根据对立事件的概率公式计算可得;【详解】(1)记“甲回答对这道题”、“乙回答对这道题”、“丙回答对这道题”分别为事件A 、B 、C ,则()34P A =,且有1()?()121()()4P A P C P B P C ⎧=⎪⎪⎨⎪=⎪⎩, 即1[1()][1()]121()()4P A P C P B P C ⎧--=⎪⎪⎨⎪=⎪⎩,解得()38P B =, ()23P C =. (2)有0个家庭回答正确的概率为()()()()0151548396P P ABC P A P B P C ===⨯⨯= 有1个家庭回答正确的概率为 ()()()()()()()()()()1P P ABC ABC ABC P A P B P C P A P B P C P A P B P C =++=++351131152748348348324=⨯⨯+⨯⨯+⨯⨯= 所以不少于2个家庭回答正确这道题的概率为01572111962432P P P =--=--= 【点睛】本题主要考查独立重复试验的概率乘法公式,互斥事件和对立事件,体现了分类讨论的数学思想,求出甲、乙、丙三人各自答对这道题的概率,是解题的关键,属于中档题.18.(2021·全国高一单元测试)有一种鱼的身体吸收汞,当这种鱼身体中的汞含量超过其体重的1.00ppm (即百万分之一)时,人食用它,就会对人体产生危害.现从一批该鱼中随机选出30条鱼,检验鱼体中的汞含量与其体重的比值(单位:ppm ),数据统计如下:0.07 0.24 0.39 0.54 0.61 0.66 0.73 0.82 0.82 0.820.87 0.91 0.95 0.98 0.98 1.02 1.02 1.08 1.14 1.201.20 1.26 1.29 1.31 1.37 1.40 1.44 1.58 1.62 1.68(1)求上述数据的中位数、众数、极差,并估计这批鱼该项数据的80%分位数;(2)有A ,B 两个水池,两水池之间有10个完全相同的小孔联通,所有的小孔均在水下,且可以同时通过2条鱼.(ⅰ)将其中汞的含量最低的2条鱼分别放入A 水池和B 水池中,若这2条鱼的游动相互独立,均有13的概率进入另一水池且不再游回,求这两条鱼最终在同一水池的概率;(ⅱ)将其中汞的含量最低的2条鱼都先放入A 水池中,若这2条鱼均会独立地且等可能地从其中任意一个小孔由A 水池进入B 水池且不再游回A 水池,求这两条鱼由不同小孔进入B 水池的概率.【答案】(1)中位数为1;众数为0.82;极差为1.61;估计这批鱼该项数据的80百分位数约为1.34;(2)(ⅰ)49;(ⅱ)910. 【分析】(1)由中位数—排序后处于中间的数,如有两个数取其平均数;众数—出现频率最高的数、极差—最大数与最小数的差;p 百分比位数—数据集中有n 个数:当np 为整数时12np np x x ++,当np 不为整数时[]1np x +;即可求出对应值;(2) (ⅰ)记A :“两鱼最终均在A 水池”; B :“两鱼最终均在B 水池”求出概率,由它们的互斥性即可求得两条鱼最终在同一水池的概率;(ⅱ)记n C :“两鱼同时从第n 个小孔通过”且鱼的游动独立,知1()100n P C =,而10个事件互斥,则“两鱼同时从一个小孔通过”的概率即可求,它与“两条鱼由不同小孔通过”为互斥事件,进而求得其概率【详解】(1)由题意知,数据的中位数为0.98 1.0212+=,数据的众数为0.82, 数据的极差为1.680.07 1.61-=,估计这批鱼该项数据的80百分位数约为1.31 1.37 1.342+= (2)(ⅰ)记“两鱼最终均在A 水池”为事件A ,则212()339P A =⨯= 记“两鱼最终均在B 水池”为事件B ,则212()339P B =⨯= ∵事件A 与事件B 互斥,∴两条鱼最终在同一水池的概率为224()()()999P AB P A P B =+=+= (ⅱ)记“两鱼同时从第一个小孔通过”为事件1C ,“两鱼同时从第二个小孔通过”为事件2C ,依次类推;而两鱼的游动独立 ∴12111()()1010100P C