高二数学3月月考试题 理2

合集下载

2021-2022学年四川省内江市资中县球溪高级中学高二下学期3月月考数学(理)试题(解析版)

2021-2022学年四川省内江市资中县球溪高级中学高二下学期3月月考数学(理)试题(解析版)

2021-2022学年内江市球溪高级中学高二下学期3月月考数学(理)试题一、单选题1.下列语句是命题的是( )①三角形的内角和等于180︒;②23>;③2x >;④这座山真险啊! A .①② B .①③ C .②③ D .③④【答案】A【分析】能够判断真假的陈述语句是命题,据此判断即可.【详解】①三角形的内角和等于180︒是命题;②23>是命题;③2x >不能判断真假,故不是命题;④这座山真险啊!不是陈述句,因此不是命题. 故选:A.2.过椭圆225x + 29y =1左焦点F 1引直线l 交椭圆于A 、B 两点,F 2是椭圆的右焦点,则△ABF 2的周长是( ) A .20 B .18 C .10 D .16【答案】A【分析】根据椭圆的定义求得正确选项. 【详解】依题意5a =,根据椭圆的定义可知,三角形2ABF 的周长为420a =. 故选:A3.下列有关命题的说法错误的是( )A .()2lg(23)f x x x =-++的增区间为(1,1)-B .“1x =”是“2x -4x +3=0”的充分不必要条件C .若集合{}2440A x kx x =++=中只有两个子集,则1k =D .对于命题p :.存在0x R ∈,使得20010x x ++<,则⌝p :任意x ∈R ,均有210x x ++≥【答案】C【分析】A.利用复合函数的单调性判断;B.利用充分条件和必要条件的定义判断;C.由方程2440kx x ++=有一根判断;D.由命题p 的否定为全称量词命题判断. 【详解】A.令223t x x =-++,由2230x x -++>,解得13x ,由二次函数的性质知:t 在(1,1)-上递增,在(1,3)上递减,又lg y t =在()0,∞+上递增,由复合函数的单调性知:()2lg(23)f x x x =-++在(1,1)-上递增,故正确;B. 当1x =时,2x -4x +3=0成立,故充分,当2x -4x +3=0成立时,解得1x =或3x =,故不必要,故正确;C.若集合{}2440A x kx x =++=中只有两个子集,则集合只有一个元素,即方程2440kx x ++=有一根,当0k =时,1x =-,当0k ≠时,16160k ∆=-=,解得1k =,所以0k =或1k =,故错误;D.因为命题p :.存在0x R ∈,使得20010x x ++<是存在量词命题,则其否定为全称量词命题,即⌝p 任意x ∈R ,均有210x x ++≥,故正确; 故选:C4.已知命题:p 垂直于同一平面的两直线平行;命题:q 平行于同一平面的两直线平行.则下列命题中正确的是( ) A .()()p q ⌝∧⌝ B .p q ∧ C .()p q ⌝∨ D .p q ∨【答案】D【分析】判断命题p 、q 的真假,利用复合命题的真假可得出合适的选项. 【详解】垂直于同一平面的两直线平行,命题p 为真命题, 平行于同一平面的两直线平行、相交或异面,命题q 为假命题, 所以,()()p q ⌝∧⌝、p q ∧、()p q ⌝∨均为假命题,p q ∨为真命题. 故选:D.5.已知椭圆C :2212516x y +=的左、右焦点为1F ,2F ,上顶点为P ,则( )A .12PF F △为锐角三角形B .12PF F △为钝角三角形C .12PF F △为直角三角形D .P ,1F ,2F 三点构不成三角形【答案】A【分析】根据题意求得1212,,PF PF F F ,要判断12PF F △的形状,只需要看12F PF ∠是什么角即可,利用余弦定理判断,从而可得结论.【详解】解:由椭圆C :2212516x y +=,得22225,16,9a b c ===,则()()()123,0,3,0,0,4F F P -, 则12125,6PF PF F F ===, 所以1221PF F PF F ∠=∠且为锐角,因为2221212252536140PF PF F F +-=+-=>, 所以12F PF ∠为锐角, 所以12PF F △为锐角三角形. 故选:A.6.已知椭圆2222135x y m n+=和双曲线2222123x y m n -=有公共的焦点,那么双曲线的渐近线方程为 A .15x y = B .15y = C .3x y = D .3y x = 【答案】D【详解】试题分析:∵椭圆和双曲线有公共焦点,∴22223m 5n 2m 3n -=+,整理得22m 8n =,∴双曲线的渐近线方程为y=223n 3132m 28x x ±=±⨯=,故选D .【解析】本题主要考查双曲线、椭圆的标准方程及几何性质.点评:基础题,先根据椭圆方程和双曲线方程分别表示出c ,令二者相等即可求得m 和n 的关系,进而利用双曲线的方程求得双曲线的渐近线方程.7.双曲线221916x y -=的左、右焦点分别为F 1,F 2,点P 在双曲线上,下列结论不正确的是( )A .该双曲线的离心率为53B .该双曲线的渐近线方程为43y x =±C .点P 到两渐近线的距离的乘积为14425D .若PF 1⊥PF 2,则△PF 1F 2的面积为32 【答案】D【分析】根据双曲线的离心率、渐近线、点到直线距离公式、三角形的面积等知识来确定正确答案.【详解】由题意可知,a =3,b =4,c =5,22169169144x y -=⨯=, 故离心率e 53=,故A 正确;由双曲线的性质可知,双曲线线221916x y -=的渐近线方程为y =±43x ,故B 正确;设P (x ,y ),则P 到两渐近线的距离之积为22169434316914455252525x y x y x y --+⨯⋅===,故C 正确;若PF 1⊥PF 2,则△PF 1F 2是直角三角形,由勾股定理得2221212||||100PF PF F F +==,由双曲线的定义可得|PF 1|﹣|PF 2|=2a =6(不妨取P 在第一象限),∴2221212()||PF PF PF PF -=+-2|PF 1|⋅|PF 2|=100﹣2|PF 1|⋅|PF 2|,解得|PF 1|⋅|PF 2|=32,可得12121162PF F S PF PF =⨯⨯=,故D 错误. 故选:D8.已知m 是2与8的等比中项,则圆锥曲线221yx m-=的离心率等于( )A 5B 2C 53D 35【答案】C【分析】由等比中项定义求得m ,根据m 的取值确定曲线是椭圆还是双曲线,然后计算离心率.【详解】由已知228m =⨯,4m =±,当4m =-时,方程为2214y x +=,曲线为椭圆, 224,1a b ==,413c -3e =当4m =时,方程为2214y x -=,曲线为双曲线,221,4a b ==,415c =+=为5e = 故选:C .9.已知O 为坐标原点,设F 1,F 2分别是双曲线x 2-y 2=1的左、右焦点,P 为双曲线左支上任意一点,过点F 1作∠F 1PF 2的平分线的垂线,垂足为H ,则|OH |=( ) A .1 B .2 C .4 D .12【答案】A【分析】利用几何关系结合双曲线定义,以及中位线性质可得. 【详解】如图所示,延长F 1H 交PF 2于点Q ,由PH 为∠F 1PF 2的平分线及PH ⊥F 1Q ,易知1PHF PHQ ∽,所以|PF 1|=|PQ |.根据双曲线的定义,得|PF 2|-|PF 1|=2,即|PF 2|-|PQ |=2, 从而|QF 2|=2.在△F 1QF 2中,易知OH 为中位线,则|OH |=1. 故选:A.10.已知函数()f x 和()g x 的定义域均为[],a b ,记()f x 的最大值为1M ,()g x 的最大值为2M ,则使得“12M M >”成立的充要条件为( ) A .[]1,x a b ∀∈,[]2,x a b ∀∈,()()12f x g x > B .[]1,x a b ∀∈,[]2,x a b ∃∈,()()12f x g x > C .[]1,x a b ∃∈,[]2,x a b ∀∈,()()12f x g x > D .[],x a b ∀∈,()()f x g x > 【答案】C【分析】先解读选项ABC ,D 选项是12M M >成立的充分不必要条件,再判断得解. 【详解】解:A 选项表述的是()f x 的最小值大于()g x 的最大值; B 选项表述的是()f x 的最小值大于()g x 的最小值;C 选项表述的是()f x 的最大值大于()g x 的最大值成立的充要条件;D 选项是12M M >成立的充分不必要条件. 故选:C11.已知椭圆C :()222210x y a b a b +=>>的短轴长为2,上顶点为A ,左顶点为B ,1F ,2F 分别是C 的左、右焦点,且1F AB 23-P 为C 上的任意一点,则1211PF PF +的取值范围为( )A .[]1,2B .2,3⎡⎣C .2,4⎡⎤⎣⎦D .[]1,4【答案】D【分析】由已知和面积得到2a =,3c 1211PF PF +进行化简,配方求最值. 【详解】由已知的22b =,故1b =.∵1F AB 23-∴()1232a c b --=,∴23a c -=又∵222()()1a c a c a c b -=-+==, ∴2a =,3c =∴()2212121111||112444PF PF a PF PF PF PF PF PF PF PF ++===--+, 又12323PF ≤,∴2211114(2)44PF PF PF ≤-+=--+≤, ∴121114PF PF ≤+≤.∴1211PF PF +的取值范围为[]1,4. 故选:D.【点睛】本题主要考查椭圆的定义、椭圆的几何性质,以及配方求最值的问题. 12.已知O 为坐标原点,A ,B 分别是双曲线22:1169x y C -=的左、右顶点,M 是双曲线C 上不同于A ,B 的动点,直线AM ,BM 分别与y 轴交于点P ,Q ,则OP OQ ⋅=( ) A .16 B .9 C .4D .3【答案】B【分析】设动点0(M x ,0)y ,由双曲线方程可得A ,B 的坐标,求出AM ,BM 所在直线方程,可得P 与Q 的坐标,求得202016·16y OP OQ x =-,再由动点M 在双曲线22:1169x y C -=上,得2200169(16)y x =-,则||||OP OQ ⋅的值可求. 【详解】解:设动点0(M x ,0)y ,由双曲线方程22:1169x y C -=得(4,0)A -,(4,0)B , 则004AM y k x =+,004BM y k x =-,所以直线AM 的方程为00(4)4y y x x =++,直线BM 的方程为00(4)4y y x x =--, 由此得004(0,)4y P x +,004(0,)4y Q x --, 所以200020004416··()4416y y y OP OQ x x x =-=+--. 因为动点M 在双曲线22:1169x y C -=上,所以22001169x y -=,所以2200169(16)y x =-,则22002200169(16)·91616y x OP OQ x x -===--. 故选:B. 二、填空题13.命题“9的平方根是3”是________命题(选填“真”或“假”). 【答案】假【分析】根据9的平方根是3±判断即可.【详解】解:因为9的平方根是3±,所以命题“9的平方根是3”是假命题. 故答案为:假14.经过点(1,3)A -,并且对称轴都在坐标轴上的等轴双曲线的方程为 . 