江苏省南京市第二十九中学2020-2021学年高二下学期3月月考数学试题 Word版含答案

合集下载

江苏省南京市鼓楼区第二十九中学、鼓实四校2022-2023学年八年级上学期期中数学试题(含答案)

江苏省南京市鼓楼区第二十九中学、鼓实四校2022-2023学年八年级上学期期中数学试题(含答案)

2022—2023学年第一学期期中学情调研测试八年级数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列几组数中,能构成直角三角形三边的是( )A .1,1,2B .2,3,4C .3,4,5D .4,5,62.下列剪纸作品都是轴对称图形.其中对称轴条数最多的作品是( )A .B .C .D . 3.关于全等图形的描述,下列说法正确的是( ) A .形状相同的图形 B .面积相等的图形C .能够完全重合的图形D .周长相等的图形4.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( ) A .12 B .15 C .12或15 D .185.如图,有两个三棱锥,其中甲、乙、丙、丁分别表示△ABC ,△ACD ,△EFG ,△EGH .若∠ACB =∠CAD =∠EFG =∠EGH =70°,∠BAC =∠ACD =∠EGF =∠EHG =50°,则下列叙述正确的是( )A .甲、乙全等,丙、丁全等B .甲、乙全等,丙、丁不全等C .甲、乙不全等,丙、丁全等D .甲、乙不全等,丙、丁不全等 6.如图,在△ABC 中,∠C =90°,点D 是BC 上的一点,且BD =2,DC =3,则22AB AD的值为( )A .4B .9C .16D .25二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.已知等腰△ABC ,AC =AB ,∠A =70°,则∠B =______°.8.在Rt △ABC 中,CD 是斜边AB 上的中线,如果CD =2.4cm ,那么AB =______cm .9.等腰三角形的____________互相重合.10.如图,用符号语言表示“角平分线上的点到角的两边距离相等”:因为______,所以PC=PD.11.如图,点E,F在BC上,BE=CF,∠A=∠D.请添加一个条件______,使△ABF≌△DCE.12.如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为______.13.如图,四边形ABCD的对角线AC、BD相交于点O,△ABO≌△ADO.下列结论:①AC⊥BD:②CB=CD;③△ABC≌△ADC:④DA=DC.其中正确结论的序号是______.14.如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P 是BC边上一动点,则DP长的最小值为______.。

南京市第二十九中学2022-2023学年高二下学期3月月考数学试题(解析版)

南京市第二十九中学2022-2023学年高二下学期3月月考数学试题(解析版)

【解析】
【分析】对于选项 A:利用分步计数原理求解判断;对于选项 B:按 1,1,2 分组求解判断;
对于选项 C:根据每家企业至少分派 1 名医生,且医生甲必须到 A 企业,分 A 企业分 2 人和
1 人两类求解判断;对于选项 D:分 C 企业没有派医生去和派 1 名医生两类求解判断.
【详解】对于选项 A:所有不同分派方案共有 34 种,故错误;
【详解】2 至 8 这 7 个数中质数有 4 个,从 7 个数中取 2 个,共有 C72 21个结果,
取出
2
个数都为质数,有 C24
6
个结果,所以所求概率
P
6 21
2 7

故选:B
4. 已知 m 0 ,且152022 m 恰能被 14 整除,则 m 的取值可以是( )
A. 1
B. 12
C. 7
2023x1
C 1 1 2022 2023
2022x1
2022
2023x
2023
2022x
0

所以,1 x4 1 2x5 1 2023x 2022 1 2022x 2023 的展开式中含 x 的项为 6x,其系
数q 6.
依题意得 m n p C62 C36 C64 15 20 15 50 ,
3
2
2 3
6
2
2 3
3.
故选:C
2.

