高中数学第3章概率3-3几何概型互动课堂学案
高中数学 第三章 概率 331 几何概型学案 新人教A版必修3 学案

3.3.1几何概型授课日期: 姓名: 班级:一、学习目标1、知识与技能:1、通过具体实例正确理解几何概型的定义及与古典概型的区别;2、掌握几何概型的概率计算公式并能进行简单的计算与应用.2、过程与方法:让学生通过对几个试验的观察分析,提炼它们共同的本质的东西,从而亲历几何概型的建构过程,并在解决问题中,给学生寻找发现、讨论交流、合作分享的机会3、情感态度与价值观:通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点.二、学习重难点重点:理解几何概型的定义,会用公式计算概率;难点1、等可能性的判断及对几何概率模型中基本事件的构成分析;2、将实际问题转化为几何概型.三、学法指导1.通过对本节知识的探究与学习,感知用图形解决概率问题的方法;阅读教材135—136页完成导学案 2.小班完成100%,重点班完成90%,平行班完成80%。
四、知识链接1.古典概型的两个基本特征?2、计算古典概型的公式:五、学习过程(一).主动探索A问题1:在转盘游戏中,当指针停止时,为什么指针指向红色区域的可能性大?A问题2:图中有两个转盘.甲乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜.在两种情况下分别求甲获胜的概率是多少?(二).领悟归纳A问题3:什么是几何概率模型A问题4:几何概率模型的特点:(1)试验中所有可能出现的结果(基本事件)有无限多个.(2)每个基本事件出现的可能性相等.A问题5:在几何概型中,事件A的概率的计算公式:A问题6:古典概型与几何概型的关系:联系:两种模型的基本事件发生的可能性都相等;区别:古典概型要求基本事件是有限个,而几何概型则要求基本事件有无限多个。
(三).几何概型的计算B例1 某人午觉醒来,发现表停了,他打开收音机,想听电台报时,求他等待的时间不多于10分钟的概率.红红红红红红红问题1 图问题2 图几何概型公式(1):B 例2. 某商场为了吸引顾客,设立了一个可以自由转动的转盘,并规定:顾客每购买100元的商品,就能100元、50元、20元的购物券(转盘等分成20份).几何概型公式(2):B 例3. 有一杯1升的水,其中含有1个细菌,用一个小杯从这杯水中取出0.1升,求小杯水中含有这个细菌的概率.几何概型公式(3):领悟:对于复杂的实际问题,解题的关键是要建立模型,找出随机事件与所有基本事件相对应的几何区域,把问题转化为几何概率问题,利用几何概率公式求解. 六、达标训练A1. 判断以下各题的是何种概率模型,并求相应概率(1)在集合 A= {0,1,2,3,4,5,6,7,8,9} 中任取一个元素 ,则 的概率为(2)已知点O (0,0),点M (60,0),在线段OM 上任取一点P ,则的概率为A2、一个质地均匀的陀螺的圆周上均匀地刻有上诸数字,在桌面上旋转它,求当它停下来时,圆周与桌面接触处的刻度位于区间 [2 , 3] 上的概率。
人教版高中数学必修3第三章概率-《3.3几何概型》教案

几何概型一、教学目标(1)学生能掌握几何概型的特点,明确几何概型与古典概型的区别。
(2)能识别实际问题中概率模型是否为几何概型。
(3)会利用几何概型公式对简单的几何概型问题进行计算。
二、教学重点与难点教学重点:(1)几何概型的特点及与古典概型的区别(2)几何概型概率计算公式及应用。
教学难点:把求未知量的问题转化为几何概型求概率的问题;三、教学方法与手段让学生通过对几个试验的观察分析,提炼它们共同的本质的东西,从而亲历几何概型的建构过程,并在解决问题中,给学生寻找发现、讨论交流、合作分享的机会。
感知用图形解决概率问题的方法,掌握数学思想与逻辑推理的数学方法。
四、教学过程一、 创设情境 引入新课【知识回顾】(1)1 (2) 2A () A P A ⎧⎧⎨⎪⎩⎪⎪⎨=⎪⎪⎪⎩试验中所有可能出现的基本事件只有有限个;、古典概型的特点每个基本事件出现的可能性相等。
古典概型包含基本事件的个数、事件的概率公式:基本事件的总数 【课前练习】判断下列试验中事件发生的概率是否为古典概型?(1)抛掷两颗骰子,求出现两个“4点”的概率;(学生口答)(2)5本不同的语文书,4本不同的数学书,从中任取2本,取出的书恰好都是数学书的概率;(学生口答)(3)取一根长度为3m 的绳子,拉直后在任意位置剪断,那么剪得两段的长度都不小于1m的概率;学生分析:剪刀落在绳子的任意一个位置是等可能的,但剪刀落的位置是无限个的,因而无法利用古典概型;(4)下图中有两个转盘,甲乙两人玩转盘游戏,规定当指针指向黄色区域时,甲获胜,否则乙获胜.你认为甲获胜的概率分别是多少?(1)(2)学生分析:指针指向的每个方向都是等可能性的,但指针所指的位置却是无限个的,因而无法利用古典概型;(5)有一杯1升的水,其中含有1个细菌,用一个小杯从这杯水中取出0.1升,求小杯水中含有这个细菌的概率.学生分析:细菌在1升水的杯中任何位置的机会是等可能的,但细菌所在的位置却是无限多个的,因而不能利用古典概型。
人教版高中数学必修3-3.3《几何概型》教学设计

第三章概率3.3 几何概型(李长江)一、教学目标1.核心素养通过学习古典概型,初步形成基本的数学抽象和数学建模能力.2.学习目标(1)理解几何概型基本事件的特点.(2)会用几何概型公式解决实际实际问题.(2)掌握利用计算器(计算机)产生均匀随机数的方法.3.学习重点理解几何概型的特点,会用几何概型解决随机事件出现的概率如何计算问题.4.学习难点基本事件出现等可能性.二、教学设计(一)课前设计1.预习任务任务1阅读P135-P140,思考:几何概型与古典概型的异同在哪儿?任务2如何利用几何概型公式解决实际问题中的概率问题?2.预习自测1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)在一个正方形区域内任取一点的概率是零.()(2)几何概型中,每一个基本事件就是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.()(3)在几何概型定义中的区域可以是线段、平面图形、立体图形.()(4)随机模拟方法是以事件发生的频率估计概率.()(5)与面积有关的几何概型的概率与几何图形的形状有关.()解:√√√√×2.在500ml的水中有一个草履虫,现从中随机取出2ml水样放到显微镜下观察,则发现草履虫的概率是()A .0.5B .0.4C .0.004D .不能确定解:C3.用均匀随机数进行随机模拟,可以解决( )A.只能求几何概型的概率,不能解决其他问题B.不仅能求几何概型的概率,还能计算图形的面积C.不但能估计几何概型的概率,还能估计图形的面积D.最适合估计古典概型的概率.解:C(二)课堂设计1.知识回顾(1)古典概型的基本事件的特点. (2)古典概型计算公式.2.问题探究问题探究一 几何概型基本事件的特点有哪些?(★▲)●活动一 创设情景,区分古典概型与几何概型飞镖游戏:如图所示,规定射中红色区域表示中奖.则下列各圆盘的中奖概率如何计算呢?(1) (2) (3)图(1)是将圆盘五等分,飞镖分别射在五个相同的扇形区域作为五个等可能基本事件,每个基本事件的发生是等可能性的,概率为51. 图(2)三块区域圆心角之比为1:2:3。