【答案】22188y x -=【详解】设双曲线的方程为:22x y λ-=,将(1,3)A -代入可得,8λ=-,所以等轴双曲线的方程为:22188y x -=.15.若斜率为k 的直线l 与椭圆22:132x y C +=交于A ,B 两点,且AB 的中点坐标为11,23⎛⎫⎪⎝⎭,则k =___________. 【答案】-1【分析】根据给定条件设出点A ,B 的坐标,再借助“点差法”即可计算得解. 【详解】依题意,线段AB 的中点11,23⎛⎫⎪⎝⎭在椭圆C 内,设()11,A x y ,()22,B x y ,由22112222132132x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩两式相减得:()()()()12121212032x x x x y y y y -+-++=, 而121221,3x x y y +=+=,于是得1212033x x y y --+=,即12121y y k x x -==--, 所以k =1-. 故答案为:1-16.城市的许多街道是相互垂直或平行的,因此,乘坐出租车往往不能沿直线到达目的地,只能按直角拐弯的方式行走.在平面直角坐标系中,定义()1212,d P Q x x y y =-+-为两点()11,P x y 、()22,Q x y 之间的“出租车距离”.给出下列四个结论:①若点()0,0O ,点()1,2A ,则(),3d O A =;②到点()0,0O 的“出租车距离”不超过1的点的集合所构成的平面图形面积是π;③若点()1,2A ,点B 是圆221x y +=上的动点,则(),d A B 的最大值是32+.其中,所有正确结论的序号是______. 【答案】①③【分析】理解“出租车距离”的定义,根据定义写出有关代数式即可求解. 【详解】对于①,根据定义(),10203d O A =-+-= 故正确; 对于②,根据定义,设目的地为(),A x y , 则(),001d O A x y x y =-+-=+≤…① ,当A 点在第一象限时,①式即为1x y +≤ ,第二象限时为1x y -+≤ , 以此类推得如下图形(阴影部分):其面积为:12222⨯⨯= ,故错误;对于③,设(),B x y ,(),11d A B x y =-+- ,∵B 在圆221x y += 上,∴1,1x y ≤≤ ,(),123d A B x y x y =-+-=-- ,()3,y x d A B =-+- ,为在区域为221x y +=,目标函数为(),3d A B x y =--求最大值的 线性规划问题,, 如下图:显然当直线()3,y x d A B =-+-为圆221x y +=在第三象限的切线时,(),d A B 最大, 为32,故正确; 故答案为:①③. 三、解答题17.(1)求焦点在x 轴上,长轴长为6,焦距为4的椭圆标准方程; (2)求离心率2e =()5,3M -的双曲线标准方程. 【答案】(1)22195x y +=;(2)2211616x y -= 【分析】(1)根据题意直接得出,a c 后求解 (2)待定系数法设双曲线方程,列方程组求解【详解】(1)由题意得3,2a c ==,故2945b =-=,椭圆标准方程为22195x y +=(2)①若双曲线焦点在x 轴上,设其方程为22221x y a b-=,由题意2c a =而222c a b =+故a b =,由222591a b a b⎧-=⎪⎨⎪=⎩解得2216a b ==,故双曲线标准方程为2211616x y -= ②若双曲线焦点在y 轴上,设其方程为22221y xa b-=,同理a b =,此时将()5,3M -代入后方程无解综上,双曲线标准方程为2211616x y -= 18.已知命题p :函数()3log f x x a =-在区间1,99⎛⎫⎪⎝⎭上没有零点;命题q :[]00,2x ∃∈,使得30035x x a -+-<0成立.(1)若p 和q 均为真命题,求实数a 的取值范围;(2)若p 和q 其中有一个是真命题,另外一个是假命题,求实数a 的取值范围. 【答案】(1)()3,+∞;(2)(][],22,3-∞-⋃.【分析】先求出当命题p 为真时,解得2a ≤-或2a ≥;再求出当命题q 为真,解得3a >.(1)先判断命题p ,q 均为真命题,再求出实数a 的取值范围为(3,)+∞;(2)先判断p ,q 一真一假,最后实数a 的取值范围为(,2][2,3]a ∈-∞-. 【详解】(1)函数()f x =3log x a -在区间1,99⎛⎫ ⎪⎝⎭上单调递增,p 为真命题∴()f x =3log x a -在区间1,99⎛⎫⎪⎝⎭上没有零点∴311log 2099f a a ⎛⎫=-=--≥ ⎪⎝⎭或者()39log 920f a a =-=-≤得2a ≤-或2a ≥令()335(02)f x x x a x =-+-≤≤∴()f x '=233x -当()f x '>0时,得12x ≤≤,当()f x '<0时,得0≤x <1∴()f x 最小值为()13f a =- q 为真∴a >3(1)p ,q 均为真命题∴a 的取值范围是()3,+∞ (2)p ,q 一真一假若p 真,q 假,则223a a a ≤-≥⎧⎨≤⎩或,解得a 的范围是(][],22,3-∞-⋃;若p 假,q 真,则223a a -⎧⎨⎩<<>,解得无解; ∴a 的取值范围是(][],22,3-∞-⋃.19.已知双曲线()2222:10,0x y C a b a b-=>>的实轴长为2,一条渐近线方程为20x y -=(1)求双曲线C 的标准方程; (2)已知倾斜角为34π的直线l 与双曲线C 交于,A B 两点,且线段AB 的中点的纵坐标为4,求直线l 的方程.【答案】(1)2214y x -=(2)3y x =-+【分析】(1)由实轴长得到a ,由渐近线斜率得到ba,即可得到方程;(2)由倾斜角得到直线斜率,设直线方程,联立双曲线方程,消去x ,利用韦达定理即可表示线段AB 的中点的纵坐标,解出参数即可.【详解】(1)由题,22a =,由20x y -=得,222by x b a=∴=∴=,,,所以双曲线C 的标准方程为:2214y x -=(2)直线斜率3tan 14k π==-,设直线为y x m =-+,联立得2214y x my x =-+⎧⎪⎨-=⎪⎩得2238440y my m -+-=,设,A B 两点坐标分别为()11x y ,、()22x y ,,线段AB 的中点的纵坐标为4,则1282483my y +==⨯=,3m ∴=∴,直线方程为3y x =-+.20.已知5:21p x ≥+,22:20q x mx m --≤,其中0m >. (1)若p 是q 的充分条件,求实数m 的取值范围;(2)是否存在m ,使得p ⌝是q 的必要条件?若存在,求出m 的值;若不存在,请说明理由.【答案】(1)m 1≥(2)不存在,理由见解析【分析】(1)解不等式,由充分条件的定义得出实数m 的取值范围;(2)由p ⌝是q 的必要条件得出不等关系,结合0m >作出判断.【详解】(1)由521x ≥+得2301x x -≤+,故有3:12p x -<≤. 由2220x mx m --≤得()()20x m x m -+≤,即:2q m x m -≤≤.若p 是q 的充分条件,则p q ⇒成立,即1322m m -≤-⎧⎪⎨≥⎪⎩得m 1≥. (2)因为3:12p x -<≤,所以:1p x ⌝≤-或32x >. 若p ⌝是q 的必要条件,则q p ⇒⌝成立,则21m ≤-或32m ->, 显然这两个不等式均与0m >矛盾,故不存在满足条件的m .21.已知椭圆()2222:10x y C a b a b +=>>的焦距为226. (1)求椭圆C 的方程;(2)若斜率为1的直线l 与椭圆C 交于不同的两点A ,B ,求AB 的最大值.【答案】(1)2213x y +=; 6.【分析】(1)由题设可得222c =6c a 结合椭圆参数关系求2b ,即可得椭圆C 的方程;(2)设直线l 为y x m =+,联立抛物线整理成一元二次方程的形式,由0∆>求m 的范围,再应用韦达定理及弦长公式求AB 关于m 的表达式,根据二次函数性质求最值即可.【详解】(1)由题设,222c =6c a 2c =3a =2221b a c =-=,所以椭圆C 的方程为22:13x C y +=. (2)设直线l 为y x m =+,联立椭圆C 并整理得:2246330x mx m ++-=,所以2223616(33)48120m m m ∆=-⨯-=->,可得22m -<<,且32A B m x x +=-,23(1)4A B m x x -=, 所以22229|23(1)64|(11)4A B m m x x m AB k ---=-=+⋅(2,2)m ∈-, 故当0m =时,max 6AB =22.已知双曲线C :()222210,0x y a b a b-=>>的渐近线方程为3y x =±,过双曲线C 的右焦点()2,0F 的直线1l 与双曲线C 分别交于左、右两支上的A 、B 两点.(1)求双曲线C 的方程;(2)过原点O 作直线2l ,使得21//l l ,且与双曲线C 分别交于左、右两支上的点M 、N .是否存在定值λ,使得MN MN AB λ⋅=?若存在,请求出λ的值;若不存在,请说明理由.【答案】(1)2213y x -= (2)存在,2λ=【分析】(1)由题意得到3b a =2c =,结合222c a b =+,求得,a b 的值,即可求得双曲线的方程;(2)由MN 与AB 同向,所以2MNAB λ=,设直线1:2l x ty =+,联立方程组,结合韦达定理求得121222129,3131t y y y y t t -+==--,利用弦长公式求得()226131t AB t +=-,根据21//l l ,设2:l x ty =,联立方程组求得()22212131t MN t +=-,进而求得λ的值,得出结论.【详解】(1)解:因为双曲线C :()222210,0x y a b a b-=>>的渐近线方程为3y x =, 所以3b a=3b a =. 又因为右焦点F 的坐标为()2,0,所以2c =,又由222244c a b a =+==,解得1a =,所以3b =所以双曲线C 的方程为2213y x -=. (2)解:存在定值2λ=,使得MN MN AB λ⋅=.因为MN 与AB 同向,所以2MNAB λ=,由题意,可设直线1:2l x ty =+,联立方程组22213x ty y x =+⎧⎪⎨-=⎪⎩,整理得()22311290t y ty -++=, 设()11,A x y ,()22,B x y ,可得121222129,3131t y y y y t t -+==--, 由直线1l 分别交双曲线C 的左、右两支于A 、B 两点,可得()()()222212310Δ12363136100t t t t x x ⎧-≠⎪⎪=--=+>⎨⎪<⎪⎩,即()()()221223103422031t t ty ty t ⎧-≠⎪⎨-+++=<⎪-⎩,可得2310t ->, 所以2121AB t y =+-()22121214t y y y y =++-()2222226112361313131t t t t t t +-⎛⎫+- ⎪---⎝⎭由21//l l ,可设2:l x ty =, 由2233x ty x y =⎧⎨-=⎩,整理得()22313t y -=. 设00(,)M x y ,则()00,N x y --,所以202331y t =-, 则()()()()222222000212111431t MN t y t y t +=+--=+⋅=-,所以22MNAB λ==,故存在定值2λ=,使得MN MN AB λ⋅=.。