P C ===⨯= 记“两条鱼由不同小孔进入B 水池”为事件C ,则C 与1210...C C C 对立,又由事件1C ,事件2C ,10C 互斥∴121011()(...)1010010P C P C C C ==⨯=即12109()1(...)10P C P C C C =-= 【点睛】本题考查了数据特征值的概念,以及利用条件概率公式,结合互斥事件、独立事件等概念求概率;注意独立事件:多个事件的发生互不相关,且可以同时发生;互斥事件:一个事件发生则另一个事件必不发生,即不能同时发生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题-概率抓住6个高考重点重点1 随机事件的概率1.频率与概率(1)频率:在相同条件下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数m为事件A的频数,那么事件A出现的频率()n mf An=,频率的取值范围为[0,1].(2)概率:对于给定的随机事件,如果随着试验次数的增加,事件A发生的频率稳定在某个常数附近,我们把这个常数记为P(A),称为事件A的概率.频率与概率有本质的区别,不可混为一谈,频率随着试验次数的改变而变化,概率却是一个常数,它是频率的科学抽象.当试验次数越来越多时,频率向概率靠近.只要试验次数足够多,所得频率就近似地当做随机事件的概率. 2.事件的关系及运算(1)对于事件A和事件B,如果事件A发生,事件B一定发生,称事件B包含事件A(或事件A包含于事件B).(2)若事件A发生当且仅当事件B也发生,称事件A等于事件B.(3)若某事件发生当且仅当事件A发生或事件B发生,称该事件为事件A与事件B的并事件(或和事件),记作A B+(或A B).(4)若某事件发生当且仅当事件A且事件B都发生,则称该事件为事件A与事件B的交事件(或积事件),记作AB(或A B).(5)若A B为不可能事件,则称事件A与事件B互斥.(6)若A B为不可能事件,而A B为必然事件,则称A与B为对立事件.3.概率的性质(1)()[0,1]P A∈,其中必然事件的概率为1,不可能事件的概率为0.(2)若事件A与事件B互斥,则()()()P A B P A P B+=+.(3)若事件A与事件B对立,则()1()P A P B=-[高考常考角度]角度1(1)计算表中击中靶心的各个频率;(2)这个运动员击中靶心的概率约是多少?角度2 (1)以下命题:①将一枚硬币抛掷两次,设事件A:“两次都出现正面”,事件B:“两次都出现反面”,则事件A与事件B是对立事件;②在命题①中,事件A与事件B是互斥事件;③在10件产品中有3件是次品,从中任取3件,事件A:“所取3件中最多有2件是次品”,事件B:“所取3件中至少有2件是次品”,则事件A与事件B是互斥事件.(2)盒中有4只白球,5只黑球,从中任意取出一只球.①“取出的球是黄球”是什么事件?它的概率是多少?②“取出的球是白球”是什么事件?它的概率是多少?③“取出的球是白球或黑球”是什么事件?它的概率是多少?重点2 古典概型1.古典概率模型:(1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等.我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型.并不是所有的试验都是古典概型,例如,在适宜的条件下种下一粒种子并观察它是否“发芽”,这个试验的基本事件空间为{发芽,不发芽},而“发芽”与“不发芽”这两种结果出现的机会一般是不均等的.2.古典概型的概率公式:()AP A 包含的基本事件的个数基本事件的总数3.学会用最原始的方法计算基本事件个数,许多古典概型的试题其基本事件个数的计算没有直接的公式可以套用,这时就要回归到最原始的方法解基本事件的个数,一般就是列举法,通过列举把所有的基本事件找出来,在列举时注意借助于图表、坐标系等进行.4.