P(A|B)=P(B|A)=
1 2
,P(A)= 1 3
,则 P(B)等于(

A. 1
2
【答案】B 【解析】
1
B.
3
1
C.
4
1
D.

2021-2022学年江苏省无锡市太湖高级中学高二年级下册学期3月月考数学试题【含答案】

2021-2022学年江苏省无锡市太湖高级中学高二年级下册学期3月月考数学试题【含答案】

2021-2022学年江苏省无锡市太湖高二下学期3月月考数学试题一、单选题1.函数的导数是( )()cos 2f x x =A .B .C .D .2cos 2x 2cos 2x-2sin 2x2sin 2x-D【分析】根据复合函数求导法则即可求解.【详解】令,则.2u x =cos y u =(cos )()(sin )sin .x u x y y u u x u x '''=⋅=⋅=-=-''2222故选:D2.函数f (x )=ex -ex ,x ∈的单调递增区间是( )R A .(0,+∞)B .(-∞,0)C .(-∞,1)D .(1,+∞)D【分析】求得,令,即可求得单调增区间.()f x '()0f x '>【详解】由题意知,f ′(x )=e x -e ,令f ′(x )>0,解得x >1,故的单调增区间为.()f x ()1,+∞故选:D.本题考查利用导数研究函数的单调区间,属简单题.3.2021年重庆市实行“”新高考模式,学生选科时语文、数学、英语三科必选,312++物理、历史两科中选择1科,政治、地理、化学、生物四科中选择2科,则学生不同的选科方案共有( )A .8种B .12种C .15种D .20种B【分析】先求得物理、历史两科中选择1科的选法,再求得政治、地理、化学、生物四科中选择2科的选法,根据乘法计数原理,即可求得答案.【详解】解:由题意得:物理、历史两科中选择1科,有种选法,122C =政治、地理、化学、生物四科中选择2科,有种选法,246C =所以学生不同的选科方案共有种.2612⨯=故选:B4.已知函数f (x )可导,且满足,则函数y =f (x )在x =3处的导0(3)l (m2i 3)x f f x x ∆→-+∆=∆数为( )A .-1B .-2C .1D .2B【分析】根据导数的定义即可得到答案.【详解】由题意,,所以()()()()()3333limlim3x x f f x f x f f xx∆→∆→-+∆+∆-=-=-∆'∆.()32f '=-故选:B.5.已知函数的图象在处的切线与函数的图象相切,则实数()2f x x =1x =()e xg x a ==a A BCD.B【分析】先求函数的图象在处的切线,再根据该切线也是函数()2f x x =1x =图象的切线,设出切点即可求解.()e xg x a =【详解】由,得,则,()2f x x =()2f x x'=()12f '=又,所以函数的图象在处的切线为,即.(1)1f =()2f x x =1x =12(1)y x -=-21y x =-设与函数的图象相切于点,21y x =-()e x g x a =00(,)x y 由,可得e ()x g x a '=0000e ()2,e ()21,x x g x a g x x a⎧==⎪⎪⎨⎪==-⎩'⎪解得32031,e 22x a ==故选B.本题考查导数的几何意义与函数图象的切线问题.已知切点时,可以直接利用导数求解;切点未知时,一般设出切点,再利用导数和切点同时在切线和函数图象上列方程(组)求解.6.将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( )A .60种B .120种C .240种D .480种C【分析】先确定有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,然后利用组合,排列,乘法原理求得.【详解】根据题意,有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,可以先从5名志愿者中任选2人,组成一个小组,有种选法;然后连同其余三人,25C 看成四个元素,四个项目看成四个不同的位置,四个不同的元素在四个不同的位置的排列方法数有4!种,根据乘法原理,完成这件事,共有种不同的分配方254!240C ⨯=案,故选:C.本题考查排列组合的应用问题,属基础题,关键是首先确定人数的分配情况,然后利用先选后排思想求解.7.设直线与函数的图像分别交于点,则当达到最x t =2(),()ln f x x g x x ==,M N MN 小时的值为tA .1B .CD 12D【详解】由题,不妨令,则,令2ln MN x x=-(0)x >2()ln h x x x =-1'()2h x x x =-解得时,,当时,,所'()0h x =x x ∈'()0h x <)x ∈+∞'()0h x >以当时,达到最小.即.x =MN t =8.已知函数的定义域为,若在上为增函数,则()f x ()0+∞,()*()k f x y k x =∈N ()0+∞,称为“阶比增函数”.若函数为“阶比增函数",则实数的()f x k 2()ln f x m x x x =+-1m 取值范围是( )A .B .C .D .1,4⎛⎤-∞- ⎥⎝⎦1,4⎛⎫-∞- ⎪⎝⎭1,4⎡⎫-+∞⎪⎢⎣⎭1,4⎛⎫-+∞ ⎪⎝⎭A【分析】由题知在上为增函数,故令()ln f x mx x x x =+-()0+∞,,进而在上恒成立,()ln ,0mg x x x x x =+->()2221'10m x x m g x x x x --=-+-=≥()0+∞,即在上恒成立,再求函数最值即可.2m x x ≤-()0+∞,()2,0y x x x =-∈+∞,【详解】解:因为函数为“阶比增函数”,2()ln f x m x x x =+-1所以函数在上为增函数,()ln f x mx x x x =+-()0+∞,所以令,()ln ,0mg x x x x x =+->故在上恒成立,()2221'10m x x mg x x x x --=-+-=≥()0+∞,所以在上恒成立,2m x x ≤-()0+∞,由于,()22111,0244y x x x x ⎛⎫=-=--≥-∈+∞ ⎪⎝⎭,所以.()2min14m x x ≤-=-故实数的取值范围是m 1,4⎛⎤-∞-⎥⎝⎦故选:A 二、多选题9.函数的导函数的图象如图所示,以下命题正确的是( )()y f x =()y f x '=A .函数在处取得最小值B .是函数的极值点()y f x =4x =-0x =()y f x =C .在区间上单调递增D .在处切线的斜率大于零()y f x =(4,1)-()y f x =1x =ACD【分析】根据导函数图象可判定导函数的符号,从而确定函数的单调性,得到极值点,以及根据导数的几何意义可知在某点处的导数即为在该点处的切线斜率.【详解】根据导函数图象可知当时,,在时,(,4)x ∈-∞-()0f x '<(4,)x ∈-+∞,()0f x '≥函数在上单调递减,在上单调递增,且故C 正确;∴()y f x =(,4)-∞-(4,)-+∞易知函数在处取得最小值,故正确;()y f x =4x =-A 在上单调递增,故不是函数的极值点,故B 不正确; (4,)-+∞0x =()y f x =函数在处的导数大于0,切线的斜率大于零,故D 正确.()y f x =1x =∴故选:ACD .10.函数的一个零点在区间内,则实数a 的可能取值是( )2()2x f x ax =--(1,2)A .0B .1C .2D .3BC【分析】根据初等函数的单调性判断函数的单调性,根据零点存在定()22x f x a x =--理可得,从而可得结果.()()120f f <【详解】因为函数在定义域上单调递增,22x y y x ==-、{}0x x ≠所以函数在上单调递增,()22x f x a x =--{}0x x ≠由函数的一个零点在区间内,()22x f x a x =--()1,2得,()()()()12(22)(41)30f f a a a a ⨯=----=-⨯-<解得,0<<3a 故选:BC11.用0、1、2、3、4这五个数字组成无重复数字的自然数,如果十位上的数字比百位上的数字和个位上的数字都小,则称这个数为“凹数”,如301、423等都是“凹数”,则下列结论中正确的是( )A .组成的三位数的个数为60B .在组成的三位数中,偶数的个数为30C .在组成的三位数中,“凹数”的个数为20D .在组成的三位数中,“凹数”的个数为24BC【分析】对于A ,因为百位数上的数字不能为零,然后利用分步乘法原理即可判断;对于B ,将所以三位数的偶数分为两类,①个位数为,②个位数为或,然后根024据分步乘法原理及分类加法原理即可判断;对于C 、D ,将这些“凹数”分为三类,①十位为,②十位为,③十位为,然后根012据分步乘法原理及分类加法原理即可得判断.【详解】对于A ,因为百位数上的数字不能为零,所以组成的三位数的个数为,故A 不正确;124444348A A =⨯⨯=对于B ,将所以三位数的偶数分为两类,①个位数为,则有种,0244312A =⨯=②个位数为或,则有种,24A A A =⨯⨯=11123323318所以在组成的三位数中,偶数的个数为,故B 正确;121830+=对于C 、D ,将这些“凹数”分为三类,①十位为,则有种,0244312A =⨯=②十位为,则有种,123326A =⨯=③十位为,则有种,222212A =⨯=所以在组成的三位数中,“凹数”的个数为, 故C 正确,D 不正确.126220++=故选:BC.12.已知函数有两个互异的极值点,下列32()(0)f x ax bx cx d a =+++≠()1212,x x x x <说话正确的是( )A .230b ac ->B .有三个零点的充要条件是12()()0f x f x <C .时,在区间上单调递减0a >()f x 12(,)x x D .时,为极大值,为极小值0a <1()f x 2()f x ABC求导,根据有两个互异的极值点逐项验证.2()32f x ax bx c '=++()f x ()1212,x x x x <【详解】因为函数,32()(0)f x ax bx cx d a =+++≠所以,2()32f x ax bx c '=++因为有两个互异的极值点,()f x ()1212,x x x x <所以,故A 正确;()()22212430b ac b ac ∆=-=->所以若有三个零点则,故B 正确;()f x 12()()0f x f x <当时,开口向上,则时,,所以区0a >2()32f x ax bx c '=++12(,)x x x ∈()0f x '<()f x 间上单调递减,故C 正确;12(,)x x 当时,当或时,,当时,,所以为极0a <1x x <2x x >()0f x '<12x x x <<()0f x '>1()f x小值,为极大值,故D 错误;2()f x 故选:ABC本题主要考查导数与函数的极值,导数与函数的零点,还考查了运算求解的能力,属于中档题.三、填空题13.已知,则________.34m m C C =21889m m m C C C --++=120【分析】根据已知条件及组合数公式求得,再利用组合数的性质m 递推关系及组合数公式即可求解11m m m n n nC C C -+=+【详解】由,得,解得.34mmC C=!!!()!!()!m m m m =--33447m =所以.562188988997677910120m m m C C C C C C C C C --++=++==+=故答案为.12014.若函数的极值点为,则__________.()e xf x x =0x x =()0f x =1e -1e--【分析】根据求导公式和运算法则可得,结合极值点的定义求出()e e x xf x x ='+,进而求出即可.01x =-(1)f -【详解】由题意得,,所以,()e x f x x =()e e x x f x x ='+因为是函数的极值点,0x x =()f x 所以,即,0000()e e 0x x f x x '=+=00e (1)0x x +=解得,易得-1是极小值点,所以.01x =-01()(1)e f x f =-=-故答案为.1e-15.电影院一排10个位置,甲、乙、丙三人去看电影,要求他们坐在同一排,且每人左右两边都有空位的坐法种数为____________.120【分析】根据题意,先排好7个空座位,由于空座位是相同的,形成6个空位是符合条件的,再将甲、乙、丙3人安排到这6个空位上即可.【详解】解:10个座位中,除了甲、乙、丙3人的座位,还有7个座位,形成6个空位,所以只需将甲、乙、丙3人安排到这6个空位上即可,故有(种).36654120A =´´=所以每人左右两边都有空位的坐法种数为.120故120四、双空题16.