高中数学第三章概率第3节几何概型教学案新人教A必修3

第3节几何概型[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P135~P136,回答下列问题.(1)教材问题中甲获胜的概率与什么因素有关?提示:与两图中标注B的扇形区域的圆弧的长度有关.(2)教材问题中试验的结果有多少个?其发生的概率相等吗?提示:试验结果有无穷个,但每个试验结果发生的概率相等.2.归纳总结,核心必记(1)几何概型的定义与特点①定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.②特点:(ⅰ)可能出现的结果有无限多个;(ⅱ)每个结果发生的可能性相等.(2)几何概型中事件A的概率的计算公式P(A)=构成事件A的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积.[问题思考](1)几何概型有何特点?提示:几何概型的特点有:①试验中所有可能出现的结果(基本事件)有无限多个;②每个基本事件出现的可能性相等.(2)古典概型与几何概型有何区别?提示:几何概型也是一种概率模型,它与古典概型的区别是:古典概型的试验结果是有限的,而几何概型的试验结果是无限的.[课前反思]通过以上预习,必须掌握的几个知识点:(1)几何概型的定义:;(2)几何概型的特点:;(3)几何概型的计算公式:.某班公交车到终点站的时间可能是11∶30-12∶00之间的任何一个时刻.往方格中投一粒芝麻,芝麻可能落在方格中的任何一点上.[思考1] 这两个试验可能出现的结果是有限个,还是无限个?提示:无限多个.[思考2]古典概型和几何概型的异同是什么?名师指津:古典概型和几何概型的异同如表所示:名称古典概型几何概型相同点基本事件发生的可能性相等不同点①基本事件有限个①基本事件无限个②P(A)=0⇔A为不可能事件②P(A)=0A为不可能事件③P(B)=1⇔B为必然事件③P(B)=1B为必然事件讲一讲1.取一根长为5 m的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于2 m 的概率有多大?[尝试解答] 如图所示.记“剪得两段绳长都不小于2 m”为事件A.把绳子五等分,当剪断位置处在中间一段上时,事件A发生.由于中间一段的长度等于绳长的15,所以事件A发生的概率P(A)=15.求解与长度有关的几何概型的关键点在求解与长度有关的几何概型时,首先找到试验的全部结果构成的区域D,这时区域D 可能是一条线段或几条线段或曲线段,然后找到事件A发生对应的区域d,在找d的过程中,确定边界点是问题的关键,但边界点是否取到不会影响事件A的概率.练一练1.(2016·全国乙卷)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A.13B.12C.23D.34解析:选B 如图,7:50至8:30之间的时间长度为40 分钟,而小明等车时间不超过10 分钟是指小明在7:50至8:00之间或8:20至8:30之间到达发车站,此两种情况下的时间长度之和为20 分钟,由几何概型概率公式知所求概率为P=2040=12.故选B.讲一讲2.(2014·辽宁高考)若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是( )A.π2B.π4C.π6D.π8[尝试解答] 由几何概型的概率公式可知,质点落在以AB为直径的半圆内的概率P=半圆的面积长方形的面积=12π·121×2=π4,故选B.答案:B解与面积相关的几何概型问题的三个关键点(1)根据题意确认是否是与面积有关的几何概型问题;(2)找出或构造出随机事件对应的几何图形,利用图形的几何特征计算相关面积;(3)套用公式,从而求得随机事件的概率.练一练2.如图,在矩形区域ABCD的A,C两点处各有一个通信基站,假设其信号覆盖范围分别是扇形区域ADE和扇形区域CBF(该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无信号的概率是( )A .1-π4 B.π2-1 C .2-π2 D.π4解析:选A 由几何概型知所求的概率P =S 图形DEBF S 矩形ABCD =2×1-14×π×12×22×1=1-π4. 讲一讲3.如图,在棱长为2的正方体ABCD A 1B 1C 1D 1 中,点O 为底面ABCD 的中心,在正方体ABCD A 1B 1C 1D 1 内随机取一点P ,则点P 到点O 的距离大于1的概率为________.[尝试解答] 点P 到点O 的距离大于1的点位于以O 为球心,以1为半径的半球外.记点P 到点O 的距离大于1为事件A ,则P (A )=23-12×4π3×1323=1-π12. 答案:1-π12如果试验的全部结果所构成的区域可用体积来度量,我们要结合问题的背景,选择好观察角度,准确找出基本事件所占的区域体积及事件A 所占的区域体积.练一练3.如图所示,有一瓶2升的水,其中含有1个细菌.用一小水杯从这瓶水中取出0.1升水,求小杯水中含有这个细菌的概率.解:记“小杯水中含有这个细菌”为事件A ,则事件A 的概率只与取出的水的体积有关,符合几何概型的条件.∵小水杯中有0.1升水,原瓶中有2升水,∴由几何概型求概率的公式得P (A )=0.12=0.05. ——————————————[课堂归纳·感悟提升]———————————————1.本节课的重点是了解几何概型的意义,会求几何概型的概率.难点是理解几何概型的特点和计算公式.2.本节课要掌握以下几类问题:(1)理解几何概型,注意与长度有关的几何概型的求解关键点,见讲1.(2)求解与面积相关的几何概型问题的三个关键点,见讲2.(3)注意与体积有关的几何概型的求解策略,见讲3.3.本节课的易错点:不能正确求出相关线段的长度或相关区域的面积或相关空间的体积,如讲1,2,3.课下能力提升(十九)[学业水平达标练]题组1 与长度有关的几何概型1.在区间[-2,3]上随机选取一个数X ,则X ≤1的概率为( )A.45B.35C.25D.15解析:选B 在区间[-2,3]上随机选取一个数X ,则X ≤1,即-2≤X ≤1的概率为P =35. 2.已知地铁列车每10 min 一班,在车站停1 min ,则乘客到达站台立即乘上车的概率是( )A.110B.19C.111D.18解析:选A 试验的所有结果构成的区域长度为10 min ,而构成事件A 的区域长度为1min ,故P (A )=110. 3.在区间[-2,4]上随机取一个数x ,若x 满足|x |≤m 的概率为56,则m =________. 解析:由|x |≤m ,得-m ≤x ≤m ,当m ≤2时,由题意得2m 6=56,解得m =2.5,矛盾,舍去.当2<m<4时,由题意得m--26=56,解得m=3.答案:34.如图所示,在单位圆O的某一直径上随机地取一点Q,求过点Q且与该直径垂直的弦长长度不超过1的概率.解:弦长不超过1,即|OQ|≥32,而Q点在直径AB上是随机的,记事件A={弦长超过1}.由几何概型的概率公式得P(A)=32×22=32.∴弦长不超过1的概率为1-P(A)=1-32.