统计学计算例题及答案
《统计学》计算题型与参考答案

《统计学》计算题型(第二章)1.某车间40名工人完成生产计划百分数(%)资料如下:90 65 100 102 100 104 112 120 124 98110 110 120 120 114 100 109 119 123 107110 99 132 135 107 107 109 102 102 101110 109 107 103 103 102 102 102 104 104要求:(1)编制分配数列;(4分)(2)指出分组标志及其类型;(4分)(3)对该车间工人的生产情况进行分析。
(2分)解答:(1)(2类型:数量标志(3)从分配数列可以看出,该计划未能完成计划的有4人,占10%,超额完成计划在10%以内的有22人,占55%,超额20%完成的有7人,占17.5%。
反映该车间,该计划完成较好。
(第三章)2.2005年9份甲、乙两农贸市场某农产品价格和成交量、成交额资料如下:解答:(1)x 甲=∑∑m x m 1=248.416.36.314.24.21246.34.2⨯+⨯+⨯++=30/7=4.29(元)x 乙=∑∑fxf =12418.426.344.2++⨯+⨯+⨯=21.6/7=3.09(元)(2)原因分析:甲市场在价格最高的C 品种成交量最高,而乙市场是在最低的价格A 品种成交量最高,根据权数越大其对应的变量值对平均数的作用越大的原理,可知甲市场平均价格趋近于C ,而乙市场平均价格却趋近于A ,所以甲市场平均价格高于乙市场平均价格。
(第三章)3.甲、乙两企业产量资料如下表:工人人数比重(%)产量(件)甲企业 乙企业 100以下 2 4 100-110 8 5 110-120 30 28 120-130 35 31 130-140 20 25 140-150 3 4 150以上 2 3 合 计 100 100要求:(1)分别计算甲、乙两企业的平均产量?(5分)(2)计算有关指标比较两企业职工的平均产量的代表性。
《统计学原理》计算题及答案

《统计学原理》计算题及答案第四章1、某生产车间30名工人日加工零件数(件)如下:30 26 42 41 36 44 40 37 37 25 45 29 43 31 36 36 49 34 47 33 43 38 42 32 34 38 46 43 39 35要求:(1)根据以上资料分成如下几组:25-30,30-35,35-40,40-45,45-50, 计算出各组的频数和频率,整理编制次数分布表。
(2)根据整理表计算工人生产该零件的平均日产量。
答 案:(1)40名工人日加工零件数次数分布表为:(6分)(2)平均日产量17.3830==∑=f x (件) (4分) 2、某班40名学生统计学考试成绩分别为:57 89 49 84 86 87 75 73 72 68 75 82 97 81 67 81 54 79 87 95 76 71 60 90 65 76 72 70 86 85 89 89 64 57 83 81 78 87 72 61学校规定:60分以下为不及格,60─70分为及格,70─80分为中, 80─90分为良,90─100分为优。
要求:(1)将该班学生分为不及格、及格、中、良、优五组,编制一张次数分配表。
(2)指出分组标志及类型;分组方法的类型;分析该班学生考试情况。
答 案:(1)40名学生成绩的统计分布表:(6分)2)分组标志为“成绩”,其类型是数量标志。
(1分)分组方法是变量分组中的组距分组,而且是开口式分组。
(1分)该班学生的考试成绩的分布呈两头小,中间大的“正态分布”形态。
(2分)3、 某厂三个车间一季度生产情况如下:根据以上资料计算:(1)一季度三个车间产量平均计划完成百分比。
(2)一季度三个车间平均单位产品成本。
答 案 产量平均计划完成百分比%81.10172073310.122005.13159.0198220315198==++++==∑∑x m m (5分) 平均单位成本75.1022031519822083151019815=++⨯+⨯+⨯==∑∑f xf (元/件) (5分)4、 某自行车公司下属20个企业,1999年甲种车的单位成本分组资料如下:试计算该公司1999年甲种自行车的平均单位成本。
统计学期末五种计算题题型(附答案)

统计学期末五种计算题题型(附答案)计算题题型:⼀、平均指标会⽐较平均数的代表性例1:甲、⼄两种不同⽔稻品种,分别在5个⽥块上试种,其中⼄品种平均亩产量是520公⽄,标准差是40.6公⽄。