己知函数,若,且,则实数k 的取值范231,1()1,1x x f x x x +≤⎧=⎨->⎩n m >()()f n f m k ==围为_______,设,则t 的取值范围为______________.t n m =- 04k <≤171,12⎤⎥⎦【分析】画出函数图象,由图象得出k 的取值范围,用表示出,结合二次函数的n m 性质求得的取值范围.t n m =-【详解】画出图象如下图所示,()fx 当时,,令,解得1x =(1)3114f =⨯+=()2140x x -=>x =因为,()()f n f m k ==由图象可知,;04k <≤由得,,且()(),n m f n f m >=2311m n+=-223n m -=1n <所以,(222121333n t n m n n n n -=-=-=-++<≤结合二次函数的性质可知,当时,取得最大值为131223n =-=⎛⎫⨯- ⎪⎝⎭t,当取得最小值为.2133217322312⎛⎫-⨯++= ⎪⎝⎭n =t212133-⨯+=所以的取值范围是.t 171,12⎤-⎥⎦故;.04k <≤171,12⎤⎥⎦五、解答题17.已知函数.2ln y x x =(1)求这个函数的图象在处的切线方程;1x =(2)若过点的直线l 与这个函数图象相切,求l 的方程.(0,0)(1);1y x =-(2).1e y x=-【分析】(1)令,根据导数的几何意义求出,结合和直线的点斜()y f x =(1)f '(1)0f =式方程即可求出切线方程;(2)设切点为,根据导数的几何意义和两点坐标求直线斜率公式分别求出切2000(,ln )x x x 线的斜率,列出方程,解方程可得,进而求出斜率,利用直线的点斜式方程即10e -=x 可得出结果.【详解】(1)令,则,()y f x =2()ln f x x x =函数的定义域为,,()f x (0,)+∞()2ln f x x x x '=+所以,又,(1)2ln111f '=+=(1)0f =所以函数在处的切线方程为;1x =1y x =-(2)设切点为,2000(,ln )x x x 由(1)知,,0000()2ln f x x x x '=+又直线l 的斜率为,200000ln ln l x x k x x x ==有,解得,0002ln x x x +00ln x x =10e -=x 所以,100ln e l k x x -==-所以直线l 的方程为.1e y x=-18.(1)若,求正整数;33210n n A A =n (2)已知,求.56711710n n nC C C -=8n C (1)8(2)28【分析】(1)利用排列数公式可得,即求;()()()()221221012n n n n n n --=--(2)利用组合数公式可得,即求.223420n n -+=【详解】(1)由得,33210n n A A =,又,()()()()221221012n n n n n n --=--*3,N n n ≥∈∴,即,()()22152n n -=-8n =∴正整数为8.n (2)由得,56711710n n nC C C -=,()()()!5!!6!7!7!5!6!107!n n n n n n --⨯--=⨯∴即,()()6761660n n n ----=223420n n -+=解得或,又,2n =21n =05n ≤≤∴,2n =∴.88228n C C ==19.新冠疫情爆发后,某企业利用部分人工转产口罩.每生产万件(每件5个口罩),x 需投入固定成本5万元,流动成本万元,当月产量小于7万件时,()C x (万元);当月产量不小于7万件时,(万元).口()2123C x x x=+()36ln 17e C x x x x =++-罩销售价为6元/件,且生产的口罩能全部售出.(1)写出月利润(万元)关于月产量(万件)的函数解析式;(注:月利润月销售()p x x =收入固定成本流动成本)--(2)当月产量约为多少万件时,生产的口罩所获月利润最大?最大月利润是多少?(1);(2)当月产量约为万件时,所获月利润最大,()23145,07312ln ,7x x x p x e x x x ⎧-+-<<⎪⎪=⎨⎪--≥⎪⎩3e 最大利润为8万元.(1)根据月利润等于销售额减去投入总成本减去固定成本,分时和两种07x <<7x ≥情况,得到关于的分段函数关系式;()p x x (2)当时,根据二次函数求最大值的方法求的最大值,当时,根07x <<()p x 7x ≥据函数的单调性求最大值,最后比较取最大的即可.【详解】(1)口罩销售价为6元/件,则万件口罩销售收入为万元.x 6x 依题意得,当时,,07x <<()22116254533p x x x x x x =---=-+-当时,,7x ≥()33661712l ln 5n x e e p x x x x x x ⎛⎫=-++--=--⎪⎝⎭∴,()23145,07312ln ,7x x x p x e x x x ⎧-+-<<⎪⎪=⎨⎪--≥⎪⎩(2)当时,,07x <<()()21673p x x =--+∴当时,的最大值为(万元),6x =()p x ()67p =当时,,∴,7x ≥()3ln 12x e p x x =--()33221e e xp x x x x -'=-+=∴当时,单调递增,当,单调递减,37x e ≤<()p x 3x e ≥()p x ∴当时,取最大值(万元),3x e =()p x ()3312ln 18p e e=--=∵,∴当时,取得最大值8万元,87>3x e =()p x 当月产量约为万件时,所获月利润最大,最大利润为8万元.3e 本题主要考查了根据实际问题选择合适的函数类型的能力,以及利用函数的单调性求最值的能力,属于中档题.20.设函数.()()1ln 0f x ax x a x=+>(1)当时,求的极值;1a =()f x(2)如果≥在上恒成立,求实数的取值范围.()f x ax ()0,∞+a (1)有极小值,没有极大值;(2).()11f =20,e ⎛⎤ ⎥⎝⎦【详解】试题分析:(1)当时,求导令导函数等于零,列表,通过表格找到函数1a =极值即可;(2)求恒成立问题一般要分离参数,构造函数求其最小值,只需最小值大于零即可求出取值范围.a 试题解析:(1)由已知,当时,,∴,1a =()1ln f x x x x =+()21ln 1f x x x +-'=()312f x x x +'=>'∴在上单调递增,且,()f x '()0,+∞()10f '=,随变化如下表:()f x '()f x x x()0,11()1,+∞()f x '-+()f x ↘极小值↗∴有极小值,没有极大值. ()f x ()11f =(2)(方法一)由题可得恒成立,()211ln a x x -≤当时,上式恒成立;x e ≥当时,,又,故0x e <<()211ln a x x ≤-0a >()211ln x x a≥-令,则, 令,()()21ln h x x x =-()()12ln h x x x =-'()0h x '=x =∴当 时, ,0x <<()0h x '>x e <<()0h x '<∴,()(max 12eh x he ==-=∴,解得:,∴的取值范围是. 12ea ≥20a e <≤a 20,e ⎛⎤ ⎥⎝⎦(方法二)由题可得, 设,则,()()1ln ,0g x ax x ax x x =+->()21ln g x a x x ='-∵,∴在上单调递增,,,0a >()g x '()0,+∞()110g '=-<12110a ag e e ⎛⎫=-> ⎪'⎝⎭∴使得,则, 101,a x e ⎛⎫∃∈ ⎪⎝⎭()00g x '=2001ln a x x =由知,且时, ,时, ,0a >01x >00x x <<()0g x '<0x x >()0g x '>∴,∴,∴∴,()()00min 002ln 10ln x g x g x x x -==≥01ln 2x ≥0x ≥2a e ≤∴的取值范围是.a 20,e ⎛⎤ ⎥⎝⎦(方法三)由题可得恒成立,()21ln 0f x a ax a xx -=+-≥令,则, ()21ln h x a x a x =+-()h x'=∴时, ,0x<<()0h x '<x >,∴,()0h x '>()min 20h x a a ==≥∴,解得:,∴的取值范围是. 2ln 1a ≥2a e ≤a 20,e ⎛⎤ ⎥⎝⎦21.如图,从左到右共有5个空格.(1)向5个空格中放入0,1,2,3,4这5个数,一共可组成多少个不同的5位奇数;(2)用红,黄,蓝三种颜色给5个空格上色,要求相邻空格不同色,问一共有多少种涂色方案;(3)向这5个空格中放入7个不同的小球,要求每个空格都有球,则有多少种不同的方法?(1)36个;(2)48种;(3)16800种.【分析】(1)先排个位,再排首位,最后排其他位置,并用分步计数原理求解即可;(2)按要求分析每个格子的颜色数量,顺序填涂,用分步计数原理求解即可;(3)由题意可先分成5堆,在把分好的5堆排到5个位置即可求解【详解】(1)个位有放法,首位有放法,其余三位任意放,12C 13C 共有个五位奇数.11323336C C A =(2)第⼀个格⼦有3种涂色方案,剩下每个格⼦均有2种涂色方案,共有种涂色方案.43248⨯=(3)7个不同的球可分为1,1,1,1,3这样的5堆,有种分发,37C 在5个位置全排列有种方法;35754200C A =7个不同的球可分为1,1,1,2,2这样的5堆,有种分发,227522C C A 在5个位置全排列有种方法;2257552212600C C A A =所以共有种方法.42001260016800+=22.已知函数.323()22f x x ax b=-+(1)讨论的单调性;()f x (2)是否存在,使得在区间的最小值为且最大值为?若存在,求出,a b ()f x [0,1]1-1a ,b 的所有值;若不存在,说明理由.(1)当时,)在上单调递增,在上单调递减;0a >()f x (),0,,2a ⎛⎫-∞+∞⎪⎝⎭0,2a ⎛⎫ ⎪⎝⎭当时,在单调递增.0a =()f x (),-∞+∞当时,)在上单调递增,在上单调递减.0a <()f x (),,0,2a ⎛⎫-∞+∞ ⎪⎝⎭,02a ⎛⎫ ⎪⎝⎭(2)或0,1a b ==-8,13a b ==【分析】(1)由,得出,求出的两根,比较根的大小并分类讨论,()f x ()'f x ()0f x '=进而求出函数的单调性;()f x (2)利用(1)中的单调区间讨论在上的最值,最终确定参数的值.()f x ()f x []0,1,a b 【详解】(1)由,得.323()22f x x ax b =-+()2()6332f x x ax x x a '=-=-令,即,解得或.()0f x '=()320x x a -=0x =2a x =若,则当时,;0a >(),0,2a x ⎛⎫∈-∞+∞ ⎪⎝⎭ ()0f x '>当时,.0,2a x ⎛⎫∈ ⎪⎝⎭()0f x '<所以)在上单调递增,在上单调递减.()f x (),0,,2a ⎛⎫-∞+∞⎪⎝⎭0,2a ⎛⎫ ⎪⎝⎭若,则在上恒成立,0a =2()60f x x '=≥R 所以在单调递增.()f x (),-∞+∞若,则当时,;0a <(),0,2a x ⎛⎫∈-∞+∞ ⎪⎝⎭ ()0f x '>当时,.,02a x ⎛⎫∈ ⎪⎝⎭()0f x '<所以)在上单调递增,在上单调递减.()f x (),,0,2a ⎛⎫-∞+∞ ⎪⎝⎭,02a ⎛⎫ ⎪⎝⎭(2)满足题设条件的存在.,a b 当时,由(1)知,在单调递增,0a ≤()f x []0,1所以在区间的最小值为,最大值为.()f x []0,1()0f b =()3122f a b =-+此时满足题设条件当且仅当,,即.,a b 1b =-3212a b -+=0,1a b ==-当即时,由(1)知,在单调递减,12a≥2a ≥()f x []0,1所以在区间的最大值为,最小值为.()f x []0,1()0f b =()3122f a b =-+此时满足题设条件当且仅当,,即.,a b 3212a b -+=-1b =8,13a b ==(ii)当即时,由(1)知,012a<<02a <<)在上单调递减,在上单调递增.()f x 0,2a ⎡⎫⎪⎢⎣⎭,12a ⎛⎤ ⎥⎝⎦当时,取得极小值即为的最小值,2ax =()f x ()f x 3233()222228a a a a f a b b ⎛⎫⎛⎫=⨯-⨯⨯+=-+ ⎪ ⎪⎝⎭⎝⎭的最大值为或.()f x ()0f b =()3122f a b =-+若,,则矛盾.318a b -+=-1b =a =02a <<若,则或,与矛盾318a b -+=-3212a b -+=a =a =-0a =02a <<综上,当或时,在区间的最小值为且最大值为.0,1a b ==-8,13a b ==()f x [0,1]1-1。