题组2 与面积、体积有关的几何概型5.在如图所示的正方形中随机撒入 1 000粒芝麻,则撒入圆内的芝麻数大约为________(结果保留整数).解析:设正方形边长为2a,则S正=4a2,S圆=πa2.因此芝麻落入圆内的概率为P=πa24a2=π4,大约有1 000×π4≈785(粒).答案:7856.一个球型容器的半径为3 cm,里面装有纯净水,因为实验人员不小心混入了一个H7N9病毒,从中任取1 mL水,含有H7N9病毒的概率是________.解析:水的体积为43πR3=43×π×33=36π(cm3)=36π(mL).故含有病毒的概率为P=136π.答案:136π7.(2015·西安质检)如图,在正方体ABCDA1B1C1D1内随机取点,则该点落在三棱锥A1ABC内的概率是________.解析:设正方体的棱长为a ,则所求概率P =VA 1ABC VABCDA 1B 1C 1D 1=13×12a 2·a a 3=16. 答案:168.如图所示,图2中实线围成的部分是长方体(图1)的平面展开图,其中四边形ABCD 是边长为1的正方形.若向虚线围成的矩形内任意抛掷一质点,它落在长方体的平面展开图内的概率是14,则此长方体的体积是________.解析:设长方体的高为h ,由几何概型的概率计算公式可知,质点落在长方体的平面展开图内的概率P =2+4h 2h +22h +1=14,解得h =3或h =-12(舍去),故长方体的体积为1×1×3=3. 答案:39.在街道旁边有一游戏:在铺满边长为9 cm 的正方形塑料板的宽广地面上,掷一枚半径为1 cm 的小圆板.规则如下:每掷一次交5角钱,若小圆板压在边上,可重掷一次;若掷在正方形内,需再交5角钱才可玩;若压在正方形塑料板的顶点上,可获得一元钱.试问:(1)小圆板压在塑料板的边上的概率是多少?(2)小圆板压在塑料板顶点上的概率是多少?解:(1)如图(1)所示,因为O 落在正方形ABCD 内任何位置是等可能的,小圆板与正方形塑料板ABCD 的边相交接是在圆板的中心O 到与它靠近的边的距离不超过1 cm 时,所以O 落在图中阴影部分时,小圆板就能与塑料板ABCD 的边相交接,这个范围的面积等于92-72=32(cm 2),因此所求的概率是3292=3281.(2)小圆板与正方形的顶点相交接是在圆心O 与正方形的顶点的距离不超过小圆板的半径1 cm 时,如图(2)阴影部分,四块合起来面积为π cm 2,故所求概率是π81. [能力提升综合练]1.下列关于几何概型的说法中,错误的是( )A .几何概型是古典概型的一种,基本事件都具有等可能性B .几何概型中事件发生的概率与它的位置或形状无关C .几何概型在一次试验中可能出现的结果有无限多个D .几何概型中每个结果的发生都具有等可能性解析:选A 几何概型和古典概型是两种不同的概率模型,故选A.2.已有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )解析:选A 利用几何概型的概率公式,得P (A )=38,P (B )=28,P (C )=26,P (D )=13, ∴P (A )>P (C )=P (D )>P (B ),故选A.3.如图,在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积大于S4的概率是( )A.14B.12C.34D.23解析:选C 因为△ABC 与△PBC 是等高的,所以事件“△PBC 的面积大于S4”等价于事件“|BP |∶|AB |>14”.即P (△PBC 的面积大于S 4)=|PA ||BA |=34. 4.已知事件“在矩形ABCD 的边CD 上随机地取一点P ,使△APB 的最大边是AB ”发生的概率为12,则AD AB=( )A.12B.14C.32D.74解析:选D 依题可知,设E ,F 是CD 上的四等分点,则P 只能在线段EF 上且BF =AB .不妨设CD =AB =a ,BC =b ,则有b 2+⎝ ⎛⎭⎪⎫3a 42=a 2,即b 2=716a 2,故b a =74.5.(2016·石家庄高一检测)如图,在平面直角坐标系内,射线OT 落在60°角的终边上,任作一条射线OA ,则射线OA 落在∠xOT 内的概率为________.解析:记“射线OA 落在∠xOT 内”为事件A .构成事件A 的区域最大角度是60°,所有基本事件对应的区域最大角度是360°,所以由几何概型的概率公式得P (A )=60°360°=16. 答案:166.一个多面体的直观图和三视图如图所示,其中M 是AB 的中点.一只苍蝇在几何体ADF BCE 内自由飞行,求它飞入几何体F AMCD 内的概率.解:由三视图可得直观图为直三棱柱且底面ADF 中AD ⊥DF ,DF =AD =DC =a .因为V F AMCD =13S 四边形AMCD ×DF =13×12(12a +a )·a ·a =14a 3, V ADF BCE =12a 2·a =12a 3,所以苍蝇飞入几何体F AMCD 内的概率为14a 312a 3=12. 7.在长度为10 cm 的线段AD 上任取两点B ,C .在B ,C 处折此线段而得一折线,求此折线能构成三角形的概率. 解:设AB ,AC 的长度分别为x ,y ,由于B ,C 在线段AD 上,因而应有0≤x ,y ≤10,由此可见,点对(B ,C )与正方形K ={(x ,y )|0≤x ≤10,0≤y ≤10}中的点(x ,y )是一一对应的,先设x <y ,这时,AB ,BC ,CD 能构成三角形的充要条件是AB +BC >CD ,BC +CD >AB ,CD +AB >BC ,注意AB =x ,BC =y -x ,CD =10-y ,代入上面三式,得y >5,x <5,y -x <5,符合此条件的点(x ,y )必落在△GFE 中(如图).同样地,当y <x 时,当且仅当点(x ,y )落在△EHI 中,AC ,CB ,BD 能构成三角形, 利用几何概型可知,所求的概率为S △GFE +S △EHI S 正方形=14.。
高中数学 第三章《概率》《3.3几何概型》教案 新人教A版必修3

黑龙江省大庆外国语学校高中数学 第三章《概率》《3.3几何概型》教案 新人教A 版必修3一、教学目标:1、 知识与技能:(1)正确理解几何概型的概念; (2)掌握几何概型的概率公式: P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A ;(3)会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型; (4)了解均匀随机数的概念;(5)掌握利用计算器(计算机)产生均匀随机数的方法; (6)会利用均匀随机数解决具体的有关概率的问题. 二、重点与难点:1、几何概型的概念、公式及应用;2、利用计算器或计算机产生均匀随机数并运用到概率的实际应用中.三、学法:通过对本节知识的探究与学习,感知用图形解决概率问题的方法,掌握数学思想与逻辑推理的数学方法; 四、教学过程:1、创设情境:在概率论发展的早期,人们就已经注意到只考虑那种仅有有限个等可能结果的随机试验是不够的,还必须考虑有无限多个试验结果的情况。
例如一个人到单位的时间可能是8:00至9:00之间的任何一个时刻;往一个方格中投一个石子,石子可能落在方格中的任何一点……这些试验可能出现的结果都是无限多个。
