第三章 概率随堂练习

合集下载

高二必修三数学第三章概率单元练习题(含答案北师大版)

高二必修三数学第三章概率单元练习题(含答案北师大版)

高二必修三数学第三章概率单元练习题(含答案北师大版)数学在科学发展和现代生活生产中的应用特别宽泛,以下是查词典数学网为大家整理的高二必修三数学第三章概率单元练习题,希望能够解决您所碰到的有关问题,加油,查词典数学网向来陪同您。

一、选择题1.某人将一枚硬币连续投掷了10 次,正面向上的情况出现了6 次,则 ()A. 概率为 0.6B.频次为 0.6C.频次为 6D. 概率靠近于 0.6【分析】连续投掷了 10 次,正面向上的情况出现了 6 次,只好说明频次是 0.6,只有进行大批的试验时才可预计概率 . 【答案】 B2.以下说法错误的选项是()A.频次反应事件的屡次程度,概率反应事件发生的可能性大小B.做 n 次随机试验,事件 A 发生 m 次,则事件 A 发生的频率 mn 就是事件 A 的概率C.频次是不可以离开n 次试验的试验值,而概率是拥有确立性的不依靠于试验次数的理论值D.频次是概率的近似值,概率是频次的稳固值【分析】依据频次与概率的意义可知, A 正确 ;C、D 均正确,B 不正确,应选 B.【答案】B3.从寄存号码分别为1,2,,10 的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果以下:卡片号码取到的次数则取到号码为奇数的频次是()【分析】mn=13+5+6+18+11100=0.53.【答案】A4.(2019 沈阳检测 ) 某彩票的中奖概率为11 000 意味着 ()A. 买 1 000 张彩票就必定能中奖B.买 1 000 张彩票中一次奖C.买 1 000 张彩票一次奖也不中D.购置彩票中奖的可能性是11 000【分析】中奖概率为11 000,其实不意味着买1 000 张彩票就必定中奖,中一次奖或一次也不中,所以A、B、C 均不正确.【答案】D5.2019 年山东省高考数学试题中,共有12 道选择题,每道选择题有 4 个选项,此中只有 1 个选项是正确的,则随机选择此中一个选项正确的概率为14,某家长说:假如都不会做,每题都随机选择此中一个选项,则必定有 3 题答对这句话 () A. 正确 B.错误C.不必定D. 没法解说【分析】把解答一个选择题作为一次试验,答对的概率是14,说明做对的可能性大小是14.做 12 道选择题,即进行了12 次试验,每个结果都是随机的,那么答对 3 题的可能性较大,可是其实不必定答对3 道,也可能都选错,或仅有2,3,4题选对,甚至12 个题都选择正确.【答案】B二、填空题6.样本容量为200 的频次散布直方图如图3-1-1 所示 .依据样本的频次散布直方图预计,样本数据落在[6,10) 内的频数为________,数据落在 [6,10) 内的概率约为 ________.图 3-1-1【分析】样本数据落在[6,10)内的频次为0.084=0.32,频数为 2019.32=64.由频次与概率的关系知数据落在[6,10) 内的概率约为0.32.【答案】64 0.327.在 5 张不一样的彩票中有 2 张奖票, 5 个人挨次从中各抽取1张,各人抽到奖票的概率________( 填相等不相等 ).【分析】由于每人抽得奖票的概率均为25,与前后的次序没关 .【答案】相等8.假如袋中装有数目差异很大而大小同样的白球和黑球(只是颜色不一样 ),每次从中任取一球,记下颜色后放回并搅匀,取了 10 次有 9 次白球,预计袋中数目最多的是________.【分析】取了 10 次有 9 次白球,则拿出白球的频次是910,预计其概率约是910,那么拿出黑球的概率是110,那么取出白球的概率大于拿出黑球的概率,所以预计袋中数目最多的是白球.【答案】白球三、解答题9.(1)设某厂产品的次品率为2%,问从该厂产品中随意地抽取 100 件,此中必定有 2 件次品这一说法对不对?为何 ? (2)若某次数学测试,全班50 人的及格率为90%,若从该班中随意抽取10 人,此中有 5 人及格是可能的吗?【解】(1)这类说法不对,由于产品的次品率为2%,是指产品是次品的可能性为2%,所以从该产品中随意地抽取100件,此中有可能有 2 件次品,而不是必定有 2 件次品 .(2)这类状况是可能的.10.(2019 课标全国卷Ⅱ )经销商经销某种农产品,在一个销售季度内,每售出 1 t 该产品获收益 500 元,未售出的产品,每 1 t 损失 300 元.依据历史资料,获得销售季度内市场需求量的频次散布直方图,如图 3-1-2 所示 .经销商为下一个销售季度购进了 130 t 该农产品 .以 X( 单位: t,100150) 表示下一个销售季度内的市场需求量, T(单位:元)表示下一个销售季度内经销该农产品的收益 .图 3-1-2(1)将 T 表示为 X 的函数 ;(2)依据直方图预计收益T 许多于 57 000 元的概率 .【解】(1)当 X[100,130) 时,T=500X-300(130-X)=800X-39 000.当 X[130,150] 时,T=500130=65 000.所以 T=800X-39 000 ,100130,?65 000, 130150.(2)由 (1)知收益 T 许多于 57 000 元当且仅当120190.由直方图知需求量X[120, 150] 的频次为0.7,所以下一个销售季度内的收益T 许多于 57 000 元的概率的预计值为0.7.11.在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量,单位: mm)共有 100 个数据,将数据分组以下表:分组频数[1.30,1.34)4[1.34,1.38)25[1.38,1.42)30[1.42,1.46)29[1.46,1.50)10[1.50,1.54)2总计 100(1)画出频次散布直方图;(2)预计纤度落在 [1.38,1.50)mm 中的概率及纤度小于 1.42 的概率是多少 .【解】(1)频次散布直方图,如图:(2)纤度落在 [1.38,1.50)mm 中的频数是 30+29+10=69 ,则纤度落在 [1.38,1.50)mm 中的频次是 69100=0.69 ,所以预计纤度落在 [1.38,1.50)mm 中的概率为 0.69.纤度小于 1.42 mm 的频数是 4+25+30=59 ,则纤度小于 1.42 mm 的频次是 59100=0.59,要练说,得练看。

高中数学必修3第三章概率试题训练[1]

高中数学必修3第三章概率试题训练[1]

高中数学必修3第三章概率试题训练1.下列说法正确的是( )A. 任何事件的概率总是在(0,1)之间B. 频率是客观存在的,与试验次数无关C. 随着试验次数的增加,频率一般会越来越接近概率D. 概率是随机的,在试验前不能确定 2.掷一枚骰子,则掷得奇数点的概率是( )A. 61B. 21C. `31 D. 413. 抛掷一枚质地均匀的硬币,如果连续抛掷1000次,那么第999次出现正面朝上的概率是( )A. 9991B. 10001C. 1000999 D. 214.从一批产品中取出三件产品,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品不全是次品”,则下列结论正确的是( )A. A 与C 互斥B. B 与C 互斥C. 任何两个均互斥D. 任何两个均不互斥5.从一批羽毛球产品中任取一个,其质量小于4.8g 的概率为0.3,质量小于4.85g 的概率为0.32,那么质量在[4.8,4.85](g )范围内的概率是( )A. 0.62B. 0.38C. 0.02D. 0.68 6.同时抛掷两枚质地均匀的硬币,则出现两个正面朝上的概率是( )A. 21B. 41C. 31D. 817.甲,乙两人随意入住两间空房,则甲乙两人各住一间房的概率是( )A. 31. B. 41 C. 21 D.无法确定8.从五件正品,一件次品中随机取出两件,则取出的两件产品中恰好是一件正品,一件次品的概率是A. 1B. 21C. 31D. 329.一个袋中装有2个红球和2个白球,现从袋中取出1球,然后放回袋中再取出一球,则取出的两个球同色的概率是( )A. 21B. 31C. 41D. 5210.现有五个球分别记为A 、C 、J 、K 、S ,随机放进三个盒子,每个盒子只能放一个球,则K 或S 在盒中的概率是( )A.101 B. 53 C. 103 D. 10911、对某种产品的5件不同正品和4件不同次品一一进行检测,直到区分出所有次品为止. 若所有次品恰好经过五次检测被全部发现,则这样的检测方法有( )A .20种B .96种C .480种D .600种12、若连掷两次骰子,分别得到的点数是m 、n ,将m 、n 作为点P 的坐标,则点P落在区域2|2||2|≤-+-y x 内的概率是 A.3611B.61C.41D.367 13、要从10名男生和5名女生中选出6人组成啦啦队,若按性别依比例分层抽样且某男生担任队长,则不同的抽样方法数是A.2539C C B . 25310C C C. 25310A A D. 25410C C 14、在500mL 的水中有一个草履虫,现从中随机取出2mL 水样放到显微镜下观察,则发现草履虫的概率是( ) A. 0.5 B. 0.4C. 0.004D. 不能确定15、如图所示,随机在图中撒一把豆子,则它落到阴影部分的概率是( )A.12B.34C.38D.1816、两个事件互斥是两个事件对立的( )条件A. 充分不必要B. 必要不充分C. 充分必要D. 既不充分也不必要17、下列事件中,随机事件的个数是( )①如果a 、b 是实数,那么b+a=a+b ;②某地1月1日刮西北风;③当x 是实数时,x 2≥0;④一个电影院栽天的上座率超过50%。