江苏省南京市第二十九中学2021-2022学年八年级下学期第一次月考语文试卷(解析)

江苏省南京市第二十九中学2021-2022学年八年级下学期第一次月考语文试卷(解析)

2021-2022学年江苏省南京二十九中八年级(下)第一次月考语文试卷参考答案与试题解析一、积累与应用(35分)1.(11分)阅读并完成问题。

2022年北京冬奥会为全世界奉献了一场精彩震hàn( )、美轮美奂的体育盛宴,(A)为国际社会摆脱新冠肺炎疫情jī( )绊、促进人类团结发挥了重要作用。

北京冬奥会已经结束,(B)人类追求“更快、更高、更强、更团结”的脚步却不会戛( )然而止。

(C)我们以冬奥会为舞台展现了新时代中国的繁荣进取、(D)为尚在局部冲突中折冲斡( )旋、仍受困扰、挑战不断的人类文明进程扬起了一面风帆。

(1)阅读以上文段,根据拼音写汉字或根据汉字写拼音。

①震 hàn 撼 ②jī 羁 绊③戛 jiá 然而止④斡 wò 旋(2)墩墩在摘抄上述文段时,漏抄了“更是以冬奥会为契机”。

请你帮他找一找,这个小分句应该补充到上述文段中的A、B、C、D哪个位置最合适?【分析】(1)本题考查字音、字形。

根据积累作答。

“hàn”写作“撼”;“jī”写作“羁”;“戛”读作“jiá”;“斡”读作“wò”。

(2)本题考查句子补充衔接。

联系上下文,结合语境综合分析。

由“更是以冬奥会为契机”中的“更”字可知,这句话应该与前一句话构成语意上的递进关系,由此可知,这句话放在D处最合适。

【解答】答案:(1)①撼②羁③jiá④wò(2)D2.(18分)根据课文内容填空。

(1) 窈窕淑女 ,君子好逑。

《诗经•关雎》)(2)四面竹树环合,寂寥无人,凄神寒骨, 悄怆幽邃 。

(柳宗元《小石潭记》)(3) 树梢树枝树根根 ,亲山亲水有亲人。

《回延安》)(4)陶渊明《桃花源记》中描绘出桃花林绝美景色的句子是“ 芳草鲜美 , 落英缤纷 ”。

(5)古诗常常会成为现代歌词作者的灵感之源。

比如歌曲《在水一方》中的“我愿逆流而上,依偎在她身旁。

无奈前有险滩,道路又远又长”就化用了《诗经•蒹葭》中的“ 溯洄从之 , 道阻且长 ”这两句诗。

2020-2021 学年度第二学期四月月考 高二数学(理)测试题

2020-2021 学年度第二学期四月月考 高二数学(理)测试题

即Sk + ak+1 = 1 − (k + 1)ak+1.
又Sk
=
1

kak
=
k,
k+1
所以 k
k+1
+
ak+1
=
1

(k
+
1)ak+1,
从而ak+1
=
1 (k+1)(k+2)
=
1

(k+1)[(k+1)+1]
即 n = k + 1 时,猜想也成立.
故由①和②可知猜想成立. 【解析】本题考查数列的递推公式的应用,数列的和与数列的通项公式之间的关系,归纳推理及运
于 2 的偶数可以表示为两个素数的和”,如 = + .在不超过 30 的素数中,随机选取两个不
同的数,其和等于 30 的概率是__________________. 16、( − − ) 的展开式中, 的系数为_________________. (用数字填写答案)
三、解答题(本大题共 6 小题,第 17 题 10 分,其余题 12 分,共 70 分) 17、(10 分)已知 5 名同学站一排,要求甲站中间,乙不站两端,记满足条件的所有不同的排法种
k(k+1)
n
=
k
+
1
时,由题意Sk
+
ak+1
=
1

(k
+
1)ak+1,结合Sk
=
1

kak
=
k ,则 k
k+1
k+1

江苏省南京市宁海中学2023届高三下学期4月月考数学试题

江苏省南京市宁海中学2023届高三下学期4月月考数学试题

值时, DNA 的数量 X n 与扩增次数 n 满足 lg Xn n lg1 p lg X0 ,其中 p 为扩增效率,
X 0 为 DNA 的初始数量.已知某被测标本 DNA 扩增10 次后,数量变为原来的100 倍,那么
该样本的扩增效率 p 约为( )
(参考数据:100.2 1.585 ,100.2 0.631)
cos nx Pn (cos x) ,这些多项式 Pn (t) 称为切比雪夫(P.L.Tschebyscheff)多项式.则 ()
A. P3(t) 4t3 3t C. a1 a2 a2 an 2
B.当 n 3 时, a0 0 D. sin18 5 1
4
三、填空题
13.已知点
试卷第 2 页,共 7 页
给出下列说法,其中正确的是( ) A.从 2016 年至 2020 年国内生产总值逐年递增; B.从 2016 年至 2020 年国内生产总值增长速度逐年递减; C.从 2016 年至 2020 年第三产业增加值占国内生产总值比重逐年递增; D.从 2016 年至 2020 年第二产业增加值占国内生产总值比重逐年递减.
BN 分别交 e C :x2 y 12 1于异于点 B 的点 P ,Q ,设直线 PQ 的斜率为 k2 ,直线 BM ,
BN 的斜率分别为 k3, k4 . ①求证: k3 k4 为定值; ②求证:直线 PQ 过定点. 22.已知函数 f (x) ln(2x 1) m(2x 1) 1 . (1)若 y f (x) 在 x 2 处的切线与直线 3x y 2017 0垂直,求 y f (x) 的极值; (2)若函数 y f (x) 的图象恒在直线 y 1的下方. ①求实数 m 的取值范围; ②求证:对任意正整数 n 1,都有 ln[(2n)!] 4n(n 1) .