2012人教版高二数学选修2-2三月月考试题(理)及答案

2012人教版高二数学选修2-2三月月考试题(理)及答案

11-12学年高二3月月考试题数学(理)一.选择题(本大题共12小题,每小题5分,共60分,在每小题列出的四个选项中,选出符合题目要求的一项。

)1.设,,,a b c d R ∈,若a bic di+-为实数,则 ( ) A.0bc ad +≠ B.0bc ad -≠ C.0bc ad += D. 0bc ad -=2.设{1,2}M =,2{}Na =,则“1a =”是“N M⊆”则( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件3.命题“所有能被2整除的数都是偶数”的否定..是( ) A .所有不能被2整除的数都是偶数 B .所有能被2整除的数都不是偶数 C .存在一个不能被2整除的数是偶数 D .存在一个能被2整除的数不是偶数4.设()ln f x x x =,若0'()2f x =,则0x =( )A. 2eB. eC.ln 22D. ln 25. 方程1x +2x +…+5x =7的非负整数解的个数为( ) A .15 B .330 C .21 D .4956.曲线3()2f x x x =+-在0p 处的切线平行于直线41y x =-,则0p 点的坐标为( )A.(1,0)B.(2,8)C.(2,8)和(1,4)--D.(1,0)和(1,4)-- 7. 曲线x x x y 223++-=与x 轴所围成图形的面积为( )A .3712B .3C .3511D .48.若20092009012009(12)()x a a x a x x R -=+++∈ ,则20091222009222a a a +++ 的值为( )A .2B .0C .1-D .2-9. 直线x -y -1=0与实轴在y 轴上的双曲线x 2-y 2=m (m ≠0)的交点在以原点为中心,边长 为2且各边分别平行于坐标轴的正方形内部,则m 的取值范围是( ) A .0<m<1 B .m<0 C .-1<m<0 D .m<-110.如图所示的曲线是函数d cx bx x x f +++=23)(的大致图象,则2221x x +A .98 B .910 C . 916D .4511.已知函数2()f x x bx =+的图象在点(1,(1))A f 处的切线的斜率为3,数列⎭⎬⎫⎩⎨⎧)(1n f 的前n 项和为n S ,则2011S 的值为( )20122011.20112010.20102009.20092008.D C B A12.设函数f(x)=kx 3+3(k -1)x 22k -+1在区间(0,4)上是减函数,则k 的取值范围是 ( )A.13k <B.103k <≤C.103k ≤≤D.13k ≤二、填空题(共5小题,每小题4分,共20分)13.函数5523--+=x x x y的单调递增区间是___________________________14.设20lg 0()30a x x f x x t dt x >⎧⎪=⎨+⎪⎩⎰…,若((1))1f f =,则a=15.由曲线22y x =+与3y x =,0x =,2x =所围成的平面图形的面积为16.下图是函数()y f x =的导函数()y f x '=的图象,给出下列命题: ①2-是函数()y f x =的极值点;②1不是函数()y f x =的极值点;③()y f x =在0x =处切线的斜率小于零; ④()y f x =在区间(2,2)-上单调递增;则正确命题的序号是 (写出所有正确命题的序号)三、解答题:(共70分.要求写出必要的文字说明、重要演算步骤。

高二月考数学(理科)试题

高二月考数学(理科)试题

高二月考理科数学试题 2012.6选择题(每题5分,共60分)1. 已知2log (x 1)1+=,则x 等于( )A.0B.1C.2D.32. 命题“x R,sin x 1∀∈≤”的否定形式为( )A.x R,sin x 1∃∈≥B.x R,sin x 1∀∈≥C.x R,sin x 1∃∈>D.x R,sin x 1∀∈>3. 下列命题是真命题的是( )A.2x R,(x 1)0∀∈+>B.x {3,5,7},3x 1∀∈+为偶数C.2x Q,x 3∃∈=D. 2x R,x x 10∃∈-+= 4. “a 1>”是 “a log 20>”的( )条件A.充分不必要B.必要不充分C.充分必要D.即不充分也不必要5. 函数x y a b 1=+-的图象经过第二、三、四象限,则一定有( )A.0a 1<<且b 0>B.a 1>且b 0>C.0a 1<<且b 0<D.a 1>且b 0<6. 若253a ()5=、352b ()5=、252c ()5=,则a 、b 、c 的大小关系是( )A.a c b >>B.a b c >>C.c a b >>D.b c a >>7. 函数()lg sin f x x x =-的零点个数是( )A.1B.2C.3D.48. 下列函数中,值域为(,0)-∞的函数是( )A.2=-y xB.31=-y xC. =yD. 2=-x y9. 在同一坐标系下,函数xy e -=与函数ln y x =-的图象大致是( )10. 设函数()f x 定义域为R ,且(2)()f x f x -=,当1≥x 时,()ln =f x x ,则 ( )A.11()(2)()32<<f f fB.11()(2)()23<<f f fC.11()()(2)23<<f f fD.11(2)()()23<<f f f11. 已知()f x 是定义在R 上的偶函数,且(2)()f x f x +=,若()f x 在[1,0]-上是减函数,那么()f x 在[1,3]上是( ) A.增函数B.先增后减的函数C.减函数D.先减后增的函数12. 若()f x 为偶函数,当[0,)∈+∞x 时,()1=-f x x ,则不等式2(1)0-<f x 的解集为( )A.(1,0)-B.(UC.(0,2)D.(1,2)填空题(每题5分,共30分)13. 函数2y x mx 1=++为偶函数,则m 的值为 。

高二理科数学试卷、答卷、答案

高二理科数学试卷、答卷、答案

长兴中学2012学年3月月考高二数学试题卷(理科)一、选择题:(每小题5分,共50分)1. 如果ξ是一个离散型随机变量,则假命题是 ( ) A. ξ取每一个可能值的概率都是非负数 B. ξ取所有可能值的概率之和为1 C. ξ取某几个值的概率等于分别取其中每个值的概率之和D. ξ在某一范围内取值的概率大于它取这个范围内各个值的概率之和2.三人踢毽子,互相传递,每人每次只能踢一下,由甲开始踢,经过4次传递后,毽子又被踢回甲,则不同的传递方式共有 ( ) A.6种 B.8种 C.10种 D.16种 3.甲、乙两人独立地对同一目标各射击一次,其命中率分别是0.6和0.5,现已知目标被击中,则它是甲射中的概率是 ( )A .0.6B .115 C .75.0 D .1164. 某一随机变量ξ的概率分布如下表,且2m n + 1.2=,则2n m -的值为 ( )A.-0.2;B.0.2;C.0.1;D.-0.15.乒乓球团体比赛,甲队与乙队实力之比为3:2,比赛时均能正常发挥技术水平,则在5局3胜制中,甲打完4局才胜的概率为 ( )A.23332()55C ⋅B.22332()()53CC.33432()()55CD.33421()()33C 6.已知2()(1,)nnf n i i i n N -=-=-∈集合{}()f n 的元素个数是 ( )A. 2B. 3C.4D.无数个 7.设n a 为()nx +1展开式中2x 项的系数,则1032111a a a +⋅⋅⋅++等于 ( )A .2B .59 C .511 D .18.一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c (a 、b、(0,1)c ∈),已知他投篮一次得分的数学期望为2,则ab 的最大值为 ( ) A .148B .124C .112D .169.若()621x -的展开式中的第二项小于第一项,但不小于第三项,则x 的取值范围是( )A .⎪⎭⎫⎢⎣⎡+∞,51 B .⎪⎭⎫⎝⎛+∞-,121C . ⎥⎦⎤⎝⎛-0,121D .⎪⎭⎫⎢⎣⎡-0,5110.设}10,,2,1{ =A ,若“方程02=--c bx x 满足A c b ∈,,且方程至少有一根A a ∈”,就称该方程为“漂亮方程”。

南京市第二十九中学2022-2023学年高二下学期3月月考数学试题(解析版)

南京市第二十九中学2022-2023学年高二下学期3月月考数学试题(解析版)

【解析】
【分析】对于选项 A:利用分步计数原理求解判断;对于选项 B:按 1,1,2 分组求解判断;
对于选项 C:根据每家企业至少分派 1 名医生,且医生甲必须到 A 企业,分 A 企业分 2 人和
1 人两类求解判断;对于选项 D:分 C 企业没有派医生去和派 1 名医生两类求解判断.
【详解】对于选项 A:所有不同分派方案共有 34 种,故错误;
【详解】2 至 8 这 7 个数中质数有 4 个,从 7 个数中取 2 个,共有 C72 21个结果,
取出
2
个数都为质数,有 C24
6
个结果,所以所求概率
P
6 21
2 7

故选:B
4. 已知 m 0 ,且152022 m 恰能被 14 整除,则 m 的取值可以是( )
A. 1
B. 12
C. 7
2023x1
C 1 1 2022 2023
2022x1
2022
2023x
2023
2022x
0

所以,1 x4 1 2x5 1 2023x 2022 1 2022x 2023 的展开式中含 x 的项为 6x,其系
数q 6.
依题意得 m n p C62 C36 C64 15 20 15 50 ,
3
2
2 3
6
2
2 3
3.
故选:C
2.