甲品种产量情况如下:甲品种⽥块⾯积(亩)f 产量(公⽄/亩)x 1.21.11.00.90.8 600495445540420 要求:试研究两个品种的平均亩产量,以确定哪⼀个品种具有较⼤稳定性,更有推⼴价值??(2)因为7.81%<12.93%,所以⼄品种具有较⼤稳定性,更有推⼴价值? 1 2 3 4 5 6 7 8 9 10 产值(万元)x 350 340 350 380 360 340 330 350 370 390 计算⼄企业的⽉平均产值及标准差,并根据产值⽐较2007年前10个⽉甲⼄两企业的⽣产稳定性。
(2)因为4%<5.06%,所以甲企业⽣产更稳定例3:从10000只灯泡中随机不重复抽出100只,得如下资料:若规定使⽤寿命在3000⼩时以下为不合格产品。
使⽤寿命(⼩时)只数 3000以下3000-40004000-50005000以上 10305010 合计 100 计算该批灯泡的平均合格率,标准差和标准差系数计算200只电灯泡平均使⽤时间和标准差和标准差系数(2)组中值x(⼩时) f 2500350045005500 10305010 合计 100⼆、动态数列1、会计算序时平均数:分⼦为时期数列,分母为间断的间隔相等的时点数列2、会计算平均增长量和平均发展速度,移动平均数例1:3、已知某⼯业企业今年上半年各⽉⼯业总产出与⽉初⼯⼈数资料如下所⽰:⽉份 1 2 3 4 5 6 7 ⼯业总产出(万元) 57.3 59.1 58.1 60.3 61.8 62.7 63 ⽉初⼯⼈数(⼈) 205 230 225 210 220 225 230 要求:计算该企业平均劳动⽣产率。
(计算结果保留位⼩数)⽉份 1 2 3 4 商品销售额(万元) 120 143 289 290 ⽉初商品库存额(万元) 50 70 60 110 (1)企业第⼀季度⽉平均商品流转次数(2)第⼀季度的=2.633=7.89(次/⼀季度)三、抽样调查1、会计算简单随机抽样的平均数和成数的区间估计2、会计算简单随机抽样重复抽样条件下的样本容量n例1:⼀企业研制了某种新型电⼦集成电路,根据设计的⽣产⼯艺试⽣产了100⽚该集成电路泡,通过寿命测试试验得知这100⽚该集成电路的平均使⽤寿命为60000个⼩时,标准差为500个⼩时,要求以95.45%的概率保证程度(t=2)估计该集成电路平均使⽤寿命的区间范围。
统计学参考答案

综合指标1、某企业2006年产值超计划完成8%,比上年增长12%,试问产值计划规定比上期增长多少?又该企业甲产品单位成本计划在上年230元的水平上降低15元,实际上比上年降低了8%,试计算甲产品单位成本的计划完成程度。
%108%1%121=++x%7.31%108%121%=-+=x2要求计算表中空格数字,并直接填入表中。
3要求:1.计算该工业局的平均劳动生产率; 2.计算该工业局平均每个企业的产值。
该工业局的平均劳动生产率=10600000÷1400=7571.4(元/人)该工业局平均每个企业的产值=1060÷20=53(万元/人)5试分别计算男、女职业人员的总录用率,并比较两组说明各组和总录用率高低不同的原因。
男的总录用率=123÷600=20.5%女的总录用率=89÷500=17.8%6、某厂三个分厂同时生产甲产品,第一季度生产情况如下:一分厂实际产量为500件,刚好完成计划;二分厂实际产量为900件,仅完成计划的90%;三分厂实际产量为1160件,超额完成计划16%。
另外,一分厂单位成本为18元/件,二分厂单位成本为16元/件,三分厂单位成本为17元/件。
所以全厂超额2%完成甲产品产量计划,即(0+16%-10%)/3=2%;全厂甲产品平均单位成本为17元/件,即(18+16+17)/3=17元/件。
以上平均指标的计算是否正确?为什么?应该如何计算?全厂计划完成率=%4.10225002560%116/1160%90/9005001160900500==++++全厂平均单位成本=8.1625604312011609005001711601690018500==++⨯+⨯+⨯(元)7、2006年某月份A 农贸市场某农产品价格和成交量、成交额资料如下:试问哪一个市场农产品的平均价格较高?并说明原因。