江苏省南京市第二十九中学2018-2019学年第一学期高二年级期中考试数学(文)试卷

江苏省南京市第二十九中学2018-2019学年第一学期高二年级期中考试数学(文)试卷

2018-2019学年江苏省南京市二十九中高二第一学期期中试卷(文)一、填空题(本大题共14题,每小题5分,共计70分.)1. 命题"∃x ∈R ,x 2>9"的否定是.2. 命题"1"x >是2"1"x >的条件(填“充要”、“充分不必要”、“必要不充分”、“既不充分也不必要”中的一个).3. 函数2()f x x =在区间[1 , 1.1]上的平均变化率是.4. 已知函数()2xf x e x =-的到导数为'()f x ,则'()f x 的值是.5. 已知直线1:l 440,ax y ++=2:l 20,x ay ++=若12//l l ,则a 的值是.6. 已知点A (1,2),B (3, 4),若直线50x ky ++=与线段AB 有公共点,则实数k 取值范围是.7. 若x ,y 满足条件 x ≥0,x +2y ≥3 2x +y ≤3,,则z =x −y 的最小值是. 8. 已知双曲线22x y k -=的一个焦点是抛物线216y k =,则k 的值是.9. 若圆224x y +=与圆22160x y x m +-+=相外切,则实数m 的值是.10. 若经过椭圆22221(0)x y a b a b +=>>的焦点且垂直于x 轴的直线被椭圆截得的线段长为2a,则该椭圆的离心率为. 11. 已知椭圆222214x y a a +=-的左右焦点分别为1F ,2F ,若在椭圆上存在点P 使得12PF PF ⊥,且12PF F ∆的面积是2,则2a 的值是.12. 已知圆223)(4)4x y -+-=(的圆心为C, 点P ,Q 在圆上,若C Q P ∆则C到直线PQ 的距离为.13. 在平面直角坐标系xOy 中,已知点A (1, 0),B (4, 0),若直线y+m=0x -上存在唯一的点P 使得PB=2PA ,则m 的值是.14. 在平面直角坐标系xOy 中,已知双曲线22221(t [2,3])ln txt y -=∈的右焦点为F ,过F 作双曲线的渐进线的垂线,垂足为H ,则O FH ∆的面积的取值范围为.二、解答题(本大题共6题,共计90分)15. (本小题满分:14分)已知命题p :221m+14x y m +=-表示双曲线,已知命题q :221m+26x y m +=-表示焦点在x 轴上的椭圆.(1)已知命题p 为真命题,求实数m 的取值范围;(2)已知命题“p 或q ”为真命题,“p 且q ”为假命题,求m 的取值范围.16. (本小题满分14分)在平面直角坐标系xOy中,已知直线21=-+与圆O: 222(r0)y x+=>交于M,N两个x y r点,且MN.(1)求M,N的坐标;(2)求过O,M,N三点的圆的方程.17. (本小题满分14分)已知点1A(,1),(2,1),2B -函数2()log f x x =.(1)过原点O 作曲线y f x =(),求切线的方程; (2)曲线122y f x x =≤≤()()上是否存在P ,使得过P 的切线与直线AB 平行?若存在,则求出点P 的横坐标,若不存在,则请说明理由.18. (本小题满分16分)在平面直角坐标系xoy 中,已知点A (0,a )(a 是正整数),抛物线2y px =的焦点是(0, 1),P 是抛物线上的动点.(1)求抛物线的方程;(2)若PA的最小值是求a的值.19. (本小题满分16分)设2()(1)ln 2m f x m x x nx =-++(m,n 是常数) (1)若m=0,且()f x 在(1, 2)上单调递减,求n 的取值范围;(2)若m>0,且n=-1,求()f x 的单调区间.20. (本小题满分16分)在平面直角坐标系xOy中,已知椭圆22221(0)x ya ba b+=>>的离心率12,焦点到相应准线的距离是3.(1)求椭圆的方程;(2)如图,设A是椭圆的左顶点,动圆过定点E(1, 0)和F(7, 0),且直线4x=交于点P,Q.①求证:AP, AQ斜率的积是定值;②设AP,AQ分别与椭圆交于点M,N,求证:直线MN 过点.参考答案一、填空题1. "∀x∈R,x2≤9"2. 充分不必要3. 2.14. 15. -26. [-3,-2]7. -38. 89. 28 10. 11. 6 12. 113.±14.ln21 42c ⎡⎤⎢⎥⎣⎦,二、解答题15.16.17.18.19.20.。