2、基本概念:(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型; (2)几何概型的概率公式: P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A ;(3)几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.3、 例题分析: 课本例题略例1 判下列试验中事件A 发生的概度是古典概型, 还是几何概型。
(1)抛掷两颗骰子,求出现两个“4点”的概率;(2)如课本P132图3.3-1中的(2)所示,图中有一个转盘,甲乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜,求甲获胜的概率。
高中数学第3章概率3.3几何概型教材梳理导学案苏教版必修3

3.3 几何概型庖丁巧解牛知识·巧学一、几何概型的概念对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样;而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点,这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型.深化升华 只有每个事件发生的概率与构成该事件区域的长度(面积或体积)成比例时,这样的概率模型才为几何概率模型.二、几何概型的特征几何概型具有如下两个特征:(1)进行一次试验相当于向一个几何体G 中取一点.(2)对G 内任意子集,事件“点取自g”的概率与g 的测度(长度、面积或体积)成正比,而与g 在G 中的位置、形状无关.如果试验中的随机事件A 可用G 中的一个区域g 表示(组成事件A 的所有可能结果与g 中的所有点一一对应),那么事件A 的概率规定为:P(A)=的测度的测度G g . 例如,正方形内有一个内切圆,向正方形内随机地撒一粒芝麻的试验就是几何概型,记事件“芝麻落在圆内”为A ,则P(A)=4π=正方形的面积圆的面积. 联想发散 对于几何概型,随机事件A 的概率P(A)与表示它的区域g 的测度(长度、面积或体积)成正比,而与区域g 的位置和形状无关;只要表示两个事件的区域有相同的测度(长度、面积或体积),不管它们的位置和形状如何,这两个事件的概率一定相等.三、几何概型的特点(1)试验中所有可能出现的结果(基本事件)有无限多个.(2)每个基本事件出现的可能性相等.(3)几何概型同古典概型一样也是一种等可能概型.辨析比较 几何概型与古典概型的区别:几何概型的基本事件总数有无限多个,古典概型的基本事件总数有有限个.四、几何概型的计算公式几何概型中,事件A 的概率的计算公式如下:P (A )=的测度的区域试验的全部结果所构成的测度的区域构成事件D d A . 公式中的“测度”的意义依D 确定,当D 分别是线段、平面图形和立体图形时,相应的“测度”分别是长度、面积和体积等.因为区域中每一点被取到的机会都一样(等可能性),某个事件发生的概率才与构成该事件区域的“测度”成比例.误区警示 当试验的全部结果所构成的区域面积一定时,事件A 的概率只与构成事件A 的区域面积有关,而与A 的位置和形状无关.五、利用几何概型求概率需注意哪些方面(1)几何概型适用于试验结果是无穷多且事件是等可能发生的概率类型;如与速度、温度变化有关的物理问题,与长度、面积、体积有关的实际生产、生活问题.(2)几何概型主要用于解决与长度、面积、体积有关的题目;(3)公式为P(A)=),(),(体积面积长度试验结果所构成的区域体积面积的区域长度构成事件A ; (4)计算几何概率要先计算基本事件总体与事件A 包含的基本事件对应的长度(角度、面积、体积).典题·热题知识点 几何概型概率计算例1 国家安全机关监听录音机记录了两个间谍的谈话,发现30 min 长的磁带上,从开始30 s 处起,有10 s 长的一段内容包含两间谍犯罪的信息.后来发现,这段谈话的一部分被某工作人员擦掉了,该工作人员称他完全是无意中按错了键,使从此处起往后的所有内容都被擦掉了.那么由于按错了键使含有犯罪内容的谈话被部分或全部擦掉的概率有多大?思路分析:包含两个间谍谈话录音的部分在30到40 s 之间,当按错键的时刻在这段时间之内时,部分被擦掉,当按错键的时刻在0到30 s 之间时全部被擦掉,即在0到40 s 之间即0到32 min 之间的时间段内按错键时含有犯罪内容的谈话被部分或全部擦掉,而0到30 min 之间的时间段内任一时刻按错键的可能性是相等的,所以按错键使含有犯罪内容的谈话被部分或全部擦掉的概率只与从开始到谈话内容结束的时间段长度有关,符合几何概型的条件. 解:记A={按错键使含有犯罪内容的谈话被部分或全部擦掉},A 发生就是在0到32min 之间的时间段内按错键.P (A )=4513032. 误区警示 此题有两个难点:一是等可能性的判断;二是事件A 对应的区域是0到32 min 的时间段,而不是21 min 到32 min 的时间段. 例2 甲乙两人相约10天之内在某地会面,约定先到的人等候另一人3天以后方可离开,若他们在期限内到达目的地是等可能的,则此二人会面的概率为_________.思路分析:这是会面问题,将问题转化为几何概型求解.设甲乙两人分别在第x,y 天到达某地,则0≤x≤10,0≤y≤10,两人会面的条件是|x-y|≤3.图3-3-2如图3-3-2所示,区域Ω是边长为10的正方形,图中介于两直线x-y=±3之间阴影表示事件A :“此二人会面”问题可以理解为求出现在图中阴影部分的概率.于是μΩ=10×10=100.μA =102-(10-3)2=51.故所求概率为P(A)=10051=ΩμμA 答案:10051 深化升华 把两个时间分别用x,y 两个坐标表示,构成平面内的点(x,y),从而把时间这个一维长度问题转化为平面图形的二维面积问题,转化成面积型几何概率.例3 如图3-3-3,在等腰RT△ABC 中,在斜边AB 上取一点M ,求AM 的长小于AC 的概率.图3-3-3思路分析:此题是“长度比”型的概率求法.点M 随机地落在线段AB 上,线段AB 为试验所有结果构成的区域D ,当点M 位于图中线段AC′上时,AM <AC ,线段AC 即为构成事件的区域d.方法一:在AB 上截取AC′=AC,于是 P(AM<AC)=P(AM<AC′)=22=='AB AC AB C A , 即AM 的长小于AC 的长的概率为22. 方法二:视射线CM 在∠ACB 内是等可能分布的,在AB 上取AC′=AC,则∠ACC′= 245180︒-︒=67.5° . 故所求的概率为43905.67=. 误区警示 背景相似的问题,当等可能的角度不同时,其概率是不一样的.问题·探究思想方法探究问题 我们已经学习了两种计算事件发生概率的方法:(1)通过试验方法得到事件发生的频率,来估计概率;(2)用古典概型的公式来计算概率.可以求解很多的随机事件概率,为什么还要学习几何概型?探究过程:通过试验方法得到事件发生的频率,来估计概率,这是一种近似估计,需通过大量重复试验,具有局限性.另外,用古典概型的公式来计算概率,仅适用基本事件为有限个的情况.而对于基本事件为无限个的,每个基本事件又是等可能的情况,我们无从下手. 探究结论:所以有必要学习几何概型.。