甲市场平均价格=5.5÷4=1.375(元/斤)乙市场平均价格=5.3÷4=1.325(元/斤)8、已知某企业资料如下:试计算该企业平均计划完成百分比;平均计划完成百分比=435÷420=103.6%9、某车间有甲、乙两个生产组,甲组平均每个工人的日产量为36件,标准差为9.6件;要求:(1)计算乙组平均每个工人的日产量和标准差;(2)比较甲、乙两生产小组哪个组的日产量更有代表性?乙组平均每个工人的日产量=2950÷100=29.5(件)8075 =9乙组每个工人日产量的标准差=100甲村的平均亩产=675000÷2500=270(公斤)乙村的平均亩产=625000÷2500=250(公斤)时间数列分析要求:(1)编制第一季度各月劳动生产率的动态数列;(2)计算第一季度的月平均劳动生产率(3)计算第一季度的劳动生产率(2)计算第一季度的月平均劳动生产率=14524÷3=4841(元/人)(3)计算第一季度的劳动生产率=1220÷840=14524(元/人)2、某零售商店2006年上半年的零售额与库存额资料如下:单位:万元试计算第一季度和第二季度商品流转次数,上半年的周转次数。
统计学计算题例题及计算分析

(3)按95.45%的可靠程度估计该批零件的合格品数量区间范围。
解:已知N=5000件n=200件n1=188件z=2
(1)该批零件合格率从:p=n1/n=188/200=94%
∵σp2=p(1-p)=0.94*(1-0.94)=0.0564
4.1.某企业各月产品销售额和销售利润资料如下:
月份
产品销售额x(万元)
销售利润y(万元)
1
2
3
4
5
15
15
20
25
28
2
2.2
2.5
2.5
2.8
要求:(1)编制产品销售额与销售利润之间的直线回归方程;
(2)若6月份产品销售额为30万元时,试估计企业产品销售利润。
(列表计算所需数据资料,写出公式和计算过程,结果保留四位小数)
即直线回归方程为yc=1.3947+0.0488x
(2)把x=30万元代入直线回归方程,得
yc=1.3947+0.0488*30=2.8587(万元)
即该企业6月份销售额为30万元时,其产品销售利润为2.8587万元。
4.2.某地区2002年-2005年个人消费支出和收入资料如下:
年份
个人收入(亿元)
即全部农户中,户均月收入在6000元以上的户数所占比重的范围为12.04%~27.96%。
(3)户数下限=10000*12.04%=1204(户)
户数上限=10000*27.96%=2796(户)
即全部农户中,户均月收入在6000元以上的户数范围为1204~2796户。
3.2.某企业生产一种新的电子元件10000只,用简单随机不重复抽样方法抽取100只作耐用时间试验,试验得到的结果:平均寿命1192小时,标准差101.17小时,合格率88%;试在95%概率保证度下估计:
统计学计算题(有答案)

1、甲乙两班同时参加《统计学原理》课程的测试,甲班平均成绩为81分,标准差为9.5分,乙班的成绩分组资料如下:按成绩分组学生人数(人)60以下 460~70 1070~80 2580~90 1490~100 2计算乙班学生的平均成绩,并比较甲乙两班,哪个班的平均成绩更有代表性?2、某车间有甲乙两个生产组,甲组平均每个人的日产量为36件,标准差为9.6件,乙组工人产量资料如下:日产量(件)工人数(人)15 1525 3835 3445 13要求:(1)计算乙组平均每个工人的日产量和标准差(2)比较甲乙两生产小组的日产量更有代表性3、某商店1990年各月末商品库存额资料如下:(超级重点题目)月份 1 2 3 4 5 6 8 11 12 库存额60 55 48 43 40 50 45 60 68 又知1月1日商品库存额为63万元,试计算上半年,下半年和全年的平均商品库存额。
4、已知两种商品的销售资料如下:品名单位销售额2002比2001销售量增长(%)2001 2002电视台5000 8880 23自行车辆4500 4200 -7合计9500 13080要求:(1)计算销售量总指标(2)计算由于销售量变动消费者增加或减少的支出金额5、某商店两种商品的销售额和销售价格的变化情况如下:(万元)商品单位销售额1996比1995年销售价格提高(%)1995 1996甲米120 130 10乙件40 36 12要求:(1)计算两件商品销售价格总指标和由于价格变动对销售额的影响绝对值(2)计算销售量总指数,计算由于销售变动消费者增加或减少的支出金额6、某企业上半年产品量与单位成本资料如下:月份产量(千克)单位成本(元)1 2 732 3 723 4 714 3 735 4 696 5 68要求:(1)计算相关系数,说明两个变量相关的密切程度(2)配合回归方程,指出产量每增加1000件时,单位成本平均变动多少?7、根据企业产品销售额(万元)和销售利润率(%)资料计算出如下数据:(重点题目)n=7 ∑x=18090 ∑y=31.1 ∑2x=535500 ∑2y=174.15∑xy=9318要求:(1)确定以利润为因变量的直线回归方程(2)解释式中回归系数的经济含义8、某企业第二季度产品产量与单位成本资料如下:月份产量(千件)单位成本(元)4 3 735 4 696 5 68要求:(1)定量判断产量与单位成本间的相关程度(2)建立直线回归方程,并说明b的经济含义解:(1)所需计算数据见下表:月份产量单位成本45 634 57369 68916 25219276 340合计1221050835因为,,所以产量每增加1000件时,即增加1单位时,单位成本的平均变动是:平均减少2.5元。
统计学计算题例题及计算分析

μp=√σp2/n(1-n/N) =√0.16/100*(1-100/10000) =3.98%
△p=zμp=2*3.98%=7.96%
户数所占比重的下限=p-△p=20%-7.96%=12.04%
户数所占比重的上限=p+△p=20%+7.96%=27.96%
∴ μp=√σp2/n =√0.0736/100 =2.71%
△p=zμ
合格率下限=p-△p=92%-5.31%=86.69%
合格率上限=p+△p=92%+5.31%=97.31%
合格品数量下限=10000*86.69%=8669(只)
合格品数量上限=10000*97.31%=9731(只)
即在95%概率保证下,该新型灯泡合格率区间范围为86.69%~97.31%,合格品数量的区间范围为8669~9731只。
(1)这种新的电子元件平均寿命的区间范围;
(2)这种新的电子元件合格率的区间范围。
解:已知N=10000只n=100只x=1192小时σ=101.17小时p=88% z=1.96
(1)μx=√σ2/n(1-n/N) =√101.172/100*(1-100/10000) =10.07(小时)
△x=zμx=1.96*10.07=19.74(小时)
即全部农户中,户均月收入在6000元以上的户数所占比重的范围为12.04%~27.96%。
(3)户数下限=10000*12.04%=1204(户)
户数上限=10000*27.96%=2796(户)
即全部农户中,户均月收入在6000元以上的户数范围为1204~2796户。
3.2.某企业生产一种新的电子元件10000只,用简单随机不重复抽样方法抽取100只作耐用时间试验,试验得到的结果:平均寿命1192小时,标准差101.17小时,合格率88%;试在95%概率保证度下估计:
统计学原理计算题及参考答案

3.某地区历年粮食产量如下:1、某生产车间30名工人日加工零件数(件)如下: 30 26 42 41 36 44 40 37 37 25 45 29 43 31 36 36 49 34 47 33 43 38 42 32 34 38 46 43 39 35 要求:(1)根据以上资料分成如下几组:25—30,30—35,35—40,40—45,45—50,计算各组的频数和频率,编制次数分布表;(2) 根据整理表计算工人平均日产零件数。
(20分)解:(1)根据以上资料编制次数分布表如下:则工人平均劳动生产率为:17.38301145===∑∑fxf x(2)当产量为10000件时,预测单位成本为多少元?(15分)xbx a y n x b n y a x x n y x xy n b c 5.2808010703125.232105.26151441502520250512503210128353)(222-=+==+=⨯+=-=-=-=--=-⨯⨯-⨯=--=∑∑∑∑∑∑∑因为,5.2-=b ,所以产量每增加1000件时,即x 增加1单位时,单位成本的平均变动是:平均减少2.5元 (2)当产量为10000件时,即10=x 时,单位成本为55105.280=⨯-=c y 元>课程的测试,甲班平均成绩为81分,标准差为9.5分;乙班的成绩分组资料如下:计算乙班学生的平均成绩,并比较甲.乙两班哪个班的平均成绩更有代表性?解:乙班学生的平均成绩∑∑=f xf x ,所需的计算数据见下表:75554125===∑∑fxf x (比较甲.乙两班哪个班的平均成绩更有代表性,要用变异系数σν的大小比较。
)甲班%73.11815.9===xσνσ 从计算结果知道,甲班的变异系数σν小,所以甲班的平均成绩更有代表性。