北师大版九年级数学上册第三章概率练习题(含答案)

北师大版九年级数学上册第三章概率练习题(含答案)

概率练习题1.在一个不透明的布袋中,有大小、形状完全相同,颜色不同的15个球,从中摸出红球的概率为,则袋中红球的个数为( )A.10B.15C.5D.2 2.已知粉笔盒里有4支红色粉笔和n 支白色粉笔,每支粉笔除颜色外均相同,现从中任取一支粉笔,取出红色粉笔的概率是,则n 的值是( ) A .4 B .6 C .8D .103.为估计某地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉60只黄羊,发现其中2只有标志.由这些信息,我们可以估计该地区有黄羊( )A 、400只B 、600只C 、800只D 、1000只4.在配紫色游戏中,转盘被平均分成“红”、“黄”、“蓝”、“白”四部分,转动转盘两次,配成紫色的概率为( )A.13B.14C.15D.185.小颖将一枚质地均匀的硬币连续掷了三次,你认为三次都是正面朝上的概率是( )A.12B.13C.14D.186.下列说法中正确的个数是( )①不可能事件发生的概率为0;②一个对象在试验中出现的次数越多,频率就越大;③在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值; ④收集数据过程中的“记录结果”这一步,就是记录每个对象出现的频率. A .1 B .2 C .3 D .4257.一个袋子中装有3个红球和2个黄球,这些球的形状、大小、质地完全相同,在看不到球的条件下,随机从袋子里同时摸出2个球,其中2个球的颜色相同的概率是( )A.34B.15C.25D.358.暑假快到了,父母打算带兄妹俩去某个景点旅游一次,长长见识,可哥哥坚持去黄山,妹妹坚持去泰山,争执不下,父母为了公平起见,决定设计一款游戏,若哥哥赢了就去黄山,妹妹赢了就去泰山.下列游戏中,不能选用的是( ) A.掷一枚硬币,正面向上哥哥赢,反面向上妹妹赢B.同时掷两枚硬币,两枚都正面向上,哥哥赢,一正一反向上妹妹赢C.掷一枚骰子,向上的一面是奇数则哥哥赢,反之妹妹赢D.在不透明的袋子中装有两黑两红四个球,除颜色外,其余均相同,随机摸出一个是黑球则哥哥赢,是红球则妹赢9.某班要从甲、乙、丙、丁四位班干部(两男两女)中任意两位参加学校组织的志愿者服务活动,则恰好选中一男一女的概率是________.10.有30张牌,牌面朝下,每次抽出一张记下花色再放回,洗牌后再抽,经历多次试验后,记录抽到红桃的频率为20%,则红桃大约有张.11.为估计某地区黄羊的只数,先捕捉20只黄羊分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉60只黄羊,发现其中2只有标志.从而估计该地区有黄羊只。