P(A|B)=P(B|A)=
1 2
,P(A)= 1 3
,则 P(B)等于(

A. 1
2
【答案】B 【解析】
1
B.
3
1
C.
4
1
D.

实验中学高二数学上学期第三次月考试题理含解析

实验中学高二数学上学期第三次月考试题理含解析
又 ,
所以 ,
所以 ,故选A.
8。若实数x、y满足 ,则 的取值范围是 ( )
A。 B。 C. D。
【答案】A
【解析】
由 满足的约束条件画出可行域,如图:
目标函数 表示区域内的动点 与定点 连线的斜率
由图可知 是 最小值,故 的取值范围是
故答案选
点睛:线性规划转化为几何意义, 转化为可行域内的点到点 连线的斜率,先画出可行域,然后计算出斜率范围.
∴∠A=60°.
在△ABC中,由正弦定理得sin B= ,
∵b2=ac,∠A=60°,
∴ = =sin 60°= .
19。解关于x的不等式ax2-(a+1)x+1〈0。
【答案】见解析
【解析】
【分析】
将不等式化为(ax-1)(x-1)<0,再对 的取值范围讨论,分类解不等式.
【详解】原不等式可化为(ax-1)(x-1)<0
16。设 为正数, ,则 的最大值是___________
【答案】
【解析】
【分析】
根据柯西不等式直接求最值.
【详解】
当且仅当 时取等号
,即 的最大值是
故答案为:
【点睛】本题考查利用柯西不等式求最值,考查基本分析求解能力,属基础题.
三、解答题(本大题共6小题,共70分.)
17.已知等差数列{an}中,a1=1,a3=﹣3.
(II)由(I)可知an=3﹣2n,
所以Sn= =2n﹣n2,
进而由Sk=﹣35,可得2k﹣k2=﹣35,
即k2﹣2k﹣35=0,解得k=7或k=﹣5,
又k∈N+,故k=7为所求.
点评:此题考查学生灵活运用等差数列的通项公式及前n项和的公式化简求值,是一道基础题.

2023-2024学年重庆市高二下学期3月月考数学质量检测试题(含答案)

2023-2024学年重庆市高二下学期3月月考数学质量检测试题(含答案)