%65.207549.1549.152405513200)(2======-=∑∑x ffx x σνσσ计算(1)产品产量总指数及由于产量增长而增加的总成本.(2)总成本指数及总成本增减绝对额. 解;(1)产品产量总指数为: %42.1112102342106351120605010060%10550%102100%12000==++=++⨯+⨯+⨯=∑∑qp qkp 由于产量增长而增加的总成本:∑∑=-=-242102340000qp q kp(2)总成本指数为:%62.10721022660501006046120011==++++=∑∑qp qp总成本增减绝对额:∑∑=-=-16210226011qp q p计算第二季度平均每月商品流转次数和第二季度商品流转次数. 解:商品流转次数c=商品销售额a/库存额bba c =商品销售额构成的是时期数列,所以67.23837163276240200==++==∑na a 库存额b 构成的是间隔相等的时点数列,所以33.533160327545552453224321==+++=+++=b b b b b 第二季度平均每月商品流转次数475.433.5367.238===ba c 第二季度商品流转次数3*4.475=13.425解:甲市场的平均价格为:04.123270033220027001507001080007350011009007001100137900120700105==++=++⨯+⨯+⨯==∑∑fxf x乙市场的平均价格为74.1172700317900700800120031790013795900120960001051260009590096000126000==++=++++==∑∑xM M x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算题例题及答案:
1、某校社会学专业同学统计课成绩如下表所示。
社会学专业同学统计课成绩表
学号成绩学号成绩学号成绩101023 76 101037 75 101052 70 101024 91 101038 70 101053 88 101025 87 101039 76 101054 93 101026 78 101040 90 101055 62 101027 85 101041 76 101056 95 101028 96 101042 86 101057 95 101029 87 101043 97 101058 66 101030 86 101044 93 101059 82 101031 90 101045 92 101060 79 101032 91 101046 82 101061 76 101033 80 101047 80 101062 76 101034 81 101048 90 101063 68 101035 80 101049 88 101064 94 101036 83 101050 77 101065 83 要求:
(1)对考试成绩按由低到高进行排序,求出众数、中位数和平均数。
(2)对考试成绩进行适当分组,编制频数分布表,并计算累计频数和累计频率。
答案:
(1)考试成绩由低到高排序:
62,66,68,70,70,75,76,76,76,76,76,77,78,79,
80,80,80,81,82,82,83,83,85,86,86,87,87,88,
88,90,90,90,91,91,92,93,93,94,95,95,96,97,
众数:76
中位数:83
平均数:
=(62+66+……+96+97)÷42
=3490÷42
=83.095
(2)
按成绩
分组频数频率(%)
向上累积向下累积
频数频率(%) 频数频率(%)
60-69 3 7.143 3 7.143 42 100.000 70-79 11 26.190 14 33.333 39 92.857 80-89 15 35.714 29 69.048 28 66.667
90-99 13 30.952 42 100.000 13 30.952
2、为研究某种商品的价格(x)对其销售量(y)的影响,收集了12个地区的有关数据。
通过分析得到以下结果:
方差分析表
变差来源SS df MS F Sig.
回归 A B C D 0.000 残差205158.07 E F ——总计1642866.67 11 ———要求:
(1)计算上面方差分析表中A、B、C、D、E、F处的值。
(2)商品销售量的变差中有多少是由价格的差异引起的?
(3)销售量与价格之间的相关系数是多少?
答案:
(1)方差分析表:
变差来源SS df MS F Sig.