对于求较复杂事件的古典概型的概率问题,可以利用分类讨论的方法求出总体包含的基本事件的个数及事件包含的基本事件的个数,然后将所求事件转化成彼此互斥的事件的和,或者先求对立事件的概率,进而用互斥事件的概率加法公式或对立事件的概率公式求出所求事件的概率.[高考常考角度]角度1 有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A. 13B.12C.23D.34角度2甲乙两人一起去游“西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后1小时他们同在一个景点的概率是()A. 136B.19C.536D.16角度3 电子钟一天显示的时间是从00:00到23:59,每一时刻都由四个数字组成,则一天中任一时刻的四个数字之和为23的概率为()A.1180B.1288C.1360D.1480角度4 (理科)已知一组抛物线211,2y ax bx =++其中a 为2,4,6,8中任取的一个数,b 为1,3,5,7中任取的一个数,从这些抛物线中任意抽取两条,它们在与直线1x =交点处的切线相互平行的概率是( )A .112B .760C .625 D. 516角度5甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(Ⅰ)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率; (Ⅱ)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.重点3 几何概型1.几何概型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型. 2.几何概型的概率公式:()A P A =构成事件的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)3.均匀随机数:在一定范围内随机产生的数,其中每一个数产生的机会是一样的,通过模拟一些试验,可以代替我们做大量的重复试验,从而求得几何概型的概率,一般地,利用计算机或计算器的rand ()函数可以产生0~1之间的均匀随机数.a~b 之间的均匀随机数的产生:利用计算机或计算器产生0~1之间的均匀随机数x= rand (),然后利用伸缩和平移变换x= rand ()*(b-a )+a ,就可以产生a~b 之间的均匀随机数.4.几何概型的两个特点:一是无限性,即在一次试验中,基本事件的个数可以是无限的;二是等可能性,即每一个基本事件发生的可能性是均等的.因此,用几何概型和用古典概型求解概率问题的思路是相同的,同属于“比例解法”.即随机事件A 的概率可以用“事件A 包含的基本事件所占的图形面积(体积、长度)”与“试验的基本事件所占的总面积(总体积、总长度)”之比来表示.5.几何概型是与古典概型最为接近的一种概率模型,两者的共同点是基本事件是等可能的,不同点是基本事件数前者是无限的(基本事件可以抽象为点),后者是有限的.对于几何概型而言,这些点尽管是无限的,但它们所占据的区域是有限的,根据等可能性,其中某个点落在某区域上的概率与该区域的几何度量成正比,而与该区域的位置和形状无关.6.几种常见的几何概型概率的求法:l 的长度(2)设平面区域g 是平面区域G 的一部分,向区域G 上任投一点,此点落在区域g 上的概率为G g P =的面积的面积(3)设空间区域v 是空间区域V 的一部分,向区域v 上任投一点,此点落在区域V 上的概率为V v P =的体积的体积7.化解几何概型问题要从以下三方面做起:(1)明确几何概型的意义.几何概型是基本事件个数有无限个,每个基本事件发生的可能性相等的一个概率模型,这个概率模型的显著特点是每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例.(2)记住几何概型的计算公式.几何概型的计算就是找随机事件所占有的几何度量值和整个基本事件所占有的几何度量值的比值.即如果整个基本事件占有的几何度量值为M ,随机事件A 所占有的几何度量值为N ,则事件A 发生的概率()N P A M=(3)掌握转化策略.