高中数学第三章概率3.3几何概型学案苏教版必修3
高中数学第三章概率3.3几何概型学案苏教版必修31.了解几何概型的概念及基本特点.(重点) 2.熟练掌握几何概型的概率公式.(重点、难点)3.正确判别古典概型与几何概型,会进行简单的几何概型问题计算.(重点、易混点) 4.了解随机数的意义,能运用模拟的方法估计概率.(难点)[基础·初探]教材整理 几何概型阅读教材P 106~P 107“例1”上边的内容,并完成下面的问题. 1.几何概型的定义设D 是一个可度量的区域(例如线段、平面图形、立体图形等),每个基本事件可以视为从区域D 内随机地取一点,区域D 内的每一点被取到的机会都一样;随机事件A 的发生可以视为恰好取到区域D 内的某个指定区域d 中的点.这时,事件A 发生的概率与d 的测度(长度、面积、体积等)成正比,与d 的形状和位置无关.我们把满足这样条件的概率模型称为几何概型.2.几何概型的特点(1)试验中所有可能出现的基本事件有无限个; (2)每个基本事件出现的可能性都相等. 3.几何概型的概率计算公式一般地,在几何区域D 中随机地取一点,记事件“该点落在其内部一个区域d 内”为事件A ,则事件A 发生的概率P (A )=d 的测度D 的测度.判断正误:(1)几何概型与古典概型的区别就是基本事件具有无限个.( ) (2)几何概型的概率与构成事件的区域形状无关.( )(3)有一杯1升的水,其中漂浮有1个微生物,用一个小杯从这杯水中取出0.1升,求小杯水中含有这个微生物的概率时,可用几何概型求解.( )【解析】 (1)√.由几何概型的特点可知正确. (2)√.由几何概型的定义知正确.(3)√.该试验的基本事件具有无限个,故要用几何概型求解. 【答案】 (1)√ (2)√ (3)√[小组合作型]测度为长度的几何概型(1)在区间[-2,3]上随机选取一个数X ,则X ≤1的概率为________. (2)某市公交车每隔10 min 一班,在车站停1 min ,则乘客能搭上车的概率为________. 【精彩点拨】 利用测度为长度的几何概型求解.【自主解答】 (1)设“X ≤1”为事件A ,则事件A 发生表示X ∈[-2,1], 由题意知,D 测度为区间[-2,3]长度3-(-2)=5,d 的测度为区间[-2,1]长度1-(-2)=3, 即X ≤1的概率为P (A )=d D =35.(2)由题意知,试验的所有结果构成的区域长度为D =10 min ,而事件B 的区域长度为d=1 min ,故P (B )=d D =110,即乘客能搭上车的概率为110.【答案】 (1)35 (2)1101.解答本题的关键是将基本事件的全部及其事件A (B )包含的基本事件转化为相应的长度,再进一步求解.2.求测度为长度的几何概型的步骤.(1)确定几何区域D ,这时区域D 可能是一条线段,也可能是几条线段或曲线段,并计算区域D 的长度.(2)确定事件A 发生时对应的区域d ,判断d 的边界点是问题的关键. (3)利用几何概型概率公式求概率.[再练一题]1.在两根相距8 m 的木杆上系一根拉直的绳子,并在绳子上挂一盏灯,则灯与两端距离都大于3 m 的概率是________.【解析】 记“灯与两端距离都大于3 m”为事件A ,由于绳长8 m ,当挂灯的位置介于中间的2 m 时,事件A 发生,于是事件A 发生的概率P (A )=28=14.【答案】 14测度是面积的几何概型如图331,EFGH 是以O 为圆心,半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,则P (A )=________.图331【精彩点拨】 判断为几何概型→求出图形的面积→利用公式求概率【自主解答】 圆的半径是1,则正方形的边长是2,故正方形EFGH (区域d )的面积为(2)2=2.又圆(区域D )的面积为π,则由几何概型的概率公式,得P (A )=2π.【答案】2π解决此类问题的关键是:1根据题意确认问题是否是与面积有关的几何概型;2确定随机事件对应的几何图形,并利用图形的几何特征计算相关的面积,然后利用公式求解.[再练一题]2.如图332,在矩形区域ABCD 的A ,C 两点处各有一个通信基站,假设其信号覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无信号的概率是________.【导学号:11032066】图332【解析】 由几何概型知所求的概率P =S 图形DEBF S 矩形ABCD =2×1-π×12×14×22×1=1-π4.【答案】 1-π4测度为体积的几何概型已知正方体ABCD A 1B 1C 1D 1的棱长为1,在正方体内随机取点M ,求使四棱锥M ABCD 的体积小于16的概率.【精彩点拨】 先判断为测度是体积的几何概型,然后由体积关系转化为点M 到平面ABCD 的距离的问题处理.【自主解答】 设M 到平面ABCD 的距离为h ,则V M ABCD = 13·S 正方形ABCD ·h <16,S 正方形ABCD =1,所以h <12, 所以只要点M 到平面ABCD 的距离小于12即可.因为所有满足M 到平面ABCD 的距离小于12的点组成以平面ABCD 为底面,高为12的长方体,其体积为12.又正方体的体积为1,所以使四棱锥M ABCD 的体积小于16的概率为P =121=12.在几何概型中,如果试验的结果所组成的区域可用体积来度量,我们要结合问题的背景,选择好观察角度,准确找出基本事件所占的总的体积及事件A 所分布的体积,然后利用公式求概率.[再练一题]3.一只小蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为________.【解析】 依题意,在棱长为3的正方体内任意取一点,这个点到各面的距离均大于1.则满足题意的点区域为位于该正方体中心的一个棱长为1的小正方体.由几何概型的概率公式,可得满足题意的概率为P =1333=127.【答案】127[探究共研型]几何概型中测度类型的确定探究1 在几何概型中,涉及到的测度大体有几种?如何进行区分?【提示】 几何概型涉及到的测度有长度、面积、体积与角度,“测度”的意义要依据D 来确定,当D 分别是线段、平面图形、立体图形时,相应的测度分别是长度、面积和体积.当几何概型中的线在一个定角内运动时,测度可能为长度或角度.探究2 问题1:在等腰直角三角形ABC 中,在斜边AB 上任取一点M ,求AM <AC 的概率; 问题2:在等腰直角三角形ABC 中,过直角顶点C 在∠ACB 内部作射线CM ,交AB 于点M ,求AM <AC 的概率.以上两问题中涉及的测度一样吗?概率分别是多少?【提示】 两问题中的测度不一样,问题1中是长度,而问题2中为角度.由几何概型知,问题1中的概率为22,问题2中的概率为34. 过半径为1的圆内一条直径上的任意一点作垂直于直径的弦,求弦长超过圆内接等边三角形边长的概率.【导学号:11032067】【精彩点拨】 判断为几何概型→确定测度类型→计算测度→ 代入公式求解【自主解答】 设“弦长超过圆内接等边三角形的边长”为事件A ,如图所示,不妨在过等边三角形BCD 的顶点B 的直径BE 上任取一点作垂直于直径的弦.