【随堂优化训练】高中数学 第三章 概率课后能力提升专练 新人教A版必修3

【随堂优化训练】高中数学 第三章 概率课后能力提升专练 新人教A版必修3

第三章概率3.1 随机事件的概率3.1.1 随机事件的概率1.下列现象是必然现象的是( )A.某路口单位时间内发生交通事故的次数B.冰水混合物的温度是1℃C.三角形的内角和为180°D.一个射击运动员每次射击都击中2.一个口袋内装有大小和形状都相同的一个白球和一个黑球,那么“从中任意摸出一个球,得到白球”这个事件( )A.是必然事件B.是随机事件C.是不可能发生事件D.不能确定是哪种事件3.事件A的概率P(A)满足( )A.P(A)=0B.P(A)=1C.0<P(A)<1D.0≤P(A)≤14.在100个小球中,白球有98个,黑球有2个.从这100个小球中一次性地取出3 个.(1)写出一个不可能事件:__________________;(2)写出一个必然事件:______________________;(3)记事件C为“至少有1个黑球”,写出事件C包含的白球个数:_____________________.5.下列说法:①频率反映事件发生的频繁程度,概率反映事件发生的可能性大小;②做n次随机试验,事件A发生的频率就是事件A的概率;③百分率是频率,但不是概率;④频率是概率的近似值,概率是频率的稳定值;⑤频率是不能脱离具体的n次试验的试验值,而概率是不依赖于试验次数的理论值.其中正确的是____________(写序号).6.某中学部分学生参加全国数学联赛的成绩情况如图3­1­2(成绩均为整数,满分120分),如果90分以上(含90分)获奖,那么获奖的概率是________.图3­1­27.调查患者人数n 100 200 500 1000 2000用药有效人数m 85 180 435 8841760 有效频率m n8.(1)若事件“函数y =a x(a >0,且a ≠1)在(-∞,+∞)上是增函数”是不可能事件,则a 满足的条件是____________.(2)事件“圆(x -a )2+(y -b )2=r 2内的点的坐标可使不等式(x -a )2+(y -b )2<r 2成立”是________事件.9.盒中装有4个白球,5个黑球,从中任意取出1个球.问: (1)“取出的球是黄球”是什么事件?它的概率是多少? (2)“取出的球是白球”是什么事件?它的概率是多少?(3)“取出的球是白球或是黑球”是什么事件?它的概率是多少?10.如图3­1­3,A 地到火车站共有两条路径L 1和L 2,现随机抽取100位从A 地到达火车站的人进行调查,调查结果如下:图3­1­3(2)分别求通过路径L 1和L 2所用时间落在上表中各时间段内的频率;(3)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径?3.1.2 概率的意义1.某地天气预报说:“明天本地降雨的概率为80%”,这是指( ) A.明天该地区约有80%的时间会下雨,20%的时间不下雨 B.明天该地区约有80%的地方会下雨,20%的地方不下雨 C.明天该地区下雨的可能性为80%D.该地区约有80%的人认为明天会下雨,20%的人认为明天不下雨2.小张做四选一的选择题8道,由于全部都不会做,他只能随机选取一个选项,则下列说法正确的是( )A.不可能全选错B.可能全选正确C.每道题选正确的可能性不相等D.一定全选错3.下列说法中,正确的是( )A.“明天降雨的概率是80%”表示明天有80%的时间降雨B.“抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上C.“彩票中奖的概率是1%”表示买100张彩票一定有1张会中奖D.在同一年出生的367名学生中,至少有两人的生日是同一天4.某年级有12个班,现要从2班到12班中选1个班的学生参加一项活动,有人提议:掷两个骰子,把得到的点数之和是几就选几班,这种选法( )A.公平,每个班被选到的概率都为112B.公平,每个班被选到的概率都为16C.不公平,6班被选到的概率最大D.不公平,7班被选到的概率最大5.甲、乙两人玩游戏,袋中装有2个红球,2个白球,现从中(不放回)任取2个球,若同色则甲胜,否则乙胜.那么甲获胜的概率________乙获胜的概率(填“相等”、“大于”、“小于”).6.下列说法中:①任何事件的概率总是在(0,1)之间;②某事件的概率值是主观存在的,与试验次数有关;③概率是随机的,在试验前不能确定.其中错误的是____________(填序号).7.在一次考试中,某班学生的及格率是80%,这里所说的80%是________(填“概率”或“频率”).8.某节能灯生产厂家说其灯泡能点1000小时以上的概率是0.86,这句话中概率的意义是____________________________________________________________________________ ____________________________________________________________________.9.________件产品.10.回答下列问题:(1)甲、乙两射手同时射击一目标,甲的命中率为0.65,乙的命中率为0.60,那么能否得出结论:目标被命中的概率等于0.65+0.60=1.25?为什么?(2)一射手命中靶的内圈的概率是0.25,命中靶的其余部分的概率是0.50,那么能否得出结论:目标被命中的概率等于0.25+0.50=0.75?为什么?11.(2012年湖南改编)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随(1)确定x,y的值;(2)求一位顾客一次购物的结算时间不超过2分钟的概率(将频率视为概率).3.1.3 概率的基本性质1.抛掷一枚骰子,与事件“点数是偶数”互斥但不对立的事件是( )A.“点数是奇数”B.“点数是3的倍数”C.“点数是1或3”D.“点数是小于5的偶数”2.抽查10件产品,设事件A为“至少有2件次品”,则事件A的对立事件为( )A.至多有2件次品B.至多有1件次品C.至多有2件正品D.至少有2件正品3.甲、乙两人下棋,甲胜的概率为0.4,甲不输的概率为0.9,则甲、乙两人和棋的概率为( )A.0.6B.0.3C.0.1D.0.54.第16届亚运会于2010年11月12日在中国广州举行,运动会期间有来自A大学2名、B大学4名的大学生志愿者.现从这6名志愿者中,随机抽取2名到体操比赛场服务,则至少有1名A大学的志愿者的概率是( )A.115B.25C.35D.14155.在一次随机试验中,彼此互斥的事件A,B,C,D的概率分别是0.2,0.2,0.3,0.3,则下列说法正确的是( )A.A+B与C是互斥事件,也是对立事件B.B+C与D是互斥事件,也是对立事件C.A+C与B+D是互斥事件,但不是对立事件D.A与B+C+D是互斥事件,也是对立事件6.某射手在一次射击训练中,射中10环、9环、8环、7环的概率分别为0.21,0.23,0.25,0.28,则该射手在一次射击中,(1)命中10环或9环的概率为________;(2)命中少于7环的概率为________.7.(1)(2)求至多2人排队的概率;(3)求至少2人排队的概率.8.甲、乙两人射击,甲射击一次,中靶概率是p 1,乙射击一次,中靶概率是p 2,已知1p 1,1p 2是方程x 2-5x +6=0的根,且p 1满足方程p 21-p 1+14=0,则甲射击一次,不中靶的概率为________;乙射击一次,不中靶的概率为________.9.抛掷一均匀的正方体玩具(各面分别标有数1,2,3,4,5,6),若事件A 为“朝上一面的数是奇数”,事件B 为“朝上一面的数不超过3”,求P (A +B ).下面的解法是否正确?为什么?若不正确,请给出正确的解法. 解:因为P (A +B )=P (A )+P (B ),而P (A )=36=12,P (B )=36=12,所以P (A +B )=12+12=1.10.袋中有12个小球,小球上标写有字母a ,b ,c ,d ,且每个小球上都写有唯一字母.从中任取1球,摸到标写字母a 的概率为13,摸到标写字母b 或c 的概率为512,摸到标写字母c 或d 的概率也是512.试求摸到标写字母b ,c ,d 的概率各是多少?3.2 古典概型3.2.1 古典概型1.在20瓶饮料中,有2瓶是过了保质期的,从中任取1瓶,恰好过保质期的概率为( )A.12B.110C.120D.1402.从1,2,3,4这四个数中一次随机地取两个数,其中一个数是另一个数的两倍的概率是( )A.14B.13C.12D.233.(2013年安徽)若某公司从五位大学毕业生甲、乙、丙、丁、戍中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( )A.23B.25C.35D.9104.用红、蓝、绿3种不同颜色给图3­2­2中的3个矩形随机(等可能)涂色,每个矩形只涂1种颜色,则3A.13B.19C.12D.165.有5条线段的长度分别为1,3,5,7,9,从这5条线段中任取3条,则所取的3条线段能构成三角形的概率为________.6.甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师的性别相同的概率;(2)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.7.从如图3­2­3所示的正六边形ABCDEF的6个顶点中任取3个,以这3个点为顶点的三角形是直角三角形的概率是________.图3­2­38.设集合A={1,2},B={1,2,3},分别从集合A和B中随机取一个数a和b,确定平面上的一个点P(a,b),记“点P(a,b)落在直线x+y=n上”为事件C n(2≤n≤5,n∈N),若事件C n的概率最大,则n的所有可能取值为( )A.3 B.4C.2和5 D.3和49.(2013年天津一模)某中学一、二、三年级分别有普法志愿者36人、72人、54人,用分层抽样的方法从这三个年级抽取一个样本,已知样本中三年级志愿者有3人.(1)分别求出样本中一、二年级志愿者的人数;(2)用A i(i=1,2,…)表示样本中一年级的志愿者,a i(i=1,2,…)表示样本中二年级的志愿者,现从样本中一、二年级的所有志愿者中随机抽取2人,①用以上志愿者的表示方法,用列举法列出上述所有可能情况,②抽取的2人在同一年级的概率.3.2.2 (整数值)随机数(random numbers)的产生1.一个三位数字的密码锁,每位上的数字可以是1,3,5,7,9中的一个,某人忘了密码中最后一位号码,则此人开锁时,随意拨动最后一位号码正好能开锁的概率是( )A.110B.18C.16D.152.掷两枚骰子,事件A为“出现点数之和等于3”,则事件A的概率为( )A.112B.111C.118D.1363.从数字1,2,3,4中任取两个不同的数字构成一个两位数,则这个两位数大于30的概率为( )A.13B.14C.12D.234.通过模拟试验,产生了20组随机数:6830 3013 7055 7430 7740 4422 78842604 3346 0952 6807 9706 5774 57256576 5929 9768 6071 9138 6754如果恰有三个数在1,2,3,4,5,6中,那么表示恰有三次击中目标,那么四次射击中恰有三次击中目标的概率约为____________.5.在5名学生(3名男生、2名女生)中安排2名学生值日,其中至少有1名女生的概率是__________________.6.有三个人,每个人都有相同的可能性被分配到四个房间中的任一间,则三个人都分配到同一房间的概率为________.7.用1,2,3,4四个数字编四位密码(不重复),则密码恰为连号(1234或4321)的概率为( )A.18B.112C.116D.1248.在箱子中装有10张卡片,分别写有1到10的10个整数.从箱子中任取1张卡片,记下它的读数x,然后放回箱子中,第二次再从箱子中任意取出1张卡片,记下它的读数y,则x+y是10的倍数的概率为( )A.12B.14C.15D.1109.盒子里共有大小相同的3个白球,1个黑球,若从中随机摸出两个球,则它们的颜色不同的概率是________.10.某种心脏手术,成功率为0.6,现准备进行三例这样的手术,试用计算机设计模拟试验,并估算:(1)恰好成功一例的概率;(2)恰好成功两例的概率.11.盒中有大小、形状相同的5个白球和2个黑球,用模拟试验方法估算下列事件的概率近似值:(1)任取1球,得到白球; (2)任取3球,恰有2个白球;(3)任取3球(分三次,每次放回后再取),恰有3个白球.3.3 几何概型1.投镖游戏中的靶子由边长为1 m 的四方板构成,并将此板分成四个边长为12m 的小方块,如图3­3­5,现随机向板中投镖,事件A 表示“投中阴影部分”,则A 发生的概率为( )图3­3­5A.14B.116C.1516D.342.在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积不小于S3的概率是( )A.23B.13 C.34 D.143.