2023-2024学年重庆市高二下册3月月考数学质量检测试题一、单选题1.已知集合(){}{}21,60A x y ln x B x x x ==+=--≤,则A B = ()A .(]2,3-B .(]1,3-C .(]3,2-D .()1,3-【正确答案】B【分析】首先求出集合A 、B ,再利用集合的交运算即可求解.【详解】(){}{}{}1101A x y ln x x x x x ==+=+>=>-,{}()(){}{}26032023B x x x x x x x x =--≤=-+≤=-≤≤,所以A B ⋂{}(]131,3x x =-<≤=-,故选:B2.为对某组数据进行分析,建立了四种不同的模型进行拟合,现用回归分析原理,计算出四种模型的相关指数R 2分别为0.97,0.86,0.65,0.55,则拟合效果最好的回归模型对应的相关指数R 2的值是()A .0.97B .0.86C .0.65D .0.55【正确答案】A【分析】在回归分析中,模型的相关指数R 2越接近于1,其拟合效果就越好,即可求解.【详解】由题意,四种模型的相关指数R 2分别为0.97,0.86,0.65,0.55,根据在回归分析中,模型的相关指数R 2越接近于1,其拟合效果就越好,可得拟合效果最好的回归模型对应的相关指数R 2的值是0.97.故选:A .本题考查了用相关指数拟合模型效果的应用问题,其中解答中熟记回归分析中,模型的相关指数R 2越接近于1,其拟合效果就越好是解答的关键,属于基础题.3.已知26=22464+--,53=25434+--,71=27414+--,102=210424-+---,依照以上各式的规律,得到一般性的等式为()A .8=24(8)4n n n n -+---B .1(1)5=2(1)4(1)4n n n n +++++-+-C .4=24(1)4n n n n ++-+-D .15=2(1)4(5)4n n n n ++++-+-【正确答案】A【分析】由已知结合归纳推理即可求解【详解】解:从各个等式可以看出,等式右端均为2,左端为两个分式的和,且两个式子的分子之和恒等于8,分母则为相应分子减去4,设其中一个分子为n ,另一个分子必为8-n ,故8=24(8)4n n n n -+---满足;故选:A4.已知命题p :220x x +->,命题q :()(){|lg 23}x f x x =-,则p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【正确答案】B分别化简命题p 和命题q ,利用必要不充分条件的定义进行判断即可.【详解】命题p :220x x +->等价于1x >或<2x -;命题q :()(){}3{|lg 23}|230|2x f x x x x x x ⎧⎫=-=->=>⎨⎬⎩⎭则p 是q 的必要不充分条件故选:B5.函数22o )l g (1f x x x =-+的零点所在区间是()A .1184⎛⎫⎪⎝⎭,B .1142⎛⎫ ⎪⎝⎭,C .112⎛⎫⎪⎝⎭D .()12,【正确答案】C【分析】利用零点存在性定理即可求解.【详解】2111151log 08484f ⎛⎫=-+=-< ⎪⎝⎭211151log 04242f ⎛⎫=-+=-< ⎪⎝⎭21111log 1022f ⎛⎫=-+=-< ⎪⎝⎭()12110f =-=>()1102f f ⎛⎫⋅< ⎪⎝⎭,221log ()f x x x ∴=-+的零点所在区间是112⎛⎫ ⎪⎝⎭,故选:C6.某产品的广告费支出x 与销售额y (单位:万元)之间的关系如下表,由此得到y 与x 的线性回归方程为6y x a =+$$,由此可得:当广告支出5万元时,随机误差的效应(残差)为x24568y3040605070A .-10B .0C .10D .20【正确答案】C【分析】由已知求得,x y 的值,得到ˆa,求得线性回归方程,令5x =求得y 的值,由此可求解结论.【详解】由题意,根据表格中的数据,可得2456830406050705,5055x y ++++++++====,所以ˆ6506520ay x =-⨯=-⨯=,所以ˆ620y x =+,取5x =,得ˆ652050y=⨯+=,所以随机误差的效应(残差)为605010-=,故选C.本题主要考查了回归直线方程的求解,以及残差的求法,着重考查了推理与运算能力,属于基础题.7.设曲线f (x )=ax 2在点(2,4a )处的切线与直线4x -y +4=0垂直,则a =()A .2B .-116C .12D .-1【正确答案】B【分析】由已知结合导数的几何意义即可求解.【详解】f (x )=ax 2,则()2f x ax'=因为在点(2,4a )处的切线与直线4x -y +4=0垂直,所以()1244f a =-'=所以116a =-故选:B8.函数3222xxx y -=+在[]6,6-的图像大致为A .B .C .D .【正确答案】B【分析】由分子、分母的奇偶性,易于确定函数为奇函数,由(4)f 的近似值即可得出结果.【详解】设32()22x x x y f x -==+,则332()2()()2222x xx x x x f x f x ----==-=-++,所以()f x 是奇函数,图象关于原点成中心对称,排除选项C .又34424(4)0,22f -⨯=>+排除选项D ;36626(6)722f -⨯=≈+,排除选项A ,故选B .本题通过判断函数的奇偶性,缩小考察范围,通过计算特殊函数值,最后做出选择.本题较易,注重了基础知识、基本计算能力的考查.9.设0.80.70.713,,log 0.83a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系为()A .a b c <<B .b a c<<C .b<c<aD .c<a<b【正确答案】D【分析】利用指数函数与对数函数的性质,即可得出,,a b c 的大小关系.【详解】因为0.731a =>,0.80.80.71333b a -⎛⎫==>= ⎪⎝⎭,0.70.7log 0.8log 0.71c =<=,所以1c a b <<<.故选:D.本题考查的是有关指数幂和对数值的比较大小问题,在解题的过程中,注意应用指数函数和对数函数的单调性,确定其对应值的范围.比较指对幂形式的数的大小关系,常用方法:(1)利用指数函数的单调性:x y a =,当1a >时,函数递增;当01a <<时,函数递减;(2)利用对数函数的单调性:log a y x =,当1a >时,函数递增;当01a <<时,函数递减;(3)借助于中间值,例如:0或1等.10.若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是()A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃【正确答案】D【分析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞ 时,()0f x <,所以由(10)xf x -≥可得:0210x x <⎧⎨-≤-≤⎩或0012x x >⎧⎨≤-≤⎩或0x =解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃,故选:D.本题考查利用函数奇偶性与单调性解抽象函数不等式,考查分类讨论思想方法,属中档题.11.已知函数()()221x g x x e ax a =--+在()0,∞+上单调递增,则实数a 的取值范围是()A .(,-∞B .(C .(,-∞D .(0,【正确答案】A先求导数,利用单调性转化为()()2120xg x x e ax '=+-≥,构造新函数()()21x xf x x e +=求解()f x 的最小值即可.【详解】()()212x g x x e ax '=+-,由题意可知()()2120xg x x e ax '=+-≥在()0,∞+恒成立,即()212x x e a x+≥恒成立,设()()21x xf x x e +=,()()()()22221211x x x x e x x e x x f x +--+='=10,2x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 为减函数;1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x ¢>,()f x 为增函数;()f x 的最小值为12f ⎛⎫= ⎪⎝⎭a ≤故选:A.利用函数单调性求解参数时,通常转化为恒成立问题求解:(1)()f x 在区间D 上单调递增等价于()0f x '≥在区间D 上恒成立;(2)()f x 在区间D 上单调递减等价于()0f x '≤在区间D 上恒成立.12.若正实数a ,b 满足22ln ln 222+≥+-b a b a ,则()A .124+=+a bB .122-=-a b C .2a b >D .240b a -<【正确答案】B【分析】利用基本不等式可得)222212b a +-≥(当且仅当222b a =时取等号),利用熟知的结论1ln x x -≥(当且仅当1x =时取等号)进行放缩可得到2222ln ln 2b a a b +-≥+,结合已知条件,得到22ln ln 222b a b a +=+-,考虑到各不等式取等号的条件,解得,a b 的值,然后逐一检验即可做出正确判断.【详解】先证明熟知的结论:1ln x x -≥恒成立,且当且仅当1x =时取等号.设()1ln f x x x =--,则()11f x x'=-,在(0,1)上,()0f x '<,()f x 单调递减;在(1,+∞)上,()0f x '>,()f x 单调递增.故()()11100min f x f ==--=,∴()1ln f x x x =-≥恒成立,且当且仅当1x =时取等号.由)22222212lnln ln 2b a a b +-≥=≥+,由已知22ln ln 222b a b a +≤+-,∴22ln ln 222b a b a +=+-,且2221b a ⎧=⎪=,解得12a b ⎧=⎪⎨⎪=⎩,经检验只有B 正确,故选:B.本题关键点在于利用基本不等式和熟知的结论1ln x x -≥恒成立,且当且仅当1x =时取等号进行研究,得到2222ln ln 2b a a b +-≥+,结合已知得到等式,一定要注意基本不等式和1ln x x -≥取等号的条件,才能列出方程组求得,a b 的值.二、填空题13.函数()f x =__________.【正确答案】(0,1)(1,]e ⋃【分析】利用对数、分式、根式的性质列不等式,求x 的范围,即得定义域.【详解】由函数解析式,知:01ln 0220x x x ⎧>⎪-≥⎨⎪-≠⎩,解得0x e <≤且1x ≠.故答案为.(0,1)(1,]e ⋃14.i 是复数单位,若()1243i z i +=+,z 的虚部为__________.【正确答案】1【分析】由复数除法求得z 后可得z ,从而得其虚部.【详解】由已知243(43)(12)4836212(12)(12)5i i i i i i z i i i i ++--+-====-++-,2z i =+,虚部为1.故1.15.已知函数()f x 定义域为R ,满足 ()(2)f x f x =-,且对任意121x x ≤<,均有()()12120x x f x f x ->-,则不等式(21)(3)0f x f x ---≥解集为______.【正确答案】4(,0],3⎡⎫-∞+∞⎪⎢⎣⎭【分析】先求出函数()f x 关于直线1x =对称,函数()f x 在[)1,+∞上单调递增.在(],1-∞上单调递减,再解不等式|211||31|x x --≥--即得解.【详解】因为函数()f x 满足()(2)f x f x =-,所以函数()f x 关于直线1x =对称,因为对任意121x x ≤<,均有()()12120x x f x f x ->-成立,所以函数()f x 在[)1,+∞上单调递增.由对称性可知()f x 在(],1-∞上单调递减.因为()()2130f x f x ---≥,即()()213f x f x -≥-,所以|211||31|x x --≥--,即|22||2|x x -≥-,解得0x ≤或43x ≥.故4(,0],3⎡⎫-∞+∞⎪⎢⎣⎭方法点睛:对于函数问题的求解,通常要先研究函数的奇偶性、对称性、周期性和单调性等,再利用这些性质求解函数的问题.16.已知函数()()()202ln f x a x x x a =+>-有两个极值点1x 、()212x x x <,则()()12f x f x +的取值范围为_________.【正确答案】(),16ln 224-∞-【分析】确定函数()y f x =的定义域,求导函数,利用极值的定义,建立方程,结合韦达定理,即可求()()12f x f x +的取值范围.【详解】函数()()22ln f x a x x x =-+的定义域为()0,∞+,()21222212x ax a f x a x x x -+⎛⎫'=-+= ⎪⎝⎭,依题意,方程22220x ax a -+=有两个不等的正根1x 、2x (其中12x x <),则241604a a a ∆=->⇒>,由韦达定理得120x x a +=>,120x x a =>,所以()()()()()22121212122ln 2f x f x a x x x x a x x +=++-+()()()2222121212122ln 222ln 222ln 2a x x x x x x a x x a a a a a a a a a ⎡⎤=++--+=+--=--⎣⎦,令()()22ln 24h a a a a a a =-->,则()2ln 2h a a a '=-,()()2122a h a a a-''=-=,当4a >时,()0h a ''<,则函数()y h a '=在()4,+∞上单调递减,则()()44ln 280h a h '<=-<,所以,函数()y h a =在()4,+∞上单调递减,所以,()()416ln 224h a h <=-.因此,()()12f x f x +的取值范围是(),16ln 224-∞-.故答案为.(),16ln 224-∞-本题考查了函数极值点问题,考查了函数的单调性、最值,将()()12f x f x +的取值范围转化为以a 为自变量的函数的值域问题是解答的关键,考查计算能力,属于中等题.三、解答题17.已知命题:,p x R ∀∈240++≤mx x m .(1)若p 为真命题,求实数m 的取值范围;(2)命题[]:2,8q x ∃∈,使得2log 1m x ≥,当p q ⌝∧⌝为假命题且q ⌝为真命题时,求实数m 的取值范围.【正确答案】(1)14m ≤-;(2)14m ≤-.(1)由题得0m <且21160∆=-≤m ,解不等式即得m 的取值范围;(2)先转化为[]2,8x ∃∈,21log m x ≥,再求21log x的最小值得m 的范围,因为p q ⌝∧⌝为假命题且q ⌝为真命题,所以p 真q 假,从而得到关于m 的不等式组,解不等式组即得解.【详解】(1)∵2,40x R mx x m ∀∈++≤,0m ∴<且21160∆=-≤m ,解得14m ≤-p ∴为真命题时,14m ≤-.(2)[2,8]∃∈x ,21log m x ≥,又[2,8]x ∈时,211[,1]log 3x ∈,13m ∴≥∵p q ⌝∧⌝为假命题且q ⌝为真命题∴当p真q假,有1413mm⎧≤-⎪⎪⎨⎪<⎪⎩解得14m≤-【点晴】方法点晴:复合命题真假判定的口诀:真“非”假,假“非”真,一真“或”为真,两真“且”才真.18.2020年12月29日至30日,全国扶贫开发工作会议在北京召开,会议指出经过各方面的共同努力,中国现行标准下农村贫困人口全部脱贫,贫困县全部摘帽,贫困村全部退出,脱贫攻坚目标任务如期全面完成.2021年是“十四五”规划开局之年,是巩固拓展脱贫攻坚成果、实现同乡村振兴有效衔接的起步之年.