显然当弦为CD 时其长度就是△BCD 的边长,弦长大于|CD |等价于圆心O 到弦的距离小于|OF |,由几何概型的概率公式得P (A )=12×22=12.即弦长超过圆内接等边三角形边长的概率是12.在利用几何概型求概率时,关键要明确题目的类型,即是长度型、角度型、面积型,还是体积型,判断的方法是看基本事件发生在一个几维空间内.[再练一题]4.在面积为S 的△ABC 内部任取一点P ,则△PBC 的面积大于S4的概率是________.【解析】 如图,过点D 作l ∥BC 交AC 于点E .由题知AD AB =34.而P 为△ABC 内任意一点,则使S △PBC >S4的点落在△ADE 中,∴P =S △ADE S △ABC =AD 2AB 2=916.【答案】9161.如图333,边长为2的正方形中有一封闭曲线围成的阴影区域,在正方形中随机撒一粒豆子,它落在阴影区域内的概率为23,则阴影区域的面积为________.图333【解析】 由几何概型的概率公式知S 阴S 正=23,所以S 阴=23S 正=83. 【答案】 832.某人午觉醒来,发现表停了,他打开收音机(整点报时),想听电台报时,则他等待的时间不多于10分钟的概率为________.【解析】 记“等待的时间不多于10分钟”为事件A ,打开收音机的时刻位于[50,60]时间段内,则事件A 发生.由几何概型求概率公式得P (A )=60-5060=16,即“等待报时的时间不多于10分钟”的概率为16.【答案】 163.如图334,在正方形内有一扇形(见阴影部分),扇形对应的圆心是正方形的一个顶点,半径为正方形的边长.在这个图形上随机撒一粒黄豆,它落在扇形外正方形内的概率为________.图334【解析】 设正方形边长为a ,则S正方形=a 2,S扇形=14πa 2,则扇形外正方形内的面积为S =S 正方形-S 扇形=a 2-π4a 2=⎝⎛⎭⎪⎫1-π4a 2,故所求概率为P =⎝⎛⎭⎪⎫1-π4a 2a2=1-π4=4-π4.【答案】4-π44.在区间[-1,1]上随机任取两个数x ,y ,则满足x 2+y 2<14的概率为________.【解析】 当x ,y ∈[-1,1]时,点(x ,y )构成的区域是一个边长为2的正方形,其面积等于2×2=4,而满足x 2+y 2<14的点(x ,y )构成的区域是一个半径为12的圆的内部,其面积等于π4,所以所求概率P =π44=π16.【答案】π165.用橡皮泥做成一个直径为6 cm 的小球,假设橡皮泥中混入一个很小的砂粒,试求这个砂粒距离球心不小于1 cm 的概率.【解】 设“砂粒距离球心不小于1 cm”为事件A ,球心为O ,砂粒位置为M ,则事件A 发生等价于OM ≥1 cm.设R =3,r =1.则区域D 的体积为V =43πR 3,区域d 的体积为V 1=43πR 3-43πr 3.∴P (A )=V 1V =1-⎝ ⎛⎭⎪⎫r R 3=1-127=2627.故砂粒距离球心不小于1 cm 的概率为2627.。
人教A版高中数学必修3《三章 概率 3.3 几何概型 3.3.2 均匀随机数的产生》优质课教案_0
课题3.3 几何概型(1)教案
一、教学目标
1.知识与技能:使学生理解几何概型的意义,掌握几何概型的计算公式,会求简单几何概型问题的概率。
2.过程与方法:通过求古典概率知识的迁移,运用转化、数形结合思想与方法解决问题。
3.情感态度价值观:通过对几何概型知识探索过程,体会数学思维的特点,感悟几何概型在实际生活的应用。
二、教材分析
1.教学重点:几何概型的概念与计算方法。
2.教学难点:几何概型中几何模型及几何度量。
三、学情分析
学生已有了求古典概型的认知,有几何度量(长度、面积、体积)的技能,以及生活中的经验,容易理解几何概型,但是对问题转化成几何概型的建模、以及分清基本事件的抽象、转化能力还欠缺。
四、教学方法
启发性、探究式引导教学法
五、教学手段
多媒体辅助教学
六、教学流程设计
问题引入------学生探究、活动---交流、归纳----实践与提高---总结与巩固
(师)(生)(生--师)(师--生)(生)
七、教学过程。
人教版高中数学必修三第三章概率3.3几何概型教案
【难点】几何概型的应用
师生互认学习目标,引导学生带着目标进入新课学习,有的放矢。
新
课
讲
授
新
课
讲
授
新
课
讲
授
小组内讨论:参照古典概型的特点,上述试验的特点
是什么?
特点:(1)_________________________________;
(2)______________________________________。
3.一只小蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个面的距离均大于1,称其为“安全飞行”,求蜜蜂“安全飞行”的概率。
巩固所学知识,提高课堂知识的运用能力。
课
堂
小
结
【反思小结】(没有总结,就没有提高!)
(1)请回顾本节课所学过的知识内容有哪些?
1、概念
2、特点
3、公式
具有上述特点的试验称为几何概型。
我们通过上面的试验,得出了几何概型的概念,明确了几何概型事件的两个基本特点。那么如何用数学表达式来解决几何概型事件的概率问题呢?
探究二:
问题1:从区间[1,6]中任取一个实数,求取到的数比3小的概率是多少?
问题2:下面是运动会射箭比赛的靶面,靶面半径为10cm,黄心半径为1cm.现一人随机射箭,假设每箭都能中靶,且射中靶面内任一点都是等可能的,请问射中黄心的概率是多少?
引例2:取一个边长为2a的正方形(如图),随机地向正方形内丢一粒豆子。
思考:上述试验还是不是古典概型?为什么?
温故知新,类比正弦函数的图象和性质,研究余弦函数
展
示
目
标
齐读学习目标、学习重点、学习难点:
内蒙古准格尔旗高中数学第三章概率3.3几何概型教案新人教B版必修3
设计实践活动或实验,让学生在实践中体验几何概型知识的应用,提高实践能力。
在几何概型新课呈现结束后,对几何概型知识点进行梳理和总结。
强调几何概型的重点和难点,帮助学生形成完整的知识体系。
(四)巩固练习(预计用时:5分钟)
随堂练习:
随堂练习题,让学生在课堂上完成,检查学生对几何概型知识的掌握情况。
3. 几何概型的性质:几何概型具有包含关系、并集、交集等性质。包含关系指的是一个几何概型可以包含另一个几何概型;并集和交集指的是多个几何概型可以形成新的几何概型。
4. 几何概型的概率计算:几何概型的概率计算通常涉及到排列组合知识。通过计算几何概型中元素的个数和样本空间中所有可能的元素的个数,可以得到几何概型的概率。
八、作业布置与反馈
作业布置:
1. 概念理解作业:让学生通过完成相关习题,加深对几何概型概念的理解。
2. 性质应用作业:让学生通过解决实际问题,掌握几何概型的性质。
3. 概率计算作业:让学生通过计算几何概型的概率,提高概率计算能力。
4. 应用拓展作业:让学生通过分析现实生活中的几何概型问题,提高数学应用能力。
(2)新课讲解:运用讲授法,详细讲解几何概型的概念、特点和性质,辅以典型例题,让学生加深理解。
(3)小组讨论:布置一道几何概型问题,组织学生进行小组讨论,分享解题思路和方法。
(4)实践活动:让学生动手进行几何概型实验,观察和分析实验结果,巩固所学知识。