(2013年陕西)如图3­3­6,在矩形区域ABCD 的A, C 两点处各有一个通信基站, 假设其信号覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源, 基站工作正常).若在该矩形区域内随机地选一地点, 则该地点无信号的概率是( )图3­3­6A .1-π4 B.π2-1C .2-π2 D.π44.在(0,1)内任取一个数m ,能使方程x 2+2mx +12=0有两个不相等的实数根的概率为( )A.12B.14C.22 D.2-225.如图3­3­7,在边长为2的正方形中,有一个由封闭曲线围成的阴影区域,在正方形中随机撒一粒豆子,它落在阴影区域的概率为23,则阴影区域的面积为( )图3­3­7A.43B.83C.23D .无法计算 6.如图3­3­8,在平面直角坐标系xOy 内,射线OT 落在120°的终边上,任作一条射线OA ,则射线OA 落在∠xOT 内的概率为________.图3­3­87.某路公共汽车5分钟一班准时到达某车站,求任一人在该车站的等车时间少于3分钟的概率(假定车到来后每人都能上).8.已知实数x,y可以在0<x<2,0<y<2的条件下随机取数,那么取出的数对(x,y)满足(x-1)2+(y-1)2<1的概率是( )A.π4B.4πC.π2D.2π9.一海豚在水池中自由游弋,水池是长为30 m,宽为20 m的长方形,求海豚嘴尖离岸边不超过2 m的概率为______.10.一元二次方程x2+2ax+b2=0,其中a∈[0,3],b∈[0,2],求此方程有实根的概率.11.甲、乙两人约定在6时到7时之间在某处会面,并约定先到者应等候另一人一刻钟,过时即可离去.求两人能会面的概率.第三章 概率3.1 随机事件的概率 3.1.1 随机事件的概率 【课后巩固提升】 1.C 2.B 3.D4.(1)3个球均为黑球(2)3个球中至少有1个白球(3)①白球个数为2个(黑球1个);②白球个数为1个(黑球2个)5.①④⑤ 解析:频率是概率的一个近似值.对于一个具体事件而言,概率是一个常数,而频率则随着试验次数的变化而变化,试验次数越多,频率就越接近于事件的概率.6.716解析:由图可知:总人数为32,90分以上(含90分)的人数为14人,∴该校参赛学生的获奖的概率为716.7.解:从左到右依次填:0.85 0.9 0.87 0.884 0.88由表知:每次用药的有效频率虽然不同,但频率总在0.88的附近摆动,所以该药的有效概率约为0.88.8.(1)a ∈(0,1) (2)必然 9.解:(1)“取出的球是黄球”在题设的条件下根本不可能发生,因此它是不可能事件,其概率为0.(2)“取出的球是白球”是随机事件,其概率为49.(3)“取出的球是白球或是黑球”在题设的条件下必然会发生,因此它是必然事件,其概率为1.10.解:(1)40分钟不能赶到火车站的有12+12+16+4=44(人),∴用频率估计相应概率约为44100=0.44.121212择L 1和L 2时,在50分钟内赶到车站.P (A 1)=0.1+0.2+0.3=0.6,P (A 2)=0.1+0.4=0.5. ∵P (A 1)>P (A 2),∴甲应选择L 1.P (B 1)=0.1+0.2+0.3+0.2=0.8, P (B 2)=0.1+0.4+0.4=0.9. ∵P (B 1)<P (B 2), ∴乙应选择L 2.3.1.2 概率的意义 【课后巩固提升】 1.C 2.B 3.D 4.D5.小于 解析:设两红球为r 1,r 2,两白球为b 1,b 2,那么有(r 1,r 2),(r 1,b 1),(r 1b 2),(r 2,b 1),(r 2,b 2),(b 1,b 2)共6种结果.其中甲获胜的情况只有2种.6.①②③ 解析:必然事件的概率为1,故①错;概率值是客观存在的,与试验次数无关,故②错;概率是稳定的,③错.7.频率8.指该厂生产的灯泡能点1000小时以上的可能性是86%.9.1000 解析:由表格知:该厂生产的这种产品的合格率大约为95%. 10.解:(1)不能.因为甲未命中目标与乙未命中目标有可能同时发生,也就是说,“目标被命中”并不是必然事件,故目标被命中的概率小于1.(2)能.因为命中靶的内圈和命中靶的其余部分都是目标被命中,且命中靶的内圈和命中靶的其余部分是不可能同时发生.11.解:(1)由已知,得25+y +10=55,x +30=45, ∴x =15,y =20.(2)记事件A 为“一位顾客一次购物结算时间不超过2分钟”,则P (A )=15+30+25100=0.7,故一位顾客一次购物的结算时间不超过2分钟概率为0.7.3.1.3 概率的基本性质 【课后巩固提升】 1.C 2.B3.D 解析:P (“甲不输”)=P (“甲胜”)+P (“甲、乙和棋”), ∴P (“甲、乙和棋”)=0.9-0.4=0.5.4.C 设A 大学2名志愿者分别记为a ,b ,B 大学4名志愿者分别记为c ,d ,e ,f .任抽取2人,情况为ab ,ac ,ad ,ae ,af ,bc ,bd ,be ,bf ,cd ,ce ,cf ,de ,df ,ef ,共15种.记事件A :“2名大学生来自A 大学”,则P (A )=115.事件B :“两名大学生来自两所大学”,则P (B )=815.∴p =P (A )+P (B )=35.5.D 6.(1)0.44 (2)0.03 解析:(1)p =0.21+0.23=0.44.(2)p =1-(0.21+0.23+0.25+0.28)=0.03.7.解:(1)至少有一人排队的概率为p 1=1-0.10=0.90. (2)至多2人排队的概率为p 2=0.10+0.16+0.30=0.56. (3)至少2人排队的概率为p 3=1-(0.10+0.16)=0.74. 8.12 23 解析:由p 21-p 1+14=0,得p 1=12.因为1p 1,1p 2是方程x 2-5x +6=0的根,所以1p 1·1p 2=6,所以p 2=13.因此,甲射击一次,不中靶概率为1-12=12,乙射击一次,不中靶概率为1-13=23.9.解:不正确.事件A 与B 并不互斥. 因为P (A +B )=P (A )+(B )-P (AB ),而P (A )=36=12,P (B )=36=12,P (AB )=26=13,所以P (A +B )=12+12-13=23.10.解:从袋中任取1球,记事件“摸到标写字母a 的球”,“摸到标写字母b 的球”,“摸到标写字母c 的球”,“摸到标写字母d 的球”依次为A ,B ,C ,D ,且A ,B ,C ,D 两两互斥.则P (B ∪C )=P (B )+P (C )=512, P (C ∪D )=P (C )+P (D )=512,P (B ∪C ∪D )=1-P (A )=1-13=23=P (B )+P (C )+P (D ),∴P (B )=14,P (C )=16,P (D )=14.3.2 古典概型 3.2.1 古典概型 【课后巩固提升】1.B 解析:p =220=110.2.B 3.D4.B 解析:p =327=19.5.310解析:从5条线段中任取3条共有10个基本事件,其中能构成一个三角形的有:(3,5,7),(3,7,9),(5,7,9),共3个基本事件,所以p =310.6.解:(1)甲校男教师用a ,b 表示,女教师用c 表示;乙校男教师用d 表示,女教师用e ,f 表示.所有选取结果为:(a ,d ),(a ,e ),(a ,f ),(b ,d ),(b ,e ),(b ,f ),(c ,d ),(c ,e ),(c ,f ),共9种.其中性别相同有4种,∴所求事件概率为p 1=49.(2)所有选取结果为:(a ,b ),(a ,c ),…,(e ,f ),共15种,其中来自同一校有6种,所求概率p 2=615=25.7.35 解析:∵共有20个三角形,其中直角三角形有12个,∴p =1220=35. 8.D 解析:计算当n =2,3,4,5时基本事件的总数,可知n 取3和4时概率最大.故选D.9.解:(1)依题意,分层抽样的抽样比为354=118.∴在一年级抽取的人数为36×118=2(人).在二年级抽取的人数为72×118=4(人).所以一、二年级志愿者的人数分别为2人和4人.(2)①用A 1,A 2表示样本中一年级的2名志愿者,用a 1,a 2,a 3,a 4表示样本中二年级的4名志愿者.则抽取2人的情况为A 1A 2,A 1a 1,A 1a 2,A 1a 3,A 1a 4,A 2a 1,A 2a 2,A 2a 3,A 2a 4,a 1a 2,a 1a 3,a 1a 4,a 2a 3,a 2a 4,a 3a 4,共15种.②抽取的2人在同一年级的情况是A 1A 2,a 1a 2,a 1a 3,a 1a 4,a 2a 3,a 2a 4,a 3a 4,共7种. ∵每一种情况发生的可能性都是等可能的,∴抽取的2人是同一年级的概率为715.3.2.2 (整数值)随机数(random numbers)的产生 【课后巩固提升】 1.D2.C 解析:基本事件共有36种,其中(1,2),(2,1)为事件A 所含基本事件,∴P (A )=236=118. 3.C 解析:从数字1,2,3,4中任取两个不同数字构成两位数的个数为12个,大于30的有31,32,34,41,42,43,共6个,故所求的概率为612=12.4.25% 解析:本题无法用古典概型解决.表示恰有三次击中目标分别是3013,2604,5725,6576,6754,共5个数.随机总数总共20个,所以所求概率近似为520=25%.5.0.7 解析:基本事件总数为10个,设“2名都是男生”为事件A ,“至少有一名女生”为事件B ,则P (B )=1-P (A )=1-310=0.7.6.116解析:三个人分配到四个房间中的所有可能分法为64种,分配到同一间的分法有4种,所求概率为464=116.7.B 解析:基本事件总数为24,密码连号的个数为2,则p =224=112.8.D 解析:基本事件总数为100,x +y 是10的倍数的总数为10,则p =10100=110.9.12 解析:共有6种不同取法,其中颜色不同的取法有3种,∴p =36=12. 10.解:利用计算机(或计算器)产生0至9之间取整数值的随机数,用0,1,2,3表示不成功,用4,5,6,7,8,9表示成功,这样可以体现成功的概率为0.6.因为做3例手术,所以每3个随机数作为一组,例如产生253,743,780,…,346,843共100组随机数.(1)统计出0,1,2,3出现2个的数组个数为N 1,则恰好成功一例的概率的近似值为N 1100(参考答案为:0.288).(2)统计出0,1,2,3出现1个的数组个数为N 2,则恰好成功两例的概率的近似值为N 2100(参考答案为:0.432).11.解:用计算机或者是计算器产生1~7之间取整数值的随机数.用1,2,3,4,5表示白球,用6,7表示黑球.(1)统计随机数的个数n 以及小于6的个数n 1,则n 1n即为任取1球得到白球的概率的近似值.(2)三个一组(每组内数字不重复),统计总组数m 及恰有两个数小于6的组数m 1,则m 1m 为任取3球,恰有2个白球的概率的近似值.(3)三个一组(每组内数字可重复),统计总组数k 以及三个数都小于6的组数k 1,则k 1k即为恰有3个白球的概率的近似值.3.3 几何概型 【课后巩固提升】 1.A2.A 解析:如图D21,设点D 为AB 的三等分点,要使△PBC的面积不小于S3,则点P只能在AD 上选取,由几何概型的概率公式,得所求概率为|AD ||AB |=23|AB ||AB |=23.图D213.A 解析:∵扇形ADE 的半径为1,圆心角等于90°,∴扇形ADE 的面积为S 1=14×π×12=π4.同理可得,扇形CBF 的面积S 2=π4.又∵长方形ABCD 的面积S =2×1=2,∴在该矩形区域随机地选一地点,则该地点无信号的概率是p =S -S 1+S 2S =2-⎝ ⎛⎭⎪⎫π4+π42=1-π4.4.D 解析:Δ>0⇒m >22(m <-22舍去), ∴p =1-221=2-22.5.B 解析:∵S 阴S 正方形=23,S 正方形=4,∴S 阴=83.6.137.解:可以认为人在任何时刻到站是等可能的.设上一班车离站时刻为a ,则该人到站的时刻的一切可能为Ω=(a ,a +5),若在该车站等车时间少于3分钟,则到站的时刻为g = (a +2,a +5),P (A )=g 的长度Ω的长度=35.8.A 解析:p =π×122×2=π4.9.2375 解析:测度为面积,由图D22,得p =1-26×1630×20=2375.图D2210.解:如图D23,试验的全部结果所构成的区域为 {(a ,b )|0≤a ≤3,0≤b ≤2,a ≥b },构成事件A 的区域为{(a ,b )|0≤a ≤3,0≤b ≤2,a ≥b },故所求的概率为P (A )=3×2-12×223×2=23.图D2311.解:以x ,y 分别表示甲、乙两人到达约定地点的时间,则两人能够会面的充要条件是|x -y |≤15.在如图D24所示的平面直角坐标系下,(x ,y )的所有可能结果是边长为60的正方形,而事件A “两人能够会面”的可能结果由图D24中的阴影部分表示.由几何概型概率公式,得P (A )=S A S =602-452602=3600-20253600=716.所以两人会面的概率是716.图D24。