很多几何概型往往要通过一定的手段才能转化到几何度量值的计算上来,在解决问题时要善于根据问题的具体情况进行转化,如把从两个区间内取出的实数看作坐标平面上的点的坐标,将问题转化为平面上的区域问题等,这种转化策略是化解几何概型试题难点的关键.[高考常考角度]角度1 已知菱形ABCD 的边长为2,030,A ∠=则该菱形内的点到菱形的顶点A ,B 的距离均不小于1的概率是( ) A .4π B. 14π- C. 112π- D. 5112π-角度2 已知关于x 的一元二次函数2()41f x ax bx =-+,其中实数,a b 满足8000a b a b +-≤⎧⎪>⎨⎪>⎩,则函数()y f x =在区间[1,)+∞上是增函数的概率是_______角度3 蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”概率为( ) A . 427 B .19 C .49 D. 127角度4如图,在长方体1111ABCD A B C D -中,,E H 分别是棱1111,A B D C 上的点(点E 与1B 不重合),且11//EH A D ,过EH 的平面与棱11,BB CC 相交,交点分别为,F G . (Ⅰ)证明://AD 平面EFGH ;(Ⅱ)设122,AB AA a ==在长方体1111ABCD A B C D -内随机选取一点,记该点取自于几何体11A ABFE D DCGH - 内的概率为p .当点,E F 分别在棱111,A B B B 上运动且满足EF a =时,求p 的最小值.重点4 n 次独立重复试验的概率问题(理科)1. n 次独立重复试验概型:在相同条件下重复做的n 次试验称为n 次独立重复试验,在n 次独立重复试验中,如果事件A 发生的概率为p ,则在n 次独立重复试验中事件A 恰好发生k 次的概率为()(1),k k n kn nP k C p p -=-这是概率计算中应用非常广泛的一种概率模型.2.明确n 次独立重复试验概型的适用环境:根据定义,n 次独立重复试验是在相同条件下的重复试验,也就是说每次试验时事件A 要么发生要么不发生,但事件A 发生的概率是相同的.在实际问题中,我们往往把一些发生的概率相等,互相之间没有必然联系的事件看作独立重复试验,如5位同学参加竞赛,每位同学获奖的概率都是0.4,则获奖的人数就可以看作5次独立重复试验中事件发生的次数,可以根据独立重复试验概型进行解决.明确n 次独立重复试验概型的适用环境,善于将实际问题归结到这个概率模型是化解这类概率应用问题的关键.3.注意部分中的独立重复试验概型:在实际问题中,往往一个随机事件其中的一部分或若干部分符合独立重复试验概型的条件,这时可以在这些部分中使用独立重复试验概型的计算公式,以达到简化计算的目的.[高考常考角度]角度1 在全国大学生智能汽车总决赛中,某高校学生开发的智能汽车在一个标注了平面直角坐标系的平面上从坐标原点出发,每次只能移动一个单位,沿x 轴正方向移动的概率是23,沿y 轴正方向移动的概率为13,则该智能汽车移动6次恰好移动到点(3,3)的概率为____.角度2 一袋中装有5个白球,3个红球,现从袋中往外取球,每次取出一个,记下球的颜色,然后放回,直到红球出现10次停止,用X 表示取球的次数,则(12)P X ==______________角度3 有一种旋转舞台灯,外形是正六棱柱,在其每一个侧面上安装5只颜色各异的彩灯,假若每只灯正常发光的概率为0.5.若一个面上至少有3只灯发光,则不需要维修,否则需要维修这个面. (1)求恰好有两个面需要维修的概率;(2)求至少3个面需要维修的概率.重点5 离散型随机变量的分布列、期望、方差(理科) 1.期望:1122......n n E x p x p x p ξ=++++2.方差:2221122()()...()...n n D x E p x E p x E p ξξξξ=-+-++-+3.标准差:δξ4.222(),(),()E a b aE b D a b a D D E E ξξξξξξξ+=++==-5.