(5)总结与拓展:对本节课的知识点进行总结,提出拓展问题,激发学生的创新思维。
3. 概率计算题
题目:一个骰子有两个面涂有红色,其余四个面涂有蓝色,将骰子抛一次,求恰好掷出红颜色的概率。
答案:骰子有六个面,其中两个面涂有红色,四个面涂有蓝色。恰好掷出红颜色的概率为红色面数除以总面数,即2/6 = 1/3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学资料范本高中数学第3章概率3-3几何概型互动课堂学案编辑:__________________时间:__________________3.3 几何概型互动课堂疏导引导1.几何概型的定义在古典概型中,利用等可能性的概念,成功地计算了某一类问题的概率;不过,古典概型要求可能结果的总数必须有限.这不能不说是一个很大的限制,人们当然要竭力突破这个限制,以扩大自己的研究范围.因此历史上有不少人企图把这种做法推广到有无限多个结果而又有某种等可能性的场合.这类问题一般可以通过几何方法来求解.对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样;而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型.对于这一定义也可以作以下理解:设在空间上有一区域D,又知区域d包含在区域D内(如下图所示),而区域D与d都是可以度量的(可求面积、长度、体积等),现随机地向D内投掷一点M,假设点M必落在D中,且点M可能落在区域D的任何部分,那么落在区域d内的概率只与d的度量(长度、面积、体积等)成正比,而与d的位置和形状无关.具有这种性质的随机试验(掷点),称为几何概型.2.几何概型的概率计算一般地,在几何区域D中随机地抽取一点,记“该点落在其内部的一个区域d内”为事件A,则事件A发生的概率P(A)=的测度的测度D d .这里要求D的测度不为0,其中“测度”的意义依D确定,当D分别是线段、平面图形和立体图形时,相应的“测度”分别是长度、面积和体积等. 疑难疏引 (1)几何概型的概率的取值范围同古典概型概率的取值范围一样,几何概型的概率的取值范围也是0≤P(A)≤1.这是因为区域d包含在区域D内,则区域d的“测度”不大于区域D的“测度”.当区域d的“测度”为0时,事件A是不可能事件,此时P(A)=0;当区域d的“测度”与区域D的“测度”相等时,事件A是必然事件,此时P(A)=1. (2)求古典概型概率的步骤: ①求区域D的“测度”; ②求区域d的“测度”; ③代入计算公式.(3)对于一个具体问题能否应用几何概率公式计算事件的概率,关键在于将问题几何化,也即可根据问题的情况,选取合适的参数,建立适当的坐标系,在此基础上,将试验的每一结果一一对应于该坐标系中的一点,使得全体结果构成一个区域,且是可度量的.案例1某公共汽车站每隔5分钟有一辆车通过(假设每一辆车带走站上的所有乘客),乘客到达汽车站的任一时刻是任意的,求乘客候车时间不超过3分钟的概率. 【探究】这是一个与长度有关的几何概型问题.记A=“候车时间不超过3分钟”.以x表示乘客到车站的时刻,以t表示乘客到车站后来到的第一辆汽车的时刻,据题意,乘客必然在(t -5,t]内来到车站,于是D={x|t -5<x≤t}. 若乘客候车时间不超过3分钟,必须t -3≤x≤t,所以A={x|t -3≤x≤t}据几何概率公式得P(A)=53=的长度的长度D d =0.6规律总结(1)把所求问题归结到x轴上的一个区间内是解题的关键.然后寻找事件A发生的区域,从而求得d的测度.(2)本题也可这样理解:乘客在时间段(0,5]内任意时刻到达,等待不超过3分钟,则到达的时间在区间[2,5]内. 案例2甲、乙两艘轮船都要在某个泊位停靠6小时,假定它们在一昼夜的时间段中随机地到达,试求这两艘船中至少有一艘在停靠时必须等待的概率. 【探究】这是一类与面积有关的几何概型问题.设A={两艘船中至少有一艘停靠时等待}.建立平面直角坐标系,x轴表示甲船到达的时间,y轴表示乙船到达的时间,则(x,y)表示的所有结果是以24为边长的正方形.事件A发生的条件是0<x -y<6或0<y -x<6,即图中阴影部分,则D的面积为242,d的面积为242-182.∴P(A)=167242824222=-. 规律总结 (1)甲、乙两船都是在0—24小时内的任一时刻停靠,故每一个结果对应两个时间;分别用x,y轴上的数表示,则每一个结果(x,y)就对应于图中正方形内的任一点.(2)找出事件A发生的条件,并把它在图中的区域找出来,分别计算面积即可. (3)这一类问题我们称为约会问题. 案例3在长度为a的线段上任取两点将线段分成三段,求它们可以构成三角形的概率. 【探究】解法一:假设x、y表示三段长度中的任意两个,因为是长度,所以应有x >0,y>0且x+y<a,即x、y的值在以(0,a)、(a,0)和(0,0)为顶点的三角形内,如右图所示.要形成三角形,由构成三角形的条件知,x和y都小于,且x+y>(如图阴影部分).又因为阴影部分的三角形的面积占形成总面积的,故能够形成三角形的概率为.解法二:如右图,作等边三角形ABC,使其高为a,过各边中点作△DEF.△DEF的面积占△ABC的面积的.因为从△ABC内任意一点P到等边三角形三边的垂线段长度之和等于三角形的高(由等积法易知),为了使这三条垂线线段中没有一条的长度大于,P点必须落在阴影部分即△DEF内(DM=).所以符合题意要求的情况占全部情况的,即所求概率为.解法三:如下图,作一边长为a的正方形,过相对两边的中点作两条斜线,阴影部分占整个正方形面积的.令AB上距离底边为x的点表示第一个截点的位置,则第二个截点一定落入阴影部分(y<,z<).因此,符合题意要求的情况占全部情况的.所以所求的概率为.规律总结解决此题的关键在于弄清三角形三边长之间的关系,由题意易知,三边长之和为定值a,且三边长分别小于a2.把握住了这两点,就能使问题准确获解.3.随机数的产生与随机模拟方法(1)随机数的产生利用计算器或计算机产生[0,1]上的均匀随机数x1=RAND,然后利用伸缩和平移变换,x=x1*(b-a)+a,就可以得到[a,b]内的均匀随机数,试验的结果是[a,b]上的任何一个实数,并且任何一个实数都是等可能出现的.(2)随机模拟试验用频率估计概率时,需做大量的重复试验,费时费力,并且有些试验具有破坏性,有些试验无法进行,因而随机模拟试验就成为一种重要的方法,它可以在短时间内多次重复.用计算器或计算机模拟试验,首先需要把实际问题转化为可以用随机数来模拟试验结果的概率模型,也就是怎样用随机数刻画影响随机事件结果的量.我们可以从以下几个方面考虑:①由影响随机事件结果的量的个数确定需要产生的随机数组数.如长度型、角度型(一维)只用一组,面积型(二维)需要用两组.②由所有的基本事件总体(基本事件空间)对应区域确定产生随机数的范围.③由事件A发生的条件确定随机数所应满足的关系式.(3)随机模拟的基本思想是用频率近似于概率,频率可由试验获得.案例4 取一根长度为3m的绳子,拉直后在任意位置剪断,用随机模拟法估算剪得两段的长都不小于1 m的概率有多大?