2022-2023学年江苏省南京市第二十九中学七年级上学期11月月考数学试卷带讲解

2022-2023学年江苏省南京市第二十九中学七年级上学期11月月考数学试卷带讲解

2022-2023学年第一学期11月份学情调研测试七年级数学试卷一、选择题(本大题共6小题,每小题3分,共18分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卷相应位置.......上)1.13-的倒数是()A.13 B.3 C.3- D.13-C【分析】根据互为倒数的两个数的乘积为1,即可求得.【详解】13-的倒数是3-.故选C.【点睛】本题考查倒数的定义.掌握互为倒数的两个数的乘积为1是解题关键.2.对于代数式1m-+的值,下列说法正确的是()A.比-1大B.比-1小C.比m大D.比m小D【分析】根据题意比较−1+m与−1的大小和−1+m与m的大小,应用差值法,当a−b>0,则a>b,当a−b<0,则a<b,逐项进行判定即可得出答案.【详解】解:根据题意可知,−1+m−(−1)=m,当m>0时,−1+m的值比−1大,当m<0时,−1+m的值比−1小,因为m的不确定,所以A选项不符合题意;B选项也不符合题意;−1+m−m=−1,因为−1<0,所以−1+m<m,所以C选项不符合题意,D选项比m小,符合题意.故选:D.【点睛】本题主要考查了代数式的值与不等式的性质,熟练应用相关知识进行求解是解决本题的关键.3.关于单项式223xy-,下列说法中正确的是()A.次数是3B.次数是2C.系数是23D.系数是-2A【分析】根据单项式的系数和次数的定义选出正确选项.【详解】A 选项正确,223xy -的次数是123+=;B 选项错误,223xy -的次数是123+=;C 选项错误,223xy -的系数是23-;D 选项错误,223xy -的系数是23-.故选:A .【点睛】本题考查单项式的系数和次数,解题的关键是掌握单项式的系数和次数的定义.4.解关于x 的方程13123x --=,下列去分母中,正确的是()A.11123x--= B.3236x --= C.()3231x --= D.()3236x --=D【分析】运用等式的性质,方程两边同时乘以6,计算即可.【详解】解:方程两边同时乘以6,得()3236x --=,故选:D .【点睛】本题考查解一元一次方程——去分母,注意方程两边同时乘以最简公分母,不要漏乘项,分子是多项式时,要看做一个整体加括号.5.有理数a 在数轴上的位置如图所示,下列各数中,在0到1之间的是()①1a --;②1a +;③2a -;④12a A.②③④ B.①③④C.①②③D.①②③④D【分析】根据数轴得到a 得取值范围,再代入各项进行分析判断即可;【详解】根据数轴可知,21a --<<,∴12a -<<,∴011a --<<,故①符合题意;∵21a --<<,∴11a -+<<0,∴01a +<<1,故②符合题意;∵21a --<<,∴12a <<,∴21a --<-<,∴01a <2-<,故③符合题意;∵12a <<,∴11122a <<,故④符合题意;符合题意的有①②③④;故选D .【点睛】本题主要考查了有理数比大小、数轴、绝对值的性质,准确分析计算是解题的关键.6.已知()20221232022012320221x a a x a x a x a x +=+++++ ,则20222021202020191a a a a a -+-+-+ 的值为()A.2022-B.1011- C.1- D.1D【分析】利用特殊值法,转化求解表达式的值即令1x =,求出代数式132021a a a ++⋅⋅⋅+,令=1x -,则01220220a a a a -+-⋅⋅⋅+=,两式相加减从而求出132021a a a ++⋅⋅⋅+、022022a a a ++⋅⋅⋅+的值,从而得出202220212020201910a a a a a a -+-+-⋅⋅⋅+=,令0x =,则()20220011a =+=,即可求解.【详解】解:令1x =,则()20222022012022112a a a ++⋅⋅⋅==++①,令=1x -,则01220220a a a a -+-⋅⋅⋅+=②,则①-②可得:202211320212022022a a a -=++⋅⋅⋅+=③,则+①②可得:202220210220222022a a a +++⋅⋅⋅+==④,则③-④可得:20212021202220212020201910220a a a a a a -+-+-⋅⋅⋅+-=-=,202220212020201910a a a a a a -+-+-⋅⋅⋅+=令0x =,则()20220011a =+=,∴202220212020201911a a a a a -+-+-⋅⋅⋅+=,故选:D .【点睛】本题考查代数式求值,利用特殊值法求出代数式132021a a a ++⋅⋅⋅+、022022a a a ++⋅⋅⋅+、0a 的值是解题的关键.二、填空题(每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卷相应位置.......上)7.月球的半径约为1738000米,1738000这个数用科学记数法表示为___________.1.738×106【详解】解:将1738000用科学记数法表示为1.738×106.故答案为1.738×106.【点睛】本题考查科学记数法—表示较大的数,掌握科学记数法的计数形式,难度不大.8.比较大小:﹣34_____﹣56.(填“<”、“>”或“=”).>【分析】先把两个分数通分,再根据两个负数比较大小的法则进行比较即可.【详解】∵39412-=-,510612-=-;99101012121212-=<-=,∴9101212->-,即3546->-.故答案为:>.【点睛】本题主要考查了有理数大小的比较,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.9.数轴上与原点距离小于227的整数点有___________个.7【分析】根据数轴的定义即可得.【详解】221377=,则数轴上与原点距离小于227的整数点有3,2,1,0,1,2,3---,共7个,故答案为:7.【点睛】本题考查了数轴,熟练掌握数轴的定义是解题关键.10.已知单项式33m x y 与14nx y -和是单项式,则m n -=______.-2【分析】根据同类项的定义即可求得n ,m 的值,然后代入求得代数式的值即可.【详解】解:∵单项式33m x y 与14nx y -和是单项式,∴33m x y 与14nx y -是同类项,∴n =3,m =1,∴132m n -=-=-,故答案为:-2.【点睛】本题考查了代数式求值和同类项的定义,同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点.11.若()1230m m x---=是关于x 的一元一次方程,则m =___________.2-【分析】根据一元一次方程的定义:只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,即可解答.【详解】解:由一元一次方程的定义得2011m m -≠⎧⎨-=⎩,解得:2m =-.故答案为:2-.【点睛】本题主要考查了一元一次方程的概念,只含有一个未知数,未知数的指数是1,一次项系数不是0.12.当k =_________________时,多项式()221325x k xy y xy +----中不含xy 项.3【分析】先合并同类项,然后使xy 的项的系数为0,即可得出答案.【详解】解:()221325x k xy y xy +----=()22335x k xy y +---,∵多项式不含xy 项,∴k-3=0,解得:k=3.故答案为:3.【点睛】本题考查了多项式的知识,属于基础题,解答本题的关键是掌握合并同类项的法则.13.如图,数轴上的点A 、B 对应的数分别为a 、b ,且3AB =,则代数式331a b -+的值是____.-8【分析】先根据数轴得出b >a ,利用两点距离公式得出b -a =3,整体代入计算即可.【详解】解:∵数轴上的点A 、B 对应的数分别为a 、b ,且3AB =,b >a ,∴b -a =3,∴()331313318a b b a -+=--+=-⨯+=-.故答案为:-8.【点睛】本题考查利用数轴比较大小,数轴上两点距离,式子的值,求代数式的值,关键是利用两点距离求出b -a =3.14.已知20212022x =,则2112x x x x x ---+++-+的值是___.20212022【分析】先根据20212022x =,确定0<20212022x =<1,得出201001020x x x x x --++<,<,>,>,>,然后化简绝对值()()()-2+112x x x x x --+++-+=x 代入求值即可.【详解】解:0<20212022x =<1,∴201001020x x x x x --++<,<,>,>,>,∴2112x x x x x ---+++-+,=()()()-2+112x x x x x --+++-+,=2+112x x x x x -+-+++--,=x ,=20212022.故答案为20212022.【点睛】本题考查比较大小,式子的符号,绝对值化简求值,掌握比较大小,式子的符号,绝对值化简求值方法是解题关键.15.观察下列两行数:3,5,7,9,11,13,15,17,19,…4,7,10,13,16,19,22,25,…探究发现:第1个相同的数是7,第2个相同的数是13,…,若第n 个相同的数是1801,则n 等于___________.300【分析】根据题目中的数据,可以发现数字的变化特点,数列中7,13,19,…,的第n 项是数列4,7,10,13,16,19,22,25,…,第2n 项,然后列方程3(2n )+1=1801,从而可以求得n 的值即可.【详解】解:由题目中的数据可知,3,5,7,9,11,13,15,17,19,…第一行是一些连续的奇数,规律为2m -1,4,7,10,13,16,19,22,25,…第二行数列,从第2项起,每一项都比前一项大3,规律为3k +1,两个数列中相同的数组成新数列为:7,13,19,…,新数列是第二行数列的偶数项第2项,,第4项,第6项,…,组成,∴数列中7,13,19,…,的第n 项是数列4,7,10,13,16,19,22,25,…,第2n 项∴3(2n )+1=1801∴n =300,故答案为:300.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现数字的变化规律,列出方程是解题关键.16.