求离散型随机变量的分布列(1)求离散型随机变量的分布列,应按下述三个步骤进行: ①明确随机变量的所有可能取值,以及取每个值所表示的意义; ②利用概率的有关知识,求出随机变量每个取值的概率; ③按规范形式写出分布列,并用分布列的性质验证.(2)如果分布列中某一栏的概率比较复杂;可以利用分布列的性质12...1n p p p +++=求解.(3)求随机变量的分布列,基础是概率的计算,如古典概型的概率、互斥事件的概率、相互独立事件同时发生的概率、n 次独立重复试验有k 次发生的概率等. 6.期望、方差的求法(1)对离散型随机变量的数学期望应注意如下几点:①数学期望是算术平均值概念的推广,是概率意义上的平均.②E ξ是一个实数,由ξ的分布列唯一确定,即作为随机变量ξ是可变的,可取不同值,而E ξ是不变的,它描述ξ取值的平均状态.③1122......n n E x p x p x p ξ=++++直接给出了E ξ的求法,即随机变量的取值与相应概率值分别相乘后相加. ④教材中给出的()E a b aE b ξξ+=+,说明随机变量ξ的线性函数a b ηξ=+的期望等于随机变量ξ的数学期望的(2)对离散型随机变量的方差应注意如下几点:①D ξ表示随机变量ξ对E ξ的平均偏离程度.D ξ越大,表明平均偏离程度越大,说明ξ的取值越分散.反之,D ξ越小,ξ的取值越集中;在E ξξ的分散程度. ②D ξ与E ξ一样,也是实数,由ξ的分布列唯一确定.③对于结论:2()D a b a D ξξ+=,在记忆和使用此结论时,请注意(),()D a b aD b D a b aD ξξξξ+≠++≠. (3)求离散型随机变量ξ的期望与方差韵方法: ①理解ξ的意义,写出ξ可能取的全部值; ②求ξ取每个值的概率; ③写出ξ的分布列; ④由期望的定义求E ξ; ⑤由方差的定义求D ξ.(4)当断定随机变量ξ服从二项分布时,可不用列出分布列,直接求出E ξ与D ξ.(5)在计算离散型随机变量的期望和方差时,首先要搞清其分布特征及分布列,然后准确应用公式.充分利用期望和方差的性质解题,能避免繁琐的运算过程,提高运算速度和准确度.如22()D E E ξξξ=-.(6)求离散型随机变量的期望与方差的关键在于求出分布列,求离散型随机变量的分布列的关键是过好四关: ①过好“题目的理解关”.要抓住题中关键字句,尽可能转化为自己熟悉的模型. ②过好“随机变量的取值关”.准确无误地找出随机变量的所有可能取值.③过好“事件的类型关”,事件通常包括等可能事件、互斥事件、对立事件、相互独立事件、独立重复试验事件等,在计算相应的概率前要先确定事件的类型,尤其注意“互斥事件”与“相互独立事件”的区别. ④过好“概率的运算关”.运用公式(),()()(),()()(),mP A P A B P A P B P A B P A P B n=+=+⋅=⋅ ()(1)(0,1,2,...,)k k n kn n P k C p p k n -=-=,确保正确无误. [高考常考角度]角度1 (江西)(本小题满分12分)某饮料公司招聘一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A 饮料,另外4杯为B 饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A 饮料.若4杯都选对,则月工资定为3500元;若4杯选对3杯,则月工资定为2800元;否则月工资定为2100元.令X 表示此人选对A 饮料的杯数.假设此人对A 和B 两种饮料没有鉴别能力. (1)求X 的分布列;(2)求此员工月工资的期望.角度2 (辽宁)(本小题满分12分)某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成n 小块地,在总共2n 小块地中,随机选n 小块地种植品种甲,另外n 小块地种植品种乙. (Ⅰ)假设n =4,在第一大块地中,种植品种甲的小块地的数目记为X ,求X 的分布列和数学期望;(Ⅱ)试验时每大块地分成8小块,即n =8,试验结束后得到品种甲和品种乙在各小块地上的每公顷产量(单位:2附:样本数据n x x x ,,,21⋅⋅⋅的的样本方差])()()[(1222212x x x x x x ns n -+⋅⋅⋅+-+-=,其中x 为样本平均数.