回归1437708.6011437709.6070.0780.000
残差205158.07 1020515.81——
总计1642866.67 11 ———
(2)
即商品销售量的变差中有86.6%是由价格引起的。
(3)
3、某公司招聘职员时,要求对职员进行两项基本能力测试。
已知,A项测试中平均分
数为90分,标准差是12分;B考试中平均分数为200分,标准差为25分。
一位应试者在
A项测试中得了102分,在B项测试中得了215分。
若两项测试的成绩均服从正太分布,
该位应试者哪一项测试更理想?
答案:
该测试者在A项测试中比平均分高出1个标准差,而在B项测试中比平均分高出0.6个标准差。
因而,可以说该测试者A项测试比较理想。
4、某公司欲了解广告费用x对销售量y的影响,收集了20个地区的数据,并对x、y 进行线性回归分析,得到:方程的截距为364,回归系数为 1.42,回归平方和SSR=1602708.6,残差平方和SSE=40158.07。
要求:
(1)写出广告费用y与销售量程x之间的线性回归方程。
(2)假如广告费用投入50000元,根据回归方程估计商品销售量。
(3)计算判定系数R2,并解释它的意义。
答案:
(1)y=364+1.42x
(2)当x=50000时,y=364+1.42×50000=71364
(3)
= 1602708.6÷(1602708.6+40158.07)
= 1602708.6÷1642866.67
=0.97556
表明在商品销售量的总变差中,有97.6%可以由回归方程解释,说明回归方程的拟合程度很高。
5、为估计每个网络用户每天上网的平均时间是多少,抽取了225个网络用户的简单随机样本,得到样本均值为 6.5个小时,样本标准差为 2.5个小时。
(1)试用95%的置信水平,计算网络用户每天平均上网时间的置信区间。
(2)在所调查的225个网络用户中,年龄在20岁以下的用户为90个。
以95%的置信水平,计算年龄在20岁以下的网络用户比例的置信区间。
注:
答案:
(1)已知:
网络用户每天平均上网时间的95%的置信区间为:
即(6.17,6.83)(2分)
(2)样本比例:
年龄在20岁以下的网络用户比例的95%的置信区间为:
即(33.6%,46.4%)
6、某企业使用3种方法组装一种新的产品,为确定哪种方法生产效率最高,
随机抽取30名工人,并指定每人使用其中的一种方法。
通过对每个工人生产的产品数进行分析得到下面的方差分析表。
请完成方差分析表。
变差来源SS df MS F Sig.
组间210 0.000 组内3836 ——
总计29 ———
答案:
变差来源SS df MS F Sig.
组间4202210 1.4780.000 组内3836 27142.07——
总计425629 ———
7、某校社会学专业共有两个班级。
期末考试时,一班同学社会学理论平均成绩为86分,标准差为12分。
二班同学成绩如下所示。
二班同学社会学理论成绩分组数据表
按成绩分组(分)人数(个)
60分以下 2
60~70 7
70~80 9
80~90 7
90~100 5
合计30
要求:
(1)计算二班同学考试成绩的均值和标准差。
(2)比较一班和二班哪个班成绩的离散程度更大?(提示:使用离散系数)
答案:
(1)均值:
=(55×2+65×7+75×9+85×7+95×5)÷30
=2310÷30
=77
方差:
÷30 =4080÷30
=136
标准差:
(2)一班考试成绩的离散系数为:
=12÷86=0.1395
二班考试成绩的离散系数为:
=11.66÷77=0.1515
,所以说一班成绩的离散程度小于二班。
8、某调查公司研究出租司机每天收入(元)与行驶里程(公里)之间的关系。
对30位出租车司机进行调查,并根据每天的收入y、行驶里程x进行回归,得到:方程的截距为162,回归系数为0.6,回归平方和SSR=2600,残差平方和SSE=513。
要求:(1)写出每天的收入y与行驶里程x之间的线性回归方程。
(2)假如某司机某天行驶了300公里,根据回归方程估计他该天的收入。
(3)计算判定系数R2,并解释它的意义。
答案:
(1)回归方程为:
y=162+0.6x
(2)当x=300时,
y=162+0.6×300=342(元)
(3)判定系数
=2600÷(2600+513)
=0.8352
表明在每天收入的总变差中,有83.52%可以由回归方程解释,说明回归方程的拟合程
度很高。