北师大版九年级数学上册第三章《概率的进一步认识》用频率估计概率同步练习(含答案) (2)

北师大版九年级数学上册第三章《概率的进一步认识》用频率估计概率同步练习(含答案) (2)

用频率估计概率同步测试(典型题汇总)◆随堂检测1.在一个暗箱里放有a个除颜色外其它完全相同的球,这a个球中只有3个红球.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a大约是()A.12 B.9 C.4 D.32.小明随机地在如图所示的正三角形及其内部区域投针,则针扎到其内切圆(阴影)区域的概率为()A.12B.36π C.39π D.33π3.某同学抛掷两枚硬币,分10组实验,每组20次,下面是共计200次实验中记录下的结果.根据下列表格内容填空:实验组别两个正面一个正面没有正面第1组 6 11 3第2组 2 10 8第3组 6 12 2第4组7 10 3第5组 6 10 4第6组7 12 1第7组9 10 1第8组 5 6 9第9组 1 9 10第10组 4 14 2①在他的10组实验中,抛出“两个正面”频数最少的是他的第_____组实验.②在他的第1组实验中抛出“两个正面”的频数是_____,在他的前两组(第1组和第2组)实验中抛出“两个正面”的频数是_____.③在他的10组实验中,抛出“两个正面”的频率是_____,抛出“一个正面”的频率是_____,“没有正面”的频率是_____,这三个频率之和是_____.④根据该实验结果估计抛掷两枚硬币,抛出“两个正面”的概率是____.◆典例分析小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了60次实验,实验的结果如下:(1)计算“3点朝上”的频率和“5点朝上”的频率.(2)小颖说:“根据上述实验,一次实验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次”.小颖和小红的说法正确吗?为什么? 分析:概率是描述随机现象的数学模型,它不能等同于频率.只有在一定的条件下,大量重复试验时,随机事件的频率所逐渐稳定到的常数,才可估计此事件的概率. 解:(1)“3点朝上”的频率是101606=;“5点朝上”的频率是316020=. (2)小颖的说法是错误的.因为“5点朝上”的频率最大并不能说明“5点朝上”这一事件发生的概率最大,只有当实验的次数足够大时,该事件发生的频率稳定在事件发生的概率附近.小红的说法也是错误的.因为事件的发生具有随机性,所以“6点朝上”的次数不一定是100次. ◆课下作业 ●拓展提高1.在一张边长为4cm 的正方形纸上做扎针随机试验,纸上有一个半径为1cm 的圆形阴影区域,则针头扎在阴影区域内的概率为( ) A .161 B .41 C .16π D .4π2.如图,在两个同心圆中,三条直径把大圆分成六等份,若在这个圆面上均匀地撒一把豆子,则豆子落在阴影部分的概率是_________.3.在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有_____个.4.某篮球运动员在最近的几场大赛中罚球投篮的结果如下:投篮次数n 8 10 12 9 16 10 进球次数m6 897 12 7朝上的点数 1 2 3 4 56 出现的次数796820 10进球频率m n(1)计算表中各次比赛进球的频率;(2)这位运动员投篮一次,进球的概率约为多少?5.在有一个10万人的小镇,随机调查了2000人,其中有250人看中央电视台的早间新闻.在该镇随便问一个人,他看早间新闻的概率大约是多少?该镇看中央电视台早间新闻的大约是多少人?●体验中考1.(湖南长沙)从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下: 种子粒数 100 400 800 1 000 2 000 5 000 发芽种子粒数 85 398 652 793 1 604 4 005 发芽频率0.8500.7450.8510.7930.8020.801根据以上数据可以估计,该玉米种子发芽的概率约为_________(精确到0.1). 2.(邵阳市)小芳抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概率为______.3.(江西)某市今年中考理、化实验操作考试,采用学生抽签方式决定自己的考试内容.规定:每位考生必须在三个物理实验(用纸签A 、B 、C 表示)和三个化学实验(用纸签D 、E 、F 表示)中各抽取一个进行考试.小刚在看不到纸签的情况下,分别从中各随机抽取一个. (1)用“列表法”或“树状图法”表示所有可能出现的结果; (2)小刚抽到物理实验B 和化学实验F (记作事件M )的概率是多少? 参考答案: ◆随堂检测 1.A. 2.C .3.解:①9;②6,8;③0.2,0.7,0.1,1;④约0.265. ◆课下作业 ●拓展提高 1.C. 2.21. 3.6.4.解:(1)0.75,0.8,0.75,0.78,0.75,0.7;(2)0.75. 5.根据概率的意义,可以认为其概率大约等于250/2000=0.125.该镇约有100000×0.125=12500人看中央电视台的早间新闻. ●体验中考 1.0.8. 2.12. 3.解:(1)方法一:列表格如下:D E F A (A ,D ) (A ,E ) (A ,F ) B (B ,D ) (B ,E ) (B ,F ) C(C ,D )(C ,E )(C ,F )方法二:画树状图如下:所有可能出现的结果AD 、AE 、AF 、BD 、BE 、BF 、CD 、CE 、CF.(2)从表格或树状图可以看出,所有可能出现的结果共有9种,其中事件M 出现了一次,所以P (M )=19. 用频率估计概率同步测试 (典型题汇总)知识点 1 频率与概率的关系1.关于频率与概率的关系,下列说法正确的是( ) A .频率等于概率B .当试验次数很大时,频率稳定在概率附近C .当试验次数很大时,概率稳定在频率附近D .试验得到的频率与概率不可能相等2.在一个不透明的布袋中,红球、黑球、白球共有若干个,它们除颜色不同外,其余均相同,小新从布袋中随机摸出一球,记下颜色后放回,摇匀……如此大量摸球试验后,小新发现摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,对此试验,他总结出下列结论:①若进行大量摸球试验,摸出白球的频率稳定于30%;②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是( )A .①②③B .①②C .①③D .②③ 知识点 2 用频率估计概率3.2017·贵阳期末在一个不透明的口袋里,装有仅颜色不同的黑球、白球若干个,某AD E F B D E FCDEF 化学 实验物理 实 验小组做摸球试验:将球搅匀后从中随机摸出一个,记下颜色,再放回袋中,不断重复该试验,A.0.4 B.0.5 C.0.6 D.0.74.六一期间,小洁的妈妈经营的玩具店进了一纸箱除颜色不同外其余都相同的散装塑料球共1000个,小洁将纸箱里面的球搅匀后,从中随机摸出一个球记下颜色,把它放回纸箱中……多次重复上述过程后,发现摸到红球的频率逐渐稳定在0.2,由此可以估计纸箱内红球的个数是________.5.教材随堂练习第1题变式题调查你家附近的20个人,其中至少有两人生肖相同的概率为( )A.14B.12C.13D.1图3-2-16.2017·宿迁如图3-2-1,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为2 m的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,由此可估计不规则区域的面积是________m2.7.2017·贵阳模拟一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球的球面上分别标有3,4,5,x,甲、乙两人每次同时从袋中各随机摸出一个小球,并计算摸出的这两个小球上的数字之和,记录后都将小球放回袋中搅匀,进行重复试验,试验数据解答下列问题:(1)如果试验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近,估计出现“和为8”的概率是__________(精确到0.01).(2)如果摸出的这两个小球上的数字之和为9的概率是13,那么x 的值可以取7吗?请用列表法或画树状图法说明理由;如果x 的值不可以取7,请写出一个符合要求的x 值.1.B [解析] 当试验次数很大时,频率稳定在概率附近.故选B.2.B [解析] ∵在一个不透明的布袋中,红球、黑球、白球共有若干个,其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,∴①若进行大量摸球试验,摸出白球的频率稳定于1-20%-50%=30%,故此项正确;∵摸出黑球的频率稳定于50%,大于摸出其他颜色球的频率,∴②从布袋中任意摸出一个球,该球是黑球的概率最大,故此项正确;③若再摸球100次,不一定有20次摸出的是红球,故此项错误.故正确的有①②.3.C [解析] 观察表格得:通过多次摸球试验后发现其中摸到白球的频率稳定在0.6左右,则P (摸到白球)≈0.6.故选C.4.2005.D [解析] 共有12个生肖,而有20个人,每人都有生肖,故一定有两个人的生肖是相同的,即至少有两人生肖相同的概率为1.6.1 [解析] ∵经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,∴小石子落在不规则区域的概率为0.25.∵正方形的边长为2 m ,∴面积为4 m 2.设不规则区域的面积为S ,则S4=0.25,解得S =1. 7.解:(1)0.33 (2)不可以取7.理由:当x =7时,列表如下:两个小球上的数字之和为9的概率是212=16≠13,故x 的值不可以取7.当x =5时,摸出的这两个小球上的数字之和为9的概率是13.(答案不唯一,x 的值也可以是4,6).。