如图所示,边长a 与6(a 小于6)的两个正方形并排放在一起,则阴影部分的面积是_____.18【分析】连接AF DB ,,根据图形将阴影部分面积转化为AFD 的面积,再由等底同高面积相等求解即可.【详解】解:如下图,连接AF DB ,,∵AEG 与AGF 等底同高,∴AEG AGF S S = ,∴阴影部分面积等于AFD 的面积,∵AFD 与ABD 等底同高,∴AFD ABD S S = ,∵221161822ABD S AD ==⨯= ,∴18AFD ABD S S == ,∴阴影部分面积为18.故答案为:18.【点睛】题目主要考查阴影部分的面积计算及三角形等底同高面积相等的性质,根据图形将阴影部分面积转化是解题关键.三、解答题(本大题共7小题,共62分.请在答题卷指定区域作答,解答时应写出文字说明、证明过程或演算步骤)17.计算:(1)()()3202216213⎛⎫÷-⨯--- ⎪⎝⎭;(2)184121333⎛⎫⎛⎫--÷- ⎪ ⎪⎝⎭⎝⎭(1)34-(2)6-【分析】(1)先计算乘方,再计算乘除,最后计算加减即可;(2)先运用除法法则转化成乘法,再运用乘法分配律计算即可.【小问1详解】解:解:原式()16813⎛⎫=÷-⨯-- ⎪⎝⎭114=-34=-;【小问2详解】解:原式48312334⎛⎫⎛⎫=--⨯- ⎪ ⎪⎝⎭⎝⎭1231234⎛⎫⎛⎫=-⨯- ⎪ ⎪⎝⎭⎝⎭384⎛⎫=⨯- ⎪⎝⎭6=-.【点睛】本题考查有理数的混合运算,熟练掌握有运算法则是解题的关键.18.解下列一元一次方程:(1)()()314217x x --+=(2)215123x x +--=(1)145x =-(2)74x =-【分析】(1)根据去括号,移项,合并同类项,系数化为1的步骤求解即可;(2)根据去分母,去括号,移项,合并同类项,系数化为1的步骤求解即可;【小问1详解】解:去括号,得33847x x ---=,移项,得38734x x -=++,合并同类项,得514x -=,系数化为1,得145x =-.【小问2详解】解:去分母,得()()321625x x +-=-,去括号,得636210x x +-=-,移项、合并同类项,得47x =-,系数化为1,得74x =-.【点睛】本题考查一元一次方程的解法,熟练掌握解一元一次方程的一般步骤是解题的关键.19.(1)化简:22227433a b ba a b +-的结果是___________.(2)先化简,再求值:()()()22227232342333x x x x x x -++-+--+,其中12x =-.(1)2a b -;(2)223x x -+-,4-【分析】(1)直接合并同类项即可;(2)把223x x -+看成一项合并同类项,再去括号进行化简,然后代入数值计算.【详解】(1)解:原式2227=(4)33a b a b +-=-(2)解:原式()()22227423232333x x x x x x ⎛⎫=+--+=--+=-+- ⎪⎝⎭当12x =-时,原式2111123342222⎛⎫⎛⎫=-⨯-+--=---=- ⎪ ⎪⎝⎭⎝⎭【点睛】本题考查整式的加减,掌握合并同类项和去括号的法则是解题的关键.20.如图,长方形的长为a ,宽为b .(1)用含a 、b 的代数式表示图中阴影部分的面积;(2)当3a =,2b =时,计算阴影部分的面积(π取3.14).(1)238ab b π-(2)1.29【分析】(1)用矩形面积减去一个大圆面积再减去2个小圆面积即可(2)把a 、b 值代入(1)所列代数式计算即可.【小问1详解】解:2221322248b S S S S ab b ab b πππ⎛⎫⎛⎫=--=---=- ⎪ ⎪⎝⎭⎝⎭阴影长方形大圆小圆;【小问2详解】解:当3a =,2b =时,223332 3.142 1.2988S ab b π=-≈⨯-⨯⨯=阴影.【点睛】本题考查列代数式和求代数式值的应用,收题意得出2S S S S =--阴影长方形大圆小圆是解题的关键.21.阅读下列内容,并完成相关问题.小邱说:“我定义了一种新的运算,叫※运算.”然后她写出了一些按照※运算的运算法则进行运算的算式:()()3232++=※;()()()2424--=-※;()()()4545-+=-※;()()3737+-=※()020+=※;()030-=※;()401+=※()501-=※……凯凯看了这些算式后说:“我知道你定义的※运算的运算法则了.”聪明的你也明白了吗?(1)归纳※运算的运算法则:若两数为a 、b ,则a b =※________________,特别地,若0a =,0b ≠时,a b =※________________,若0a ≠,0b =时,a b =※________________.(2)计算:()()()33120⎡⎤⎡⎤-+-⎣⎦⎣⎦※※※.(括号的作用与它在有理数运算中的作用一致)(1)b a ;0;1(2)27-【分析】(1)通过分析总结归纳出若0a ≠,0b ≠时,b a b a =※;若0a =,0b ≠时,00b a b ==※;若0a ≠,0b =时,01b a b a a ===※,即可;(2)根据(1)的规律求解好戏可.【小问1详解】解:∵()()3232++=※,()()()2424--=-※,()()()4545-+=-※,()()3737+-=※,∵()020+=※;()030-=※;()401+=※,()501-=※,…∴若0a ≠,0b ≠时,b a b a =※;若0a =,0b ≠时,00b a b ==※;若0a ≠,0b =时,01b a b a a ===※.故答案为:b a ,0,1;【小问2详解】解:原式()()30=312⎡⎤⎡⎤--⎣⎦⎣⎦※()=271-※()1=27-=27-.【点睛】本题考查新定义实数的运算,数式规律探究,批出数式运算规律是解题的关键.22.为响应国家节能减排的号召,鼓励人们节约用电,保护能源,某市实施用电“阶梯价格”收费制度.收费标准如下表:单价居民每月用电量(元/度)不超过50度的部分0.5超过50度但不超过200度的部分0.6超过200度的部分0.8已知小刚家上半年的用电情况如下表(以200度为标准,超出200度记为正、低于200度记为负):一月份二月份三月份四月份五月份六月份-50+30-26-45+36+25根据上述数据,解答下列问题:(1)小刚家用电量最多的是月份,实际用电量为度;(2)小刚家一月份应交纳电费元;(3)若小刚家七月份用电量为x度,求小刚家七月份应交纳的电费(用含x的代数式表示).(1)五、236;(2)85;(3)当0<x≤50时,电费为0.5x元;当50<x≤200时,电费为(0.6x-5)元;当x>200时,电费为(0.8x-45)元【分析】(1)根据正负数表示的意义,进行计算即可;(2)根据收费标准,根据第二档计算即可求出费用;(3)分三种情况,列出代数式即可.【详解】解:(1)∵-50<-45<-26<+25<+30<+36,∴小刚家五月份用电量最多,实际用电量为:200+36=236(度);(2)∵一月份用电量为:200-50=150(度),∴应缴电费为0.5×50+0.6×(150-50)=85(元);(3)当0<x≤50时,电费为0.5x元;当50<x≤200时,电费为0.5×50+(x-50)×0.6=25+0.6x-30=(0.6x-5)元;当x>200时,电费为0.5×50+0.6×150+(x-200)×0.8=25+90+0.8x-160=(0.8x-45)元.【点睛】本题主要考查正负数的实际意义以及列代数式,弄清题意是解题的关键.=-.23.数a,b在数轴上对应的A,B两点之间距离AB a b探究运用①数轴上表示1和−3两点之间的距离是_____;数轴上表示x和−2两点之间的距离是_____.②根据图像比较大小:3a +______3b --(填“<”、“=”、“>”).拓展延伸③若点A .B 、C 在数轴上分别表示数-1、4、c ,且点C 到点A .B 的距离之和是7,则c =_____.④关于x 的方程x m x n k -+-=(m >n ,k >0),借助数轴探究方程的解的情况,直接写出结论.①4,2x +;②<;③2-或5;④答案见解析.【分析】①由“若数轴上A ,B 两点对应的数为a ,b ,则A 、B 两点之间距离AB a b =-”进行计算即可得到本题答案;②由33a a +=--结合3a --表示在数轴上表示“-3”的点到表示“数a ”的点之间的距离可得本题结论;③分:ⅰ1c <-;ⅱ14c -<<;ⅲ4c >;三种情况讨论即可得到本题答案;④分:ⅰx n <;ⅱn x m <<;ⅲx >m ;三种情况讨论即可得到本题答案.【详解】解:①由题意:数轴上表示1和3-的两点间的距离为:1(3)4--=;数轴上表示x 和2-的两点间的距离为:(2)2x x --=+故答案为:4;2x +;②∵33a a +=--,且3a --表示在数轴上表示“3-”的点到表示“数a ”的点之间的距离,3b --表示在数轴上表示“3-”的点到表示“数b ”的点之间的距离,∴由图可得:33a b +<--,故答案为:<;③由题意可知:点C 到点A 、B 两点的距离之和为:(1)47c c --+-=,ⅰ.当1c <-时,(1)47c c --+-=可化为:147c c --+-=,解得:2c =-;ⅱ.当14c -<<时,(1)47c c --+-=可化为:147c c ++-=,此时分程无解;ⅲ.当4c >时,(1)47c c --+-=可化为:147c c ++-=,解得:5c =;④ⅰ.当x n <时,由题意x m x n k -+-=可化为:m x n x k -+-=,解得:2k m nx --=-;ⅱ.当n x m <<时,由题意x m x n k -+-=可化为:m x x n k -+-=,此时方程无解;ⅲ.当x >m 时,由题意x m x n k -+-=可化为:x m x n k -+-=,解得:2k m nx ++=.综上所述:关于x 的方程x m x n k -+-=(m >n ,k >0)的解为:2k m n x --=-或2k m nx ++=.【点睛】本题考查了数轴上两点之间的距离,解题的关键是掌握两点之间距离的求法:(1)解第2小题时,把3a +化为3a --并知道在数轴上3a --表示“表示3-的点到表示a 的点之间的距离”是解题的关键;(2)解第4小题时,要将方程中的绝对值符号去掉,需分:①x n <;②n x m <<;③x >m ;三种情况讨论,缺一不可.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021南京市第二十九中学3月月考高二数学注意事项:本试卷共6面,试卷满分150分,考试用时120分钟。