要按照中共中央国务院新决策新部署,把巩固拓展脱贫攻坚成果摆在头等重要位置来抓,推动脱贫攻坚政策举措和工作体系逐步向乡村振兴平稳过渡,用乡村振兴巩固拓展脱贫攻坚成果,坚决守住脱贫攻坚胜利果实,确保不出现规模性返贫,确保实现同乡村振兴有效衔接,确保乡村振兴有序推进.北方某刚脱贫的贫困地区积极响应,根据本地区土地贫瘠,沙地较多的特点,准备大面积种植一种叫做欧李的奇特的沙漠果树,进行了广泛的宣传.经过一段时间的宣传以后,为了解本地区广大农民对引进这种沙漠水果的理解程度、种植态度及思想观念的转变情况,某机构进行了调查研究,该机构随机在该地区相关人群中抽取了600人做调查,其中45岁及以下的350人中有200人认为这种水果适合本地区,赞成种植,45岁以上的人中赞成种植的占2 5.(1)完成如下的2×2列联表,并回答能否有99.5%的把握认为“赞成种植与年龄有关”?赞成种植不赞成种植合计45岁及以下45岁以上合计(2)为了解45岁以上的人的想法态度,需要在已抽取45岁以上的人中按种植态度(是否赞成种植)采用分层抽样的方法选取5位45岁以上的人做调查,再从选取的5人中随机抽取2人做深度调查,求2人中恰有1人“不赞成种植”的概率.附表:()20P K k ≥0.150.100.050.0250.0100.0050.0010k 2.072 2.706 3.841 5.0246.6357.87910.828参考公式为:()()()()()22n ad bc K a b c d a c b d -=++++【正确答案】(1)填表见解析;有99.5%的把握认为“是否赞成种植与年龄有关”;(2)35.【分析】(1)根据题中数据,直接完善列联表,再由公式计算2K ,结合临界值表,即可得出结论;(2)先由题中条件,确定被抽取的5人中,“赞成种植的”有2人,记为a ,b ,“不赞成种植的”有3人,记为C ,D ,E ;用列举法写出总的基本事件,以及满足“恰有1人不赞成种植”的基本事件,基本事件的个数比即为所求概率.【详解】(1)由题意可得2×2列联表:赞成种植不赞成种植合计45岁及以下20015035045岁以上100150250合计30030060022600(200150150100)300300350250K ⨯⨯-⨯=⨯⨯⨯12017.1437.8797=≈>经查表,得()27.8790.005P K >≈,所以有99.5%的把握认为“是否赞成种植与年龄有关”.(2)在45岁以上的人中,赞成种植和不赞成种植的人数比为2:3,所以被抽取到的5人中,“赞成种植的”有2人,记为a ,b ,“不赞成种植的”有3人,记为C ,D ,E ,从被选取到的5人中再从中抽取2人,共有如下抽取方法:(,)a b ,(,)a C ,(,)a D ,(,)a E ,(,)b C ,(,)b D ,(,)b E ,(,)C D ,(,)C E ,(,)D E ,共有10种不同的结果,两人中恰好有1人为“不赞成种植的”包含了(,)a C ,(,)a D ,(,)a E ,(,)b C ,(,)b D ,(,)b E ,共有6种结果.所以所求概率63105P ==.方法点睛:求古典概型的概率的常用方法:(1)古典概型所包含的基本事件个数较少时,可用列举法列举出总的基本事件个数,以及满足条件的基本事件个数,基本事件个数比即为所求概率;(2)古典概型所包含的基本事件个数较多时,可根据排列组合数的计算,求出总的基本事件个数,以及满足条件的基本事件个数,进而求出所求概率.19.已知三次函数32()41f x x ax x =+++(a 为常数).(1)当1a =时,求函数()f x 在2x =处的切线方程;(2)若a<0,讨论函数()f x 在()0,x ∈+∞的单调性.【正确答案】(1)20190x y --=;(2)答案见解析.【分析】(1)对函数求导,由导数的几何意义可得直线的斜率,再由直线的点斜式方程即可得解;(2)对函数求导,结合二次函数的性质,按照0a -≤<、a <-()0f x '>、()0f x '<的解集即可得解.【详解】(1)当1a =时,函数32()41f x x x x =+++,2()324f x x x '=++Q ,(2)20f '∴=即切线的斜率20k =,(2)21f =Q ,∴切线方程为2120(2)y x -=-即20190x y --=;(2)导函数2()324f x x ax '=++的对称轴为03a x =->,①当24480a ∆=-≤即0a -≤<时,()0f x '≥,()f x 在(0,)+∞上单调递增;②当24480a ∆=->即a <-(0)40f '=>,令2()3240f x x ax '=++=,则13a x -=,23a x -=,因为120x x <<,所以当0x <<或x >时,()0f x '>;x <<时,()0f x '<;所以()f x在0,3a ⎛⎫- ⎪ ⎪⎝⎭,,3a ⎛⎫-+∞ ⎪ ⎪⎝⎭上单调递增;()f x 在33a a a a ⎛---+ ⎪ ⎪⎝⎭上单调递减.本题考查了导数几何意义的应用及利用导数研究函数的单调性,考查了运算求解能力与逻辑推理能力,属于中档题.20.近年来,中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难,并不断加大对各国的施压,拉拢他们抵制华为5G ,然而这并没有让华为却步.华为在2018年不仅净利润创下记录,海外增长同样强劲.今年,我国华为某一企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本250万,每生产x (千部)手机,需另投入成本()R x 万元,且210100,040()100007019450,40x x x R x x x x ⎧+<<⎪=⎨+-≥⎪⎩,由市场调研知,每部手机售价0.7万元,且全年生产的手机当年能全部销售完.(1)求出2020年的利润()W x (万元)关于年产量x (千部)的函数关系式,(利润=销售额—成本);(2)2020年产量为多少(千部)时,企业所获利润最大?最大利润是多少?【正确答案】(1)210600250,040()10000()9200,40x x x W x x x x ⎧-+-<<⎪=⎨-++≥⎪⎩;(2)2020年产量为100千部时,企业所获利润最大,最大利润是9000万元.【分析】(1)根据给定的函数模型,直接计算作答.(2)利用(1)中函数,借助二次函数最值及均值不等式求出最大值,再比较大小作答.【详解】(1)依题意,销售收入700x 万元,固定成本250万元,另投入成本210100,040()100007019450,40x x x R x x x x ⎧+<<⎪=⎨+-≥⎪⎩万元,因此210600250,040()700()25010000()9200,40x x x W x x R x x x x ⎧-+-<<⎪=--=⎨-++≥⎪⎩,所以2020年的利润()W x (万元)关于年产量x (千部)的函数关系式是210600250,040()10000()9200,40x x x W x x x x ⎧-+-<<⎪=⎨-++≥⎪⎩.(2)由(1)知,当040x <<时,2()10(30)87508750W x x =--+≤,当且仅当30x =时取等号,当40x ≥时,10000()()920092009000W x x x =-++≤-+=,当且仅当10000x x =,即100x =时取等号,而87509000<,因此当100x =时,max ()9000W x =,所以2020年产量为100千部时,企业所获利润最大,最大利润是9000万元.21.已知函数2()e x f x ax x =+-.(1)当a =1时,讨论f (x )的单调性;(2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.【正确答案】(1)当(),0x ∈-∞时,()()'0,f x f x <单调递减,当()0,x ∈+∞时,()()'0,f x f x >单调递增.(2)27e ,4∞⎡⎫-+⎪⎢⎣⎭【分析】(1)由题意首先对函数二次求导,然后确定导函数的符号,最后确定原函数的单调性即可.(2)方法一:首先讨论x =0的情况,然后分离参数,构造新函数,结合导函数研究构造所得的函数的最大值即可确定实数a 的取值范围.【详解】(1)当1a =时,()2e x f x x x =+-,()e 21x f x x ='+-,由于()''e 20x f x =+>,故()'f x 单调递增,注意到()00f '=,故:当(),0x ∈-∞时,()()0,f x f x '<单调递减,当()0,x ∈+∞时,()()0,f x f x '>单调递增.(2)[方法一]【最优解】:分离参数由()3112f x x ≥+得,231e 12x ax x x +-+,其中0x ≥,①.当x =0时,不等式为:11≥,显然成立,符合题意;②.当0x >时,分离参数a 得,321e 12x x x a x----,记()321e 12x x x g x x ---=-,()()2312e 12x x x x g x x⎛⎫---- ⎪⎝⎭'=-,令()()21e 102x h x x x x =---≥,则()e 1x h x x ='--,()''e 10x h x =-≥,故()'h x 单调递增,()()00h x h ''≥=,故函数()h x 单调递增,()()00h x h ≥=,由()0h x ≥可得:21e 102x x x ---恒成立,故当()0,2x ∈时,()0g x '>,()g x 单调递增;当()2,x ∈+∞时,()0g x '<,()g x 单调递减;因此,()()2max 7e 24g x g -⎡⎤==⎣⎦,综上可得,实数a 的取值范围是27e ,4∞⎡⎫-+⎪⎢⎣⎭.[方法二]:特值探路当0x ≥时,31()12f x x ≥+恒成立27e (2)54-⇒⇒f a .只需证当274e a -≥时,31()12f x x ≥+恒成立.当274e a -≥时,227e ()e e 4-=+-≥+x x f x ax x 2⋅-x x .只需证明2237e 1e 1(0)42-+-≥+≥xx x x x ⑤式成立.⑤式()223e 74244e -+++⇔xx x x ,令()223e 7424()(0)e -+++=≥x x x x h x x ,则()()222313e 2e 92()e -+--=='x x x x h x ()()222213e 2e 9e ⎡⎤-----⎣⎦=x x x x ()2(2)2e 9e ⎡⎤--+-⎣⎦x x x x ,所以当29e 0,2⎡⎤-∈⎢⎣⎦x 时,()0,()h x h x <'单调递减;当29e ,2,()0,()2⎛⎫-∈> ⎪⎝⎭'x h x h x 单调递增;当(2,),()0,()∈+∞<'x h x h x 单调递减.从而max [()]max{(0),(2)}4==h x h h ,即()4h x ≤,⑤式成立.所以当274e a -≥时,31()12f x x ≥+恒成立.综上274e a -≥.[方法三]:指数集中当0x ≥时,31()12f x x ≥+恒成立323211e 1(1)e 122x x x ax x x ax x -⇒+-+⇒-++≤,记()32(1(1)e 0)2x g x x ax x x -=-++≥,()2231(1)e 22123xg x x ax x x ax -'=--+++--()()()2112342e 212e 22x x x x a x a x x a x --⎡⎤=--+++=----⎣⎦,①.当210a +≤即12a ≤-时,()02g x x '=⇒=,则当(0,2)x ∈时,()0g x '>,()g x 单调递增,又()01g =,所以当(0,2)x ∈时,()1g x >,不合题意;②.若0212a <+<即1122a -<<时,则当(0,21)(2,)x a ∈+⋃+∞时,()0g x '<,()g x 单调递减,当(21,2)x a ∈+时,()0g x '>,()g x 单调递增,又()01g =,所以若满足()1g x ≤,只需()21g ≤,即()22(7e 14)g a --≤=27e 4a -⇒,所以当27e 142a -⇒≤<时,()1g x ≤成立;③当212a +≥即12a ≥时,()32311(1)e (1)e 22x x g x x ax x x x --=++≤-++,又由②可知27e 142a -≤<时,()1g x ≤成立,所以0a =时,31()(1)e 21x g x x x -=+≤+恒成立,所以12a ≥时,满足题意.综上,27e 4a -.【整体点评】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,本题主要考查利用导数解决恒成立问题,常用方法技巧有:方法一,分离参数,优势在于分离后的函数是具体函数,容易研究;方法二,特值探路属于小题方法,可以快速缩小范围甚至得到结果,但是解答题需要证明,具有风险性;方法三,利用指数集中,可以在求导后省去研究指数函数,有利于进行分类讨论,具有一定的技巧性!22.如图,在极坐标系Ox 中,(2,0)A ,)4B π,)4C 3π,(2,)D π,弧 AB , BC , CD 所在圆的圆心分别是(1,0),(1,2π,(1,)π,曲线1M 是弧 AB ,曲线2M 是弧 BC ,曲线3M 是弧 CD .(1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||OP =P 的极坐标.【正确答案】(1)2cos ([0,])4πρθθ=∈,32sin ([])44ππρθθ=∈,32cos ([,])4πρθθπ=-∈,(2))6π,)3π,2)3π,5)6π.【分析】(1)将三个过原点的圆方程列出,注意题中要求的是弧,所以要注意的方程中θ的取值范围.(2)根据条件ρ=P 点的极坐标.【详解】(1)由题意得,这三个圆的直径都是2,并且都过原点.1:2cos ([0,4M πρθθ=∈,23:2cos()2sin ([,])244M πππρθθθ=-=∈,33:2cos()2cos ([,])4M πρθπθθπ=-=-∈.(2)解方程2cos [0,])4πθθ=∈得6πθ=,此时P 的极坐标为)6π解方程32sin [,])44ππθθ=∈得3πθ=或23πθ=,此时P 的极坐标为3π或2)3π解方程32cos [,])4πθθπ-=∈得56πθ=,此时P 的极坐标为5)6π故P 的极坐标为)6π,)3π,2)3π,5)6π.此题考查了极坐标中过极点的圆的方程,思考量不高,运算量不大,属于中档题.23.设函数()|21||4|f x x x =+--.(1)求不等式()2f x >的解集;(2)求函数()f x 的最小值.【正确答案】(1){7x x ∈<-R 或53x ⎫>⎬⎭;(2)92-.【分析】(1)将绝对值函数化为分段函数,用不同的区间对应的解析式大于2,分别解出不等式求其并集即可.(2)由分段函数求其值域即可得到最小值.【详解】1521()33425(4)x x f x x x x x ⎧⎛⎫--<- ⎪⎪⎝⎭⎪⎪⎛⎫=--≤≤⎨ ⎪⎝⎭⎪⎪+>⎪⎩⑴①由5212x x -->⎧⎪⎨<-⎪⎩解得7<-x ;②332142x x ->⎧⎪⎨-≤≤⎪⎩解得543x <≤;③524x x +>⎧⎨>⎩解得>4x ;综上可知不等式的解集为{|7x x ∈<-R 或53x ⎫>⎬⎭.⑵由(1)知,当12x <-时,()195522f x x =-->-=-;当142x -≤≤时,()33f x x =-,()992f x -≤≤;当>4x 时,()59f x x =+>;综上x ∈R 时,()92f x ≥-,所以min 9()2f x =-故函数()f x 的最小值为92-.。