【探究】在任意位置剪断绳子,则剪断位置到一端点的距离取遍[0,3]内的任意实数,并且每一个实数被取到的可能性相等,因此在任意位置剪断绳子的所有结果(即基本事件)对应[0,3 ]上的均匀随机数,其中[1,2]上的均匀随机数就表示剪断位置与端点 的距离在[1,2]内,也就是剪得两段的长都不小于1 m,这样取得的[1,2]内的随机数个数与[0,3]内的随机数个数之比就是事件A 发生的频率.【解析】记事件A={剪得两段的长都不小于1 m}.①利用计算器或计算机产生一组0到1区间的均匀随机数a1=RAND.②经过伸缩变换,a=a1*3.③统计出试验总次数N和[1,2]内的随机数个数N1.④计算频率fn (A)=N1/N即为概率P(A)的近似值.规律总结用随机模拟法估算几何概率的关键是把事件A及基本事件空间对应的区域转化为随机数的范围.案例5利用随机模拟方法计算图中阴影部分(曲线y=2x与x轴,x=±1围成的部分)的面积.【探究】在坐标系中画出正方形,用随机模拟的方法可以求出阴影部分面积与正方形面积之比,从而求得阴影部分面积的近似值.【解析】(1)利用计算机产生两组[0,1]上的均匀随机数,a 1=RAND,b1=RAND.(2)进行平移和伸缩变换,a=2a1-1,b=b1*2,得到一组[-1,1]上的均匀随机数和一组[0,2]上的均匀随机数.(3)统计试验总次数N和落在阴影内的次数N1(满足条件b<2a的点(a,b)).(4)计算频率,即为点落在阴影部分的概率的近似值.(5)用几何概率公式求得点落在阴影部分的概率为P=.∴≈.∴S≈即为阴影部分面积的近似值.规律总结解决本题的关键是利用随机模拟法和几何概率公式分别求得几何概率,然后通过方程求得阴影部分面积的近似值.活学巧用1.判断下列概率模型是古典概型还是几何概型?(1)如下图,转盘上有8个面积相等的扇形.转动转盘,求转盘停止转动时指针落在阴影部分的概率.(2)在500 mL的水中有一个草履虫,现从中随机取出2mL水样放到显微镜下观察,求发现草履虫的概率.解析:以上2个试验的可能结果个数无限,所以它们都不是古典概型.而是几何概型.2.利用几何概型求概率应注意哪些问题?解:应该注意到:(1)几何型适用于试验结果是无穷多且事件是等可能发生的概率类型;(2)几何概型主要用于解决与长度、面积、体积有关的题目;(3)公式为P(A)=;(4)计算几何概率要先计算基本事件总体与事件A包含的基本事件对应的长度(角度、面积、体积).3.有一杯1 L的水,其中含有1个细菌,用一个小杯从这杯水中取出0.1L水,则小杯水中含有这个细菌的概率为( )A.0B.0.1C.0.01D.1解析:1个细菌在1L的水中,在每一个位置都是可能的,那么只有这个细菌在这0.1L的水中,这件事件才能发生.由几何概型公式得P(A)==0.1.答案:B4.如下图,如果你向靶子上射200支镖,大概有多少支镖落在红色区域(颜色较深的区域)( )A.50B.100C.150D.200解析:这是几何概型问题.这200支镖落在每一点的可能性都是一样的,对每一支镖来说,落在红色区域的概率P=,每一支镖落在红色区域的概率都是12,则200支镖落在红色区域的概率还是,则落在红色区域的支数=200支×=100支.答案:B5.如下图,假设你在每个图形上随机撒一粒黄豆,则它落到阴影部分的概率分别为_____________________,___________________.解析:这是几何概型问题,在平面上随机撒一粒黄豆,那么黄豆既可能落在三角形内,也可能落在圆内空白区域,并且落在每一点的可能性是一样的,只有落在三角形内才说明事件A发生.①P(A)==.②P(A)==.答案:6.一个路口的红绿灯,红灯亮的时间为30秒,黄灯亮的时间为5秒,绿灯亮的时间为40秒.当你到达路口时,看见下列三种情况的概率各是多少?(1)红灯;(2)黄灯;(3)不是红灯.解:在75秒内,每一时刻到达路口的时候是等可能的,属于几何概型.(1)P==;(2)P==;(3)P===.7.在线段[0,3]上任取一点,则此点坐标不小于2的概率是( )A. B. C. D.解析:在线段[0,3]上任取一点的可能性是相等的,若在其上任意取一点,此点坐标不小于2,则该点应落在线段[2,3]上.所以,在线段[0,3]上任取一点,则此点坐标不小于2的概率应是线段[2,3]的长度与线段[0,3]的长度之比,即为.答案:A8.圆O有一内接正三角形,向圆O随机投一点,则该点落在内接正三角形内的概率是_______.解析:向圆内投点,所投的点落在圆形区域内任意一点的可能性相等,所以本题的概率模型是几何概型.向圆O随机投一点,则该点落在内接正三角形内的概率应为正三角形的面积与圆的面积的比.答案:9.假设你家订了一份报纸,送报人可能在早上6:30—7:30之间把报纸送到你家,你父亲离开家去工作的时间在早上7:00—8:00之间,问你父亲在离开家之前能得到报纸(称为事件A)的概率是多少?解析:如下图所示,正方形区域内任取一点的横坐标表示送报人到达的时间,纵坐标表示父亲离开家去工作的时间.假设随机试验落在正方形内任何一点是等可能的,所以符合几何概型的条件,根据题意,只要点落到阴影部分,就表示父亲在离开家前得到报纸,即事件A发生,所以P(A)==87.5%.10.如右图所示,在直角坐标系内,射线OT落在60°的终边上,任作一条射线OA,求射线OA落∠xOT内的概率.分析:以O为起点作射线OA是随机的,因而射线OA落在任何位置都是等可能的,落在∠xOT内的概率只与∠xOT的大小有关,符合几何概型的条件.解:设事件A“射线OA落在∠xOT内”.事件A的角度是60°,区域D的角度是360°,所以,由几何概率公式得P(A)=.11.甲、乙两辆货车停靠站台卸货的时间分别是6小时和4小时,用随机模拟法估算有一辆货车停靠站台时必须等待一段时间的概率.解析:设事件A:“有一辆货车停靠站台时必须等待一段时间”.(1)利用计算器或计算机产生两组0到1区间的均匀随机数,x1=RAND,y1=RAND.(2)经过伸缩变换,x=x1*24,y=y1*24得到两组[0,24]上的均匀随机数.(3)统计出试验总次数N和满足条件-4≤x-y≤6的点(x,y)的个数N1.(4)计算频率fn(A)=,即为概率P(A)的近似值.12.如右图,在长为4宽为2的矩形中有一以矩形的长为直径的半圆,试用随机模拟法近似计算半圆面积,并估计π值.解析:设事件A:“随机向矩形内投点,所投的点落在半圆内”.(1)利用计算机或计算机产生两组0到1区间的均匀随机数,x1=RAND,y1=RAND.(2)经过伸缩平移变换,x=x1*4-2,y=y1*2.(3)统计出试验总数N和满足条件x2+y2<4的点(x,y)的个数N1.(4)计算频率fn(A)=,即为概率P(A)的近似值.半圆的面积为S1=2π,矩形的面积为S=8.由几何概型概率公式得P(A)=,所以=.所以即为π的近似值.13.利用随机模拟法近似计算右图中阴影部分(曲线y=log3x与x=3及x轴围成的图形)的面积.解析:设事件A:“随机向矩形内投点,所投的点落在阴影部分”.(1)利用计算器或计算机产生两组0到1之间的均匀随机数,x1=RAND,y1=RAND.(2)经过伸缩平移变换,x=x1*3,y=y1*3.得到两组[0,3]的均匀随机数.(3)统计出试验总次数N和满足条件y<log3x的点(x,y)的个数N1.(4)计算频率fn(B)=,即为频率P(A)的近似值.设阴影部分的面积为S,正方形的面积为9,由几何概率公式得P(A)=.所以=,故S=即为阴影部分面积的近似值.。