概率论第三章习题及答案

概率论第三章习题及答案
i

PX x , Y y
j i

j 1, 2,
返回主目录
第三章 习题课
已知联合分布律求边缘分布律
X 以及Y 的边缘分布律也可以由 下表表示
Y X
y1 p11
p21

y2 p12
p22

… … … … …
yj
p1 j
… … …

pi
p1
p2
x1
x2

p2 j
对于任意固定的 Y, 对于任意固定的 X,
F ( , y ) 0;
F ( x,) 0;
F (,) 0;
F (,) 1.
返回主目录
第三章 习题课
3) F (x , y)=F(x+0, y), F (x, y)=F(x, y+0), 即 F (x, y)关于 x 右连续,关于 y 也右连续.


2 则称随机变量 X, Y 服从参数为 1, 2, 12, 2 ,


X, Y ~ N 1, 2, , , 2, 1 1. i i 1 , 2, i 0 i 1
2 1 2 2
的正态分布,记作
Y 的取值为 y1, y2, , y j ,
则称
设 X, Y 二维离散型随机变量,X 的取值为
pij P X xi , Y y j
i,j 1, 2,
X, Y 的(联合)分布律. 为二维离散型随机变量
第三章 习题课
二维离散型随机变量的联合分布律
X, Y 的联合分布律也可以由 下表表示
Y X
x1 x2

高二数学必修三第三章概率练习题(含答案北师大版)

高二数学必修三第三章概率练习题(含答案北师大版)

高二数学必修三第三章概率练习题(含答案北师大版)数学家也研究纯数学,也就是数学自己,而不以任何实际应用为目标。

小编准备了高二数学必修三第三章概率练习题,详细请看以下内容。

一、选择题1.某人将一枚硬币连续投掷了10 次,正面向上的情况出现了6 次,则 ()A. 概率为 0.6B.频次为 0.6C.频次为 6D. 概率靠近于 0.6【分析】连续投掷了 10 次,正面向上的情况出现了 6 次,只好说明频次是 0.6,只有进行大批的试验时才可预计概率 . 【答案】 B2.以下说法错误的选项是()A.频次反应事件的屡次程度,概率反应事件发生的可能性大小B.做 n 次随机试验,事件 A 发生 m 次,则事件 A 发生的频率 mn 就是事件 A 的概率C.频次是不可以离开n 次试验的试验值,而概率是拥有确立性的不依靠于试验次数的理论值D.频次是概率的近似值,概率是频次的稳固值【分析】依据频次与概率的意义可知, A 正确 ;C、D 均正确,B 不正确,应选 B.【答案】B3.从寄存号码分别为1,2,,10 的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果以下:卡片号码取到的次数则取到号码为奇数的频次是()【分析】mn=13+5+6+18+11100=0.53.【答案】A4.(2019 沈阳检测 ) 某彩票的中奖概率为11 000 意味着 ()A. 买 1 000 张彩票就必定能中奖B.买 1 000 张彩票中一次奖C.买 1 000 张彩票一次奖也不中D.购置彩票中奖的可能性是11 000【分析】中奖概率为11 000,其实不意味着买1 000 张彩票就必定中奖,中一次奖或一次也不中,所以A、B、C 均不正确.【答案】D5.2019 年山东省高考数学试题中,共有12 道选择题,每道选择题有 4 个选项,此中只有 1 个选项是正确的,则随机选择此中一个选项正确的概率为14,某家长说:假如都不会做,每题都随机选择此中一个选项,则必定有 3 题答对这句话 () A. 正确 B.错误C.不必定D. 没法解说【分析】把解答一个选择题作为一次试验,答对的概率是14,说明做对的可能性大小是14.做 12 道选择题,即进行了12 次试验,每个结果都是随机的,那么答对 3 题的可能性较大,可是其实不必定答对3 道,也可能都选错,或仅有2,3,4题选对,甚至12 个题都选择正确.【答案】B二、填空题6.样本容量为200 的频次散布直方图如图3-1-1 所示 .依据样本的频次散布直方图预计,样本数据落在[6,10) 内的频数为________,数据落在 [6,10) 内的概率约为 ________.图 3-1-1【分析】样本数据落在[6,10)内的频次为0.084=0.32,频数为 2019.32=64.由频次与概率的关系知数据落在[6,10) 内的概率约为0.32.【答案】64 0.327.在 5 张不一样的彩票中有 2 张奖票, 5 个人挨次从中各抽取1张,各人抽到奖票的概率________( 填相等不相等 ).【分析】由于每人抽得奖票的概率均为25,与前后的次序没关 .【答案】相等8.假如袋中装有数目差异很大而大小同样的白球和黑球(只是颜色不一样 ),每次从中任取一球,记下颜色后放回并搅匀,取了 10 次有 9 次白球,预计袋中数目最多的是________.【分析】取了 10 次有 9 次白球,则拿出白球的频次是910,预计其概率约是910,那么拿出黑球的概率是110,那么取出白球的概率大于拿出黑球的概率,所以预计袋中数目最多的是白球.【答案】白球三、解答题9.(1)设某厂产品的次品率为2%,问从该厂产品中随意地抽取 100 件,此中必定有 2 件次品这一说法对不对?为何 ? (2)若某次数学测试,全班50 人的及格率为90%,若从该班中随意抽取10 人,此中有 5 人及格是可能的吗?【解】(1)这类说法不对,由于产品的次品率为2%,是指产品是次品的可能性为2%,所以从该产品中随意地抽取100件,此中有可能有 2 件次品,而不是必定有 2 件次品 .(2)这类状况是可能的.10.(2019 课标全国卷Ⅱ )经销商经销某种农产品,在一个销售季度内,每售出 1 t 该产品获收益 500 元,未售出的产品,每 1 t 损失 300 元.依据历史资料,获得销售季度内市场需求量的频次散布直方图,如图3-1-2 所示 .经销商为下一个销售季度购进了130 t 该农产品 .以 X( 单位: t,100150) 表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的收益.图 3-1-2(1)将 T 表示为 X 的函数 ;(2)依据直方图预计收益T 许多于 57 000 元的概率 .【解】(1)当 X[100,130) 时,T=500X-300(130-X)=800X-39 000.当 X[130,150] 时,T=500130=65 000.所以 T=800X-39 000 ,100130,?65 000, 130150.(2)由 (1)知收益 T 许多于 57 000 元当且仅当120190.由直方图知需求量X[120, 150] 的频次为0.7,所以下一个销售季度内的收益T 许多于 57 000 元的概率的预计值为0.7.11.在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量,单位: mm)共有 100 个数据,将数据分组以下表:分组频数[1.30,1.34)4[1.34,1.38)25[1.38,1.42)30[1.42,1.46)29[1.46,1.50)10[1.50,1.54)2总计 100(1)画出频次散布直方图;(2)预计纤度落在 [1.38,1.50)mm 中的概率及纤度小于 1.42 的概率是多少 .【解】(1)频次散布直方图,如图:(2)纤度落在 [1.38,1.50)mm 中的频数是 30+29+10=69 ,则纤度落在 [1.38,1.50)mm 中的频次是 69100=0.69 ,所以预计纤度落在 [1.38,1.50)mm 中的概率为 0.69. 纤度小于1.42 mm 的频数是 4+25+30=59 ,则纤度小于 1.42 mm 的频次是59100=0.59,所以预计纤度小于 1.42 mm 的概率为0.59.课本、报刊杂志中的成语、名言警语等俯首皆是,但学生写作文运用到文章中的甚少,即便运用也很难做到恰到好处。