重点6 二项分布(理科)二项分布:若~(,),,(1)B n p E np D np p ξξξ==-,判断随机变量是否服从二项分布的关键是看某一事件是否进行了n 次独立重复试验,且每次试验是否只有两种结果,如果不满足这两个条件,随机变量就不服从二项分布.[高考常考角度]角度1(本小题满分12分)学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同.每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱) (Ⅰ)求在一次游戏中,(i )摸出3个白球的概率; (ii )获奖的概率;(Ⅱ)求在两次游戏中获奖次数X 的分布列及数学期望()E X突破2个高考难点难点1 事件的互斥与对立(文、理)解决互斥事件和对立事件问题的难点就是对事件的互斥性与对立性的辨别,在解题中要根据问题的具体情况作出准确的判断.互斥事件是不可能同时发生的两个事件,其概率满足加法公式,即若,A B 互斥,则()()()P A B P A P B +=+;对立事件是必然有一个发生的两个互斥事件,也就是说对立的两个事件首先必须是互斥的,而且这两个事件之和是一个必然事件,即一个事件A 与它的对立事件A 的概率之间有关系式()()1P A P A +=,用好这个关系对解决概率问题是非常有用的,它往往能使复杂的问题简单化.典例1 甲:12,A A 是互斥事件;乙:12,A A 是对立事件,那么下列说法正确的是_____________①甲是乙的充分但不必要条件; ②甲是乙的必要但不充分条件;③甲是乙的充要条件; ④甲既不是乙的充分条件,也不是乙的必要条件.典例2 根据多年经验,张先生在本单位的一次考核中,获得第一、二、三、四名的概率分别为0. 21,0.23,0. 25,0.28,计算张先生在一次考核中: (1)获得第一名或第四名的概率; (2)名次不在前四名的概率.难点1 事件的互斥与对立(文、理)概率、统计型综合题重在考查考生根据生活、生产等实际问题的情境分析问题、解决问题的能力,考查考生的思维能力及运算能力.解决概率、统计型综合题的关键,就是要善于从普通语言中捕捉到有用信息,并将普通语言转化为数学语言,因此在复习时要留意概率型综合题中的新背景,夯实概率基础知识与方法,注重对自己阅读理解能力的培养,提高应用数学知识与方法分析解决问题的能力.典例 连续掷两枚骰子得到的点数分别为m 和n ,记向量(,)a m n = 与向量(1,1)b =- 的夹角为α,求(0,]2πα∈的概率.难点1 独立事件的概率、条件概率(理) 化解本难点要从以下三方面做起:1.深入理解独立事件的本质:两个事件的发生与否相互之间没有关系,事件的相互独立性的概念可以推广到n 个事件之间的相互独立.2.掌握条件概率的计算方法:条件概率具有概率的一般性质,即概率值都在区间[0,1]内,若,B C 互斥,则(|)(|)(|)P B C A P B A P C A =+ 等,在古典概型中往往是根据古典概型的公式计算条件概率,而不是根据上述定义进行计算.3.学会分析事件之间的关系:一个实际问题中往往涉及多个事件,正确理解这些事件之间的相互关系是解决问题的核心,一般的思路是先把所要解决的随机事件分成若干个互斥事件的和,再把这些互斥事件中的每一个事件分成若干个相互独立事件的乘积,把所要求的随机事件的概率计算转化为已知的一些事件的概率之积、之和的计算,这是化解概率计算问题难点的关键所在,典例1 某公司招聘员工,指定三门考试课程,有两种考试方案.方案一:考试三门课程,至少有两门合格为考试通过;方案二:在三门课程中,随机选取两门,这两门都合格为考试通过.