重庆市第一中学校2022-2023学年高二下学期3月月考数学试题

重庆市第一中学校2022-2023学年高二下学期3月月考数学试题

12023年重庆一中高2024届高二下学期3月月考数学试题卷一、单选题:本题共8小题,每小题5分,共40分.1. 若255C C n =,则n =( )A. 2B. 2或3C. 3D. 42. 已知一组样本数据1x ,2x ,3x ,4x ,5x 的平均数x 为2,则51(2)ii x =−=∑( )A. 0B. 2C. 2.5D. 13. 若()()()()112110121121111R x a a x a x a x x −=+−+−++−∈,,则01211a a a a ++++=( )A. 1B. 1131−C. 113D. 1131+4. 某校为了了解同学们参加社会实践活动的意向,决定利用分层抽样的方法从高一、高二、高三学生中选取200人进行调查,已知该校高一年级学生有1300人,高二年级学生有1200人,高三年级学生有1500人,则抽取的学生中,高三年级有( ) A. 50人B. 60人C. 65人D. 75人5. 已知正项数列{}n a 中,22111,1n n a a a +=−=,则数列11nn a a +⎧⎫⎨⎬+⎩⎭的前120项和为( )A. 4950B. 10C. 9D.149506. 某班级周三上午共有5节课,只能安排语文、数学、英语、体育和物理.数学必须安排,且连续上两节,但不能同时安排在第二三节,除数学外其他学科最多只能安排一节,体育不能安排在第一节,则不同的排课方式共有( ) A. 48种B. 60种C. 72种D. 96种7. 将甲、乙、丙、丁4名志愿者随机派往①,②,③三个社区进行核酸信息采集,每个社区至少派1名志愿者,事件A =“志愿者甲派往①社区”; 事件B= “志愿者乙派往①社区”; 事件C= “志愿者乙派往②社区”,则( ) A. 事件A 、B 同时发生的概率为19 B. 事件A 发生的条件下B 发生的概率为16C. 事件A 与B 相互独立D. 事件A 与C 为互斥事件8. 已知O 为坐标原点,P 是椭圆()2222:10x y E a b a b+=>>上位于x 轴上方的点,F 为右焦点.延长PO 、PF 交椭圆E 于Q 、R 两点,QF FR ⊥,4QF FR =,则椭圆E 的离心率为( )A.33B.22 C.53D.104的2二、多选题:本题共4小题,每小题5分,共20分.9. 某科技学校组织全体学生参加了主题为“创意之匠心,技能动天下”的文创大赛,随机抽取了400名学生进行成绩统计,发现抽取的学生的成绩都在50分至100分之间,进行适当分组后(每组的取值区间均为左闭右开),画出频率分布直方图(如图),下列说法正确的是( )A. 图中x 的值为0.020B. 在被抽取的学生中,成绩在区间[)70,80内的学生有60人C. 估计全校学生成绩的中位数约为87.7D. 估计全校学生成绩的众数为95 10. 对于函数()22ln xf x x=,下列说法正确的有( ) A. ()f x 的单调递减区间为()1,+∞ B. ()f x 在e x =1eC. ()f x 只有一个零点D. ()3πf f>11. 已知编号为1,2,3的三个盒子,其中1号盒子内装有两个1号球,一个2号球和一个3号球;2号盒子内装有两个1号球,一个3号球;3号盒子内装有三个1号球,两个2号球.若第一次先从1号盒子内随机抽取1个球,将取出的球放入与球同编号的盒子中,第二次从该盒子中任取一个球,则下列说法正确的是( ) A. 在第一次抽到2号球的条件下,第二次抽到1号球的概率为12 B. 第二次抽到3号球的概率为1148C. 如果第二次抽到的是3号球,则它来自1号盒子的概率最大D. 如果将5个不同的小球放入这三个盒子内,每个盒子至少放1个,则不同的放法有180种12. 冬春季节,人们容易感冒发热.若发生群体性发热,则会影响到人们的身体健康,干扰正常工作,有专业机构认为某地区在一段时间内没有发生大规模群体发热现象的标志为“连续10天,该地区每天新增疑似发热病例不超过7人”.下列连续10天疑似发热病例人数的统计特征数中,能判定该地没有发生群体性发热的为( ) A. 总体平均数为23 B. 总体平均数为4,总体方差为32C. 总体平均数为3,中位数为4D. 总体平均数为2,第65百分位数为5三、填空题:本题共4小题,每小题5分,共20分.13. 在nx x ⎛ ⎝的展开式中,第3项和第4项的二项式系数最大,则展开式中含2x 项的系数为_____.314. 透明袋子中装有黑球1个、白球3个,这些球除了颜色外无其他差别. 从袋子中随机摸出一个球,记下颜色后放回,将袋子中的球摇匀,再随机摸出一个球,记下颜色,求前后两次摸出的球都是白球的概率为___________. 15. 数论领域的四平方和定理最早由欧拉提出,后被拉格朗日等数学家证明.四平方和定理的内容是:任意正整数都可以表示为不超过四个自然数的平方和,例如正整数222222221231112220=+++=+++.设222236a b c d =+++,其中a b c d ,,,均为自然数,则满足条件的有序数组(),,,a b c d 的个数是___________.16. 已知数列{}n a 的前n 项和为n S ,满足3n n S k a =⋅−(k 是常数,1k >)10122a =,且23420222048a a a a ++++=,则23420221111a a a a ++++=___________.四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17. (本小题满分10分)在一个选拔项目中,每个选手都需要进行4轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰.已知某选手能正确回答第一、二、三、四轮问题概率分别为56、45、34、13,且各轮问题能否正确回答互不影响.(Ⅰ)求该选手进入第三轮才被淘汰的概率; (Ⅱ)求该选手至多进入第三轮考核的概率;18. (本小题满分12分)在数列{}n a 中,*1111,20,N 3n n n n a a a a a n ++=+−=∈. (1)求证:1n a ⎧⎫⎨⎬⎩⎭是等差数列,并求数列{}n a 的通项公式; (2)满足不等式()*122311N 8k k a a a a a a k ++++<∈成立的k 的最大值.的419. (本小题满分12分)随机抽取100名男学生,测得他们的身高(单位:cm ),按照区间[)160165,,[)165170,,[)170175,,[)175,180,[]180,185分组,得到样本身高的频率分布直方图如图所示:(1)求身高在170cm 及以上的学生人数; (2)估计该校100名学生身高75%分位数.(3)据统计,身高在[)170175,,[)175,180,[]180,185时,体重超过70kg 的概率分别为16、13、12.现在从身高在[170,185]的学生中任选一个学生,估计其体重超过70kg 的概率.20. (本小题满分12分) 在二项式4)2n x x的展开式中,前三项的系数依次为M ,P ,N ,且满足2P M N =+.(1)若直线l :0ax by c的系数a ,b ,c (a b c >>)为展开式中所有无理项系数,求不同直线l 的条数;(2)求展开式中系数最大的项.21. (本小题满分12分) 已知C :22221x y a b+=7,离心率为12,过椭圆左焦点F 作不与x 轴重合的直线与椭圆C 相交于M 、N 两点,直线m 的方程为:2x a =−,过点M 作ME 垂直于直线m 交直线m 于点E .(1)求椭圆C 标准方程:(2)①若线段EN 必过定点P ,求定点P 的坐标; ②点O 为坐标原点,求OEN 面积的最大值.22. (本小题满分12分) 已知函数()xf x xe =(其中e 为自然对数的底数).(1)求函数()f x 的最小值;(2)求证:()1ln 2xf x e x >+−.的5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省济宁市曲阜市第一中学2015-2016学年高二数学3月月考试题 理说明: 1、本卷答题时间为 120分钟;2、本试卷分为试卷和答题卷,请将答案答在“答题卷”上。