(完整版)北师大版九年级数学上册第三章《概率》专题练习(含答案)

(完整版)北师大版九年级数学上册第三章《概率》专题练习(含答案)

北师大版九年级数学上册第三章《概率》专题练习一.知识梳理(一)事件的分类:1. 频率二频数/总数,频率随着试验的不同而不同,它是一个不确定数。

2. 事件发生的——大小叫做概率。

事件的概率是一个确定的常数。

3. 事件的分类:确定事件和随机事件。

确定事件包括必然事件和不可能事件4. 必然事件的概率为1;不可能事件的概率为0;随机事件的概率位于0--1之间。

(二)概率的计算:当事件发生的结果具有有限性和等可能性时:(1) 一步试验或几何图形,利用概率的定义直接计算(2) 两步试验,且结果较少,用树状图和列表格求概率都可以;(3) 两步试验,但每步结果较多,适合用列表法求概率;(4) 三步或三步以上,适合用画树状图求概率。

(5) 用画树状图或列表法求概率时应注意:要清楚所以结果有哪些?要清楚我们关注的是哪些结果?(三)用频率估计概率概率和频率的关系:通过试验获得事件发生的频率,而大量重复试验时的频率会稳定在概率的附近,所以可以用大量试验的频率估计概率;同时也可以利用概率预测事件发生的频率。