假设某应聘者这三门指定课程考试合格的概率分别是,,a b c ,且三门课程考试是否合格相互之间没有影响. (1)分别求该应聘者用方案一和方案二时考试通过的概率; (2)试比较该应聘者在上述两种方案下考试通过的概率的大小.(说明理由)典例2 设b 和c 分别是先后抛掷一枚骰子得到的点数,用随机变量ξ表示方程20x bx c ++=实根的个数(重根按一个计)(1)求方程20x bx c ++=有实根的概率; (2)求ξ的分布列和数学期望;(3)求在先后两次出现的点数中有5的条件下,方程20x bx c ++=有实根的概率.条件概率:在事件A 发生的条件下,事件B 发生的概率()(|)()P AB P B A P A =,其中()P AB 表示A 与B 同时发生的概率.典例3 某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响.已知某学生只选修甲的概率为0.08,只选修甲和乙的概率是0.12,至少选修一门的概率是0.88,用ξ表示该学生选修的课程门数和没有选修的课程门数的乘积.记“函数2()f x x x ξ=+为R 上的偶函数”为事件A ,求事件A 的概率.难点2 正态分布(理)化解正态分布问题中的难点的依据是正态密度曲线的性质:(1)曲线在x 轴上方,与x 轴无交点,且x 轴为其渐近线;(2)曲线是单峰的,它关于直线x μ=对称;(3)曲线在x μ=处达到最大值;(4)当σ一定时,曲线随着μ的变化而沿x 轴平移;(5)当μ一定时,曲线的形状由σ确定,σ越小,曲线越尖陡,表示总体的分布越集中;σ越大,曲线越扁平,表示总体的分布越分散.典例1 设两个正态分布2111(,)(0)N μσσ>和2222(,)(0)N μσσ>的密度函数图象如图所示,则有( )A.1212,μμσσ<<B.1212,μμσσ<>C.1212,μμσσ><D.1212,μμσσ>>典例2 中国汽车销售量达到1700万辆,汽车耗油量对汽车的销售有着非常重要的影响,各个汽车制造企业积极采用新技术降低耗油量,某汽车制造公司为调查某种型号的汽车的耗油情况;共抽查了1200名车主,据统计该种型号的汽车的平均耗油为百公里8.0升,并且汽车的耗油量ξ服从正态分布2(8,)N σ,已知耗油量[7,9]ξ∈的概率为0.7,那么耗油量大于9升的汽车大约有________辆.规避5个易失分点易失分点1 误解基本事件的等可能性典例 若将一枚质地均匀的骰子(一种各面上分别标有1、2、3、4、5、6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和为4的概率为__________.易失分点2 几何概型概念不清典例1 在等腰Rt ABC ∆中,直角顶点为C ,在ABC ∆的内部任作一条射线CM ,与线段AB 交于点M ,AM AC <的概率为_________.易失分点3 互斥和对立相混淆典例 判断下列给出的每对事件,是否为互斥事件,是否为对立事件,并说明道理.从40张扑克牌(红桃、黑桃、方块、梅花各10张,点数都是从1—10)中,任取一张.(1)“抽出红桃”与“抽出黑桃”;(2)“抽出红色牌”与“抽出黑色牌”;(3)“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”.易失分点4 互斥事件与相互独立事件相混淆(理)典例 某课程考核分理论与实验两部分进行,每部分考核成绩只记“合格”与“不合格”,两部分考核都是“合格”,则该课程考核“合格”,甲、乙、丙三人在理论考核中合格的概率分别为0.9,0.8,0.7;在实验考核中合格的概率分别为0.8,0.7,0.9,所有考核是否合格相互之间没有影响.(1)求甲、乙、丙三人在理论考核中至少有两人合格的概率;(2)求这三人该课程考核都合格的概率.(结果保留三位小数)易失分点5 对二项分布理解不准(理)典例某气象站天气预报的准确率为80%,计算:(结果保留到小数点后面第2位)(1)5次预报中恰有2次准确的概率;(2)5次预报中至少有2次准确的概率5(3)5次预报中恰有2次准确,且其中第3次预报准确的概率.。