一、选择题(本题共10题,每题5分,共50分) 1. 函数y=(2x +1)3在x=0处的导数是 ( ) A.0B.1C.3D.62.若大前提是:任何实数的平方都大于0,小前提是:a R ∈,结论是:20a >,那么这个演绎推理出错在( ) A .大前提 B .小前提 C .推理过程D .没有出错3.用反证法证明命题“三角形的内角至多有一个钝角”时,假设正确的是( )A.假设至少有一个钝角 B .假设没有一个钝角或至少有两个钝角C.假设没有一个钝角 D .假设至少有两个钝角4.直线32+=x y 与抛物线2x y =所围成的图形面积是 ( )A .20B .328C .332D . 3435若函数32()1f x x x mx =+++是R 上的单调函数,则实数m 的取值范围是( ) A. 1(,)3+∞ B. 1(,)3-∞ C. 1[,)3+∞ D.1(,]3-∞ 6现有两个推理:①在平面内“三角形的两边之和大于第三边”类比在空间中“四面体的任意三个面的面积之和大于第四个面的面积”;②由“若数列{}n a 为等差数列,则有15515211076a a a a a a +++=+++ 成立”类比“若数列{}nb为等比数列,则有15152151076b b b b b b ⋅⋅=⋅⋅ 成立”,则得出的两个结论( )A . 都正确B . 只有②正确C .只有①正确D . 都不正确 7.函数x x y ln =的单调递减区间是( )A 、(1-e ,+∞)B 、(-∞,1-e ) C 、 (e ,+∞) D 、(0,1-e )8.设曲线1*()n y x n N +=∈在点(1,1)处的切线与x 轴的交点的横坐标为n x ,则12nx x x ⋅⋅⋅的值为( )A . 1n B . 1n n + C . 11n +D . 19.设函数f(x)在定义域内可导,y=f(x)的图象如下图所示,则导函数y=f(x)可能为( )10.设()f x 是R 上的可导函数,且满足()()f x f x >',对任意的正实数a ,下列不等式恒成立的是( )xyO AxyO BxyO CxyO DxyOA .()(0)a f a e f <B . ()(0)af a e f > C .(0)()a f f a e <D .(0)()a f f a e >二、填空题(本题共5个题,每题5分,共25分)11.函数sin xy x =的导数为_________________12设P 为曲线C :223y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为04π⎡⎤⎢⎥⎣⎦,,则点P 横坐标的取值范围为 _________________ 13设函数f(x)=kx 3+3(k -1)x 22k -+1在区间(0,4)上是减函数,则k 的取值范围是_________________14已知n 为正偶数,用数学归纳法证明1-12+13-14+…-1n =2⎝⎛⎭⎪⎫1n +2+1n +4+…+12n 时,若已假设n =k(k≥2且k 为偶数)时等式成立,则还需要用归纳假设再证n =________时等式成立15.已知()f x 为定义在(0,+∞)上的可导函数,且()'()f x x f x >,则不等式21()()0xf f x x-<的解集为___________.三、解答题(本题共6个答题,共75分)16.如图,直线y =kx 分抛物线y =x -x 2与x 轴所围成图形为面积相等的两部分,求k 的值.17.证明:(1)如果a ,b>0,则lg a +b 2≥lg a +lg b2;(2)6+10>23+2.18、已知322()3(1)f x x ax bx a a =+++>在x =-1时有极值0。

(1)求常数 ,a b 的值; (2)求f x ()的单调区间。

(3)方程()f x c =在区间[-4,0]上有三个不同的实根时实数c 的范围。

19. 如图,设铁路AB 长为50,BC ⊥AB ,且BC =10,为将货物从A 运往C ,现在AB 上距点B 为x 的点M 处修一公路至C ,已知单位距离的铁路运费为2,公路运费为4. (1)将总运费y 表示为x 的函数; (2)如何选点M 才使总运费最小?20. (13分)已知函数1()ln xf x x ax -=+(1)若函数()f x 在[1,+∞)上为增函数,求正实数a 的取值范围; (2)当1a =时,求()f x 在[1,e e]上的最大值和最小值.AB CM21.已知函数)0(2ln )(2≠++=a x xa x a x f 。

(1)若曲线)(x f y =在点))1(,1(f 处的切线与直线02=-y x 垂直,求实数a 的值; (2)讨论函数)(x f 的单调性;(3)当)0,(-∞∈a 时,记函数)(x f 的最小值为)(a g ,求证:221)(e a g ≤ .答案一选择题DADCC ADCDB 二填空题 11.21cos x x - 12. [-1,-12] 13. k ≤1214. k+2 15. (0,1)16抛物线y =x -x 2与x 轴两交点的横坐标为x 1=0,x 2=1,所以,抛物线与x 轴所围图形面积S =⎠⎜⎛01(x -x 2)d x =⎪⎪⎪⎝ ⎛⎭⎪⎫x 22-x 3310=12-13=16. 又⎩⎪⎨⎪⎧y =x -x 2,y =kx ,由此可得抛物线y =x -x 2与y =kx 两交点的横坐标x 3=0,x 4=1-k ,所以S 2=⎠⎜⎛01-k (x -x 2-kx)d x =⎪⎪⎪⎝ ⎛⎭⎪⎫1-k 2x 2-x 331-k 0=16(1-k)3.又S =16,所以(1-k)3=12,∴k =1-342.17【证明】 (1)当a ,b>0时,有a +b 2≥ab ,∴lg a +b 2≥lgab ,∴lg a +b 2≥12lg ab =lg a +lg b 2.(2)要证6+10>23+2, 只要证(6+10)2>(23+2)2,即260>248,这是显然成立的,所以,原不等式成立.18、解:(1)f x x ax b '()=++362,由题知: f f a b a b a '()()-=-=⎧⎨⎩⇒-+=<>-+-+=<>⎧⎨⎩1010360113022………………2分联立<1>、<2>有:a b ==⎧⎨⎩13(舍去)或a b ==⎧⎨⎩29 ………………4分(2)当a b ==29,时,()()f x x x x x '()=++=++31293312故方程f x '()=0有根x =-3或x =-1 ……………………6分x()-∞-,3-3()--31,-1()-+∞1,f x '() + 0 - 0 + f x ()↑极大值↓极小值↑由表可见,当x =-1时,f x ()有极小值0,故a b ==⎧⎨⎩29符合题意 ……8分 由上表可知:f x ()的减函数区间为()--31,f x ()的增函数区间为()-∞-,3或()-+∞1, ………………10分(3)因为(4)0,(3)4,(1)1,(0)4f f f f -=-=-=-= ,由数形结合可得04c <<。

……12分19.解:(1)依题,铁路AM 上的运费为2(50-x ),公路MC 上的运费为24100x +,则由A 到C的总运费为22(50)4100(050)y x x x =-++ ≤≤ …………………………… 6分 (2)22(050)100y x x '=-+≤≤+,令0y '=,解得1,3x =23x =-(舍)……9分 当03x ≤<时,0y '<,y;当503x ≥>时,0y '>,y故当3x =时,y 取得最小值.20. 解: 【答案】(1)由已知得'21()(0)ax x a ax -=ƒ> …1分依题意得:210ax ax -≥对一切的x ≥1 都成立即10[1,)ax -≥∈+对一切x ∞恒成立,也就是1[1,)a x≥∈+对一切x ∞ 恒成立,∴max 1()1a x≥=(2)当'2111(),[,]x a f x x e x e-==∈时, 若1[,1)x e∈则'()0,f x <若(1,]x e ∈则'()0f x >故1x =是()f x 在区间1[,]e e上的惟一极小值点,也是最小值点,故min ()(1)0f x f ==;1111()2,()22f e f e e e =-=><,∴ ()f x 在 1[,]e e 上最大值为e-2综上知函数()f x 区间 1[,]e e上最大值是e-2,最小值是021.(1)由已知得,)(x f 的定义域为}0|{>x x ,)0(12)('22>+-=x xa x a x f . 根据题意,有2)1('-=f ,即0322=--a a , 解得1-=a 或23=a .……………………………………………………4分 (2))0()2)((212)('222222>+-=-+=+-=x xa x a x x a ax x x a x a x f . (i )当0>a 时,由0)('>x f 及0>x 得a x >;由0)('<x f 及0>x 得a x <<0. 所以当0>a 时,函数)(x f 在),(+∞a 上单调递增,在(a ,0)上单调递减.(ii )当0<a 时,由0)('>x f 及0>x 得a x 2->;由0)('<x f 及0>x 得a x 20-<<. 所以当0<a 时,函数)(x f 在(a 2,0-)上单调递减,在(+∞-,2a )上单调递增.……8分 (3)证明:由(2)知,当)0,(-∞∈a 时,函数)(x f 的最小值为)2(a f -,故a a a a aaa a a f a g 3)2ln(222)2ln()2()(2--=--+-=-=.2)2ln(322)2ln()('--=---⋅+-=a aa a a g ,令0)('=a g ,得221e a -=.当a 变化时,)('a g ,)(a g 的变化情况如下表:a)21,(2e --∞221e -)0,21(2e -)('a g+- )(a g↗极大值↘所以221e a -=是)(a g 在)0,(-∞上的唯一极值点,且是极大值点,从而也是)(a g 的最大值点. 所以当)0,(-∞∈a 时,)(a g 最大值222222222123ln 21)21(3)]21(2ln[21)21(ee e e e e e e g =+-=-⨯--⨯--=-=, 即当)0,(-∞∈a 时,221)(e a g ≤.……………………………………………………14分。

相关文档
最新文档