二.简单概率计算一步试验:1. 十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,亮绿灯的概率是________________2. 一个不透明的袋子中放入除颜色外均相同的2个白球和6个红球,从中任意抽取一个球,抽到红球的概率是________________ 3. 在一只不透明的口袋中放入红球6个,黑球2个,黄球n个,这些球除颜色不同外,其他无任何差别,搅匀后随机从中摸出一个求恰好是黄球的概率是】,则放入口袋中的黄球总数是n= _____________________3两步试验:仔细区分:(1)放回;(2)不放回4. 在一个不透明的袋子中,有2个白球和2个红球,它们只有颜色不同,从袋子中随机摸出一个球记下颜色后放回,再随机摸出一个球,则两次都摸到白球的概率为_________5. 某校安排了3辆车,组织九年级学生团员去敬老院参加学雷锋活动,其中小王和小菲都可以从这三辆车中任意选取1辆搭乘,则小王和小菲同车的概率是_______6. 某校决定从2名男生和3名女生中选出2名同学作为兰州国际马拉松赛的志愿者,则选出1男1女的概率是 ___________7. 袋子中放着型号,大小完全相同的红,白,黑三种颜色的衣服,红色2件,黑色1件,白色1件,小明随意从袋中取出2件衣服,则取出的是1红1白的概率是 ________三步试验:8. 随机安排甲乙丙3人在3天节日中值班,每人值班一天,则按“乙,甲,丙”的先后顺序值班的概率是____________三:概率与其他知识的综合9. 在x2口2xy 口y2的“口”中分别填上“ +”或“-”,在所得的代数式中,能构成完全平方式的概率是__________A.1B. 3C.丄D.丄4 2 410. 已知a,b可以取-2 , -1,1,2中的任意一个值(a z b),则直线y=ax+b的图像不经过第四象限的概率是____________11. 一个盒子里有完全相同的三个小球,球上分别标有数字-2,1,4,随机摸出一个小球(不放回),其数字记为p,再随机摸出另一个小球其数字记为q,则满足关于X的方程x2px q 0有实数根的概率是 _ _12. 如图,一个质地均匀的正四面体的四个面上依次标有数字-2,0 ,1,2,连续抛掷两次,朝下一面的数字分别为a,b,将其作为M点横,纵坐标,则点M(a,b)落在以A (-2,0 ) , B (2,0 ) , C (0,2 )为顶点的三角形内(包括边界)的概率是_______________________________________ 标的数字不同外其他都相同,若从袋子中随机摸出两个球,则这两个球上的数字之和为负数的概率是 _____________________ 14.在盒子里放有3张分别写有整式a+1,a+2,2的卡片,从中随机抽出2张卡片,把2张卡片上的整式分别作为分子和分母,贝惟组成分式的概率是—15. 有四根木棒,长度分别为2,3,4,5,从中任选3根,恰好能搭成一个三角形的概率是——16. 小明和小亮用如图所示的两个转盘做“配紫色”游戏,游戏规则是:分别转动两个转盘,若其中一个转盘转出红色,另一个转盘转出蓝色,则可以配成紫色,此时小明的1分,否则小亮的1分.用树状图或列表求出小明获胜的概率;(2)这游戏对双方公平吗?请说明理由.若不公平,如何修改规则才能使游戏对双方公平?17. 端午节前,小明爸爸去超市购买了大小,形状,重量等相同的火腿粽子和豆沙粽子若干,放入不透明的盒子中,此时从盒中随机取出火腿13. 一个不透明的袋子中有3个分别标有3,1 , -2的球,这些球除了所粽子的概率为1;妈妈从盒中取出火腿粽子3只、豆沙粽子7只送给爷3爷和奶奶后,这时随机取出火腿粽子的概率为2 .(1)请你用所学知5识计算:爸爸买的火腿粽子和豆沙粽子各有多少只?(2)若小明一次从盒内剩余粽子中任取2只,问恰有火腿粽子、豆沙粽子各1只的概率是多少?(用列表法或树状图计算)四.样本估计总体18. 一个口袋中有红球24个和绿球若干个,从口袋中随机摸出一个球记下其颜色,再把它放回口袋中摇匀,重复上述过程,实验200次,其中有125次摸到绿球,由此估计口袋中共有球 __________ 个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章概率随堂练习随机事件部分例1.判断下列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件.(1)“抛一石块,下落”.(2)“在标准大气压下且温度低于0℃时,冰融化”;(3)“某人射击一次,中靶”;(4)“如果a>b,那么a-b>0”;(5)“掷一枚硬币,出现正面”;(6)“导体通电后,发热”;(7)“从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签”;(8)“某电话机在1分钟内收到2次呼叫”;(9)“没有水分,种子能发芽”;(10)“在常温下,焊锡熔化”.例2.某射手在同一条件下进行射击,结果如下表所示:(2)这个射手射击一次,击中靶心的概率约是多少?(1)计算表中进球的频率;(2)这位运动员投篮一次,进球的概率约为多少?例4.做掷一枚骰子的试验,观察试验结果.(1)试验可能出现的结果有几种?分别把它们写出;(2)做60次试验,每种结果出现的频数、频率各是多少?例5. 某人进行打靶练习,共射击10次,其中有2次中10环,有3次中9环,有4次中8环,有1次未中靶,试计算此人中靶的概率,假设此人射击1次,试问中靶的概率约为多大?中10环的概率约为多大?例6.下列说法正确的是()A.任一事件的概率总在(0,1)内B.不可能事件的概率不一定为0C.必然事件的概率一定为1D.以上均不对例7.为了估计水库中的鱼的尾数,可以使用以下的方法,先从水库中捕出一定数量的鱼,例如2 000尾,给每尾鱼作上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾.试根据上述数据,估计水库内鱼的尾数.例8.某水产试验厂实行某种鱼的人工孵化,10 000个鱼卵能孵出8 513尾鱼苗,根据概率的统计定义解答下列问题:(1)求这种鱼卵的孵化概率(孵化率);(2)30 000个鱼卵大约能孵化多少尾鱼苗?(3)要孵化5 000尾鱼苗,大概得准备多少鱼卵?(精确到百位)例9.有人告诉你,放学后送你回家的概率如下:(1)50%;(2)2%;(3)90%.试将以上数据分别与下面的文字描述相配.①很可能送你回家,但不一定送.②送与不送的可能性一样多.③送你回家的可能性极小.例10.一个射手进行一次射击,试判断下列事件哪些是互斥事件?哪些是对立事件?事件A:命中环数大于7环;事件B:命中环数为10环;事件C:命中环数小于6环;事件D:命中环数为6、7、8、9、10环.例11.从一堆产品(其中正品与次品都多于2件)中任取2件,观察正品件数与次品件数,判断下列每件事件是不是互斥事件,如果是,再判断它们是不是对立事件. (1)恰好有1件次品恰好有2件次品;(2)至少有1件次品和全是次品;(3)至少有1件正品和至少有1件次品;(4)至少有1件次品和全是正品. 例12.如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心(事件A )的概率是41,取到方块(事件B )的概率是41,问: (1)取到红色牌(事件C )的概率是多少?(2)取到黑色牌(事件D )的概率是多少?例13.某射手在一次射击训练中,射中10环、9环、8环、7环的概率分别为0.21、0.23、0.25、0.28,计算该射手在一次射击中:(1)射中10环或9环的概率;(2)少于7环的概率. 例14.抛掷一骰子,观察掷出的点数,设事件A 为“出现奇数点”,B 为“出现偶数点”,已知P(A)= 21,P(B)=21,求出“出现奇数点或偶数点”的概率?例15.抛掷一粒骰子,观察掷出的点数,设事件A 为出现奇数,事件B 为出现2点,已知P (A )=21,P (B )=61,求出现奇数点或2点的概率之和.例16. 袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率为31,得到黑球或黄球的概率是125,得到黄球或绿球的概率也是125,试求得到黑球、得到黄球、得到绿球的概率各是多少? 例17.已知盒子中有散落的棋子15粒,其中6粒是黑子,9粒是白子,已知从中取出2粒都是黑子的概率是71,从中取出2粒都是白子的概率是3512,现从中任意取出2粒恰好是同一色的概率是多少? 例18.下列说法中正确的是( )A.事件A 、B 中至少有一个发生的概率一定比A 、B 中恰有一个发生的概率大B.事件A 、B 同时发生的概率一定比事件A 、B 恰有一个发生的概率小C.互斥事件一定是对立事件,对立事件不一定是互斥事件D.互斥事件不一定是对立事件,对立事件一定是互斥事件例19.从男女学生共有36名的班级中,任意选出2名委员,任何人都有同样的当选机会.如果选得同性委员的概率等于21,求男女生相差几名? 例20.黄种人群中各种血型的人所占的比如下表所示:已知同种血型的人可以输血,O 型血可以输给任一种血型的人,任何人的血都可以输给AB 型血的人,其他不同血型的人不能互相输血.小明是B 型血,若小明因病需要输血,问:(1)任找一个人,其血可以输给小明的概率是多少?(2)任找一个人,其血不能输给小明的概率是多少?例21.在一个盒子内放有10个大小相同的小球,其中有7个红球、2个绿球、1个黄球,从中任取一个球,求: (1)得到红球的概率;(2)得到绿球的概率;(3)得到红球或绿球的概率;(4)得到黄球的概率. (5)“得到红球”和“得到绿球”这两个事件A 、B 之间有什么关系,可以同时发生吗? (6)(3)中的事件D“得到红球或者绿球”与事件A 、B 有何联系?例22.在一只袋子中装有7个红玻璃球,3个绿玻璃球.从中无放回地任意抽取两次,每次只取一个.试求:(1)取得两个红球的概率;(2)取得两个绿球的概率;(3)取得两个同颜色的球的概率;(4)至少取得一个红球的概率. 例23.盒中有6只灯泡,其中2只次品,4只正品,有放回地从中任取两次,每次取一只,试求下列事件的概率: (1)取到的2只都是次品;(2)取到的2只中正品、次品各一只;(3)取到的2只中至少有一只正品.例24.回答下列问题:(1)甲、乙两射手同时射击一目标,甲的命中率为0.65,乙的命中率为0.60,那么能否得出结论:目标被命中的概率等于0.65+0.60=1.25,为什么?(2)一射手命中靶的内圈的概率是0.25,命中靶的其余部分的概率是0.50,那么能否得出结论:目标被命中的概率等于0.25+0.50=0.75,为什么?(3)两人各掷一枚硬币,“同时出现正面”的概率可以算得为221.由于“不出现正面”是上述事件的对立事件,所以它的概率等于432112=-,这样做对吗?说明道理. 例25.(1)某市派出甲、乙两支球队参加全省足球冠军赛.甲、乙两队夺取冠军的概率分别是73和41.试求该市足球队夺得全省足球赛冠军的概率.(2)在房间里有4个人.问至少有两个人的生日是同一个月的概率是多少?(3)某单位36人的血型类别是:A 型12人,B 型10人,AB 型8人,O 型6人.现从这36人中任选2人,求此2人血型不同的概率.古典概型部分例1 .两枚均匀硬币,求出现两个正面的概率.例2.一次投掷两颗骰子,求出现的点数之和为奇数的概率. 例3.同时掷两个骰子,计算: (1)一共有多少种不同的结果?(2)其中向上的点数之和是5的结果有多少种? (3)向上的点数之和是5的概率是多少?例4.假设储蓄卡的密码由4个数字组成,每个数字可以是0,1,2,…,9十个数字中的任意一个.假设一个人完全忘记了自己的储蓄卡密码,问他到自动取款机上随机试一次密码就能取到钱的概率是多少?例5.某种饮料每箱装6听,如果其中有2听不合格,问质检人员从中随机抽出2听,检测出不合格产品的概率有多大?例6. 一个口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出两个球, (1)共有多少个基本事件?(2)摸出的两个都是白球的概率是多少?例7.将一颗骰子先后抛掷两次,观察向上的点数,问: (1)共有多少种不同的结果?(2)两数的和是3的倍数的结果有多少种? (3)两数和是3的倍数的概率是多少?例8. 从含有两件正品a 1,a 2和一件次品b 1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率.例9.现有一批产品共有10件,其中8件为正品,2件为次品:(1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率; (2)如果从中一次取3件,求3件都是正品的概率.例10.一个各面都涂有色彩的正方体,被锯成1 000个同样大小的小正方体,将这些正方体混合后,从中任取一个小正方体,求:(1)有一面涂有色彩的概率;(2)有两面涂有色彩的概率;(3)有三面涂有色彩的概率. 例11.(1)在40根纤维中,有12根的长度超过30 mm,从中任取一根,取到长度超过30 mm 的纤维的概率是( ) A.4030 B.4012 C.3012D.以上都不对 (2)盒中有10个铁钉,其中8个是合格的,2个是不合格的,从中任取一个恰为合格铁钉的概率是( )A.51 B.41 C.54 D.101 (3)在大小相同的5个球中,2个是红球,3个是白球,若从中任取2个,则所取的2个球中至少有一个红球的概率是_____________.(4)抛掷2颗质地均匀的骰子,求点数和为8的概率.几何概型部分例1.判断下列试验中事件A 发生的概率是古典概型,还是几何概型. (1)抛掷两颗骰子,求出现两个“4点”的概率;(2)如下图所示,图中有一个转盘,甲、乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜,求甲获胜的概率.例2.某人午休醒来,发觉表停了,他打开收音机想听电台整点报时,求他等待的时间短于10分钟的概率.例3.某路公共汽车5分钟一班准时到达某车站,求任一人在该车站等车时间少于3分钟的概率(假定车到来后每人都能上).例4.某人欲从某车站乘车出差,已知该站发往各站的客车均每小时一班,求此人等车时间不多于20分钟的概率. 例5.在1万平方千米的海域中有40平方千米的大陆架储藏着石油,假设在海域中任意一点钻探,钻到油层面的概率是多少?例6.小明家的晚报在下午5:30—6:30之间任何一个时间随机地被送到,小明一家人在下午6:00—7:00之间的任何一个时间随机地开始晚餐.则晚报在晚餐开始之前被送到的概率是多少?例7.在1升高产小麦种子中混入了一种带麦锈病的种子,从中随机取出10毫升,则取出的种子中含有麦锈病的种子的概率是多少?例8.(1)已知地铁列车每10 min 一班,在车站停1 min,求乘客到达站台立即乘上车的概率.(2)两根相距6 m 的木杆上系一根绳子,并在绳子上挂一盏灯,求灯与两端距离都大于2 m 的概率. (3)在500 mL 的水中有一个草履虫,现从中随机取出2 mL 水样放到显微镜下观察,则发现草履虫的概率是( ) A.0.5 B.0.4 C.0.004 D.不能确定例9.平面上画了一些彼此相距2a 的平行线,把一枚半径r<a 的硬币任意掷在这个平面上,求硬币不与任何一条平行线相碰的概率.例10.两人相约8点到9点在某地会面,先到者等候另一人20分钟,过时就可离去,试求这两人能会面的概率.例11.有一段长为10米的木棍,现要将其截成两段,要求每一段都不小于3米,则符合要求的截法的概率是多大? 例12.郭靖、潇湘子与金轮法王等武林高手进行一种比赛,比赛规则如下:在很远的地方有一顶帐篷,可以看到里面有一张小方几,要将一枚铜板扔到这张方几上.已知铜板的直径是方几边长的43,谁能将铜板整个地落到方几上就可以进行下一轮比赛.郭靖一扔,铜板落到小方几上,且没有掉下,问他能进入下一轮比赛的概率有多大?例13.甲、乙两人相约在上午9:00至10:00之间在某地见面,可是两人都只能在那里停留5分钟.问两人能够见面的概率有多大?例14.在5升水中有一个病毒,现从中随机地取出1升水,含有病毒的概率是多大?例15.在5升水中有两个病毒,现从中随机地取出1升水,含有病毒的概率是多大?例16.在圆心角为90°的扇形中,以圆心为起点作射线OC,求使得∠AOC和∠BOC都不小于30°的概率.例17.有一个半径为5的圆,现在将一枚半径为1的硬币向圆投去,如果不考虑硬币完全落在圆外的情况,试求硬币完全落入圆内的概率.例18.如右图,∠AOB=60°,OA=2,OB=5,在线段OB上任取一点C,试求:(1)△AOC为钝角三角形的概率;(2)△AOC为锐角三角形的概率.。

相关文档
最新文档