一、单选题(共8题,每题5分,共40分)1.设a ,b 是两条直线,α,β是两个平面,且a α⊥,b β⊥,则“αβ⊥”是“a b ⊥”的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件2.设函数2()ln f x a x bx =+,若函数()f x 的图象在点(1,(1)f )处的切线方程为y =x ,则函数()y f x =的增区间为A .(0,1)B .(0,2) C .(2,1) D . (2,+∞) 3.抛物线C :2y ax =在点()1,a 处的切线方程为210x y --=,则C 的焦点坐标为A .10,2⎛⎫ ⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .1,02⎛⎫ ⎪⎝⎭D .1,04⎛⎫ ⎪⎝⎭4.已知曲线1C :()xf x xe =在0x =处的切线与曲线2C :()()ln a xg x a x=∈R 在1x =处的切线平行,令()()()h x f x g x =,则()h x 在()0,∞+上 A .有唯一零点B .有两个零点C .没有零点D .不确定5.已知函数244()ln -⎫⎛=++ ⎪⎝⎭x f x k x k x ,[1,)∈+∞k ,曲线()y f x =上总存在两点()11,M x y ,()22,N x y 使曲线()y f x =在M 、N 两点处的切线互相平行,则12+x x 的取值范围为A .(4,)+∞B . [4,)+∞C .16,5⎡⎫+∞⎪⎢⎣⎭D .16,5⎛⎫+∞⎪⎝⎭6.十九世纪下半叶集合论的创立,莫定了现代数学的基础.著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[0,1]均分为三段,去掉中间的区间段12,33⎛⎫⎪⎝⎭,记为第一次操作;再将剩下的两个区间120,,,133⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦分别均分为三段,并各自去掉中间的区间段,记为第二次操作;…,如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”.若使去掉的各区间长度之和不小于89,则需要操作的次数n 的最小值为 参考数据:(lg 20.3010,lg30.4771==) A .4B .5C .6D .77.已知中心在原点的椭圆与双曲线有公共焦点,左、右焦点分别为1F 、2F ,且两条曲线在第一象限的交点为P ,12PF F △是以1PF 为底边的等腰三角形.若18PF =,椭圆与双曲线的离心率分别为1e ,2e ,若125e =,则2e 等于 A .52 B .2C .3D .538.已知三棱锥P ABC -的各个顶点都在球O 的表面上,PA ⊥底面ABC ,AB AC ⊥,6AB =,8AC =,D 是线段AB 上一点,且2AD DB =.过点D 作球O 的截面,若所得截面圆面积的最大值与最小值之差为25π,则球O 的表面积为 A .128πB .132πC .144πD .156π二、多选题(共4题,每题5分,共20分:漏选得2分,错选或不选得0分) 9.已知0a >,0b >,231a b +=,下列结论正确的是 A .22a b +的最小值为112B .2424log log a b +的最大值为1-C .11a b+的最小值为 D .48a b +的最小值为10.已知函数sin ()e =-xxf x x,则 A .()f x 是奇函数B .1C .()f x 在(1,0)-单调递增D .()f x 在0,2π⎡⎤⎢⎥⎣⎦上存在一个极值点11.已知甲罐中有四个相同的小球,标号为1,2,3,4, 乙罐中有五个相同的小球,标号为1,2,3,5,6,现从甲罐、乙罐中分别随机抽取1个小球,记事件A =“抽取的两个小球标号之和大于5”,事件B =“抽取的两个小球标号之积大于8”,则 A .事件A 与事件B 是互斥事件 B .事件A 与事件B 不是对立事件 C .事件AB 发生的概率为1120 D .事件AB 发生的概率为2512.已知椭圆()2222:10x y C a b a b+=>>的焦距为6,焦点为1F 、2F ,长轴的端点为1A 、2A ,点M是椭圆上异于长轴端点的一点,椭圆C 的离心率为e ,则下列说法正确的是 A .若12MF F △的周长为16,则椭圆的方程为2212516x y +=B .若12MF F △的面积最大时,12120F MF ∠=,则2e =C .若椭圆C 上存在点M 使120MF MF ⋅=,则0,2e ⎛∈ ⎝⎦D .以1MF 为直径的圆与以12A A 为直径的圆内切 三、填空题(共4题,每题5分,共20分) 13.设直线l 与曲线1:xC y e =与21:x C y e=-均相切,切点分别为()()1122,,,A x y B x y 则12y y = __________.14.数列{}n a 满足113a =,且()1123n n n n a a n a a ++-=+,则数列{}n a 的前10项和为__________. 15.已知5260126(1)(1)mx x a a x a x a x ++=+++⋅⋅⋅+.若25a =,则m =___________;135a a a ++=___________.16.正方体1111ABCD A B C D -棱长为点1,点E 在边BC 上,且满足2BE EC =,动点P 在正方体表面上运动,满足1PE BD ⊥,则动点P 的轨迹的周长为__________. 四、解答题(共6题,共70分)17.(10分)在ABC 中,它的内角A ,B ,C 的对边分别为a ,b ,c ,且23B π=,b =. (Ⅰ)若2cos cos 3A C =,求ABC 的面积; (Ⅰ)试问111a c+=能否成立?若能成立,求此时ABC 的周长;若不能成立,请说明理由.18.(12分)已知数列{a n }是递增的等比数列,前3项和为13,且a 1+3,3a 2,a 3+5成等差数列.(1)求数列{a n }的通项公式;(2)数列{b n }的首项b 1=1,其前n 项和为S n ,且 ,若数列{c n }满足c n =a n b n ,{c n }的前n 项和为T n ,求T n 的最小值.在如下三个条件中任意选择一个,填入上面横线处,并根据题意解决问题. ①3S n +b n =4;②b n =b n -1+2(n ≥2);③5b n =-b n -1(n ≥2).19.(12分)已知函数()()()2220xf x ax x ea =++>,其中e 是自然对数的底数.(1)若()f x 在[]22-,上是单调增函数,求a 的取值范围; (2)证明:当1a =时,方程()5f x x =+有且只有两个零点.20.(12分)如图,四边形BEDC 为正方形,AE BE ⊥,AE BE =,ADE 为锐角三角形,M ,N 分别是边DE ,BE 的中点,直线DE 与平面ABE 所成的角为3π. (1)求证:DN ⊥平面ACM ;(2)若ADE 为锐角三角形,求二面角M AC B --的余弦值.21.(12分)已知函数()()2e 2xf x x =-+.(1)求函数()f x 的极值;(2)若关于x 的不等式()()2240f x n x x ++≥在[)0,+∞上恒成立,其中0n ≥,求实数n 的取值范围.22.(12分)如图,在平面直角坐标系xOy 中,过原点的直线()11:0l y k x k =>交抛物线2:2C y x =于点P (异于原点O ),抛物线C 上点P 处的切线交y 轴于点M ,设线段OP 的中点为N ,连结线段MN 交C 于点T . (1)求||||TM MN 的值;(2)过点P 作圆22:(1)1O x y '-+=的切线交C 于另一点Q ,设直线OQ 的斜率为2k ,证明:12k k -为定值.参考答案1.C 2.D 3.B 4.A 5.A 6.C 7.B 8.B 9.BD 10.CD 11.BCD 12.ABD 13.2e - 14.17526415.1- 01617.(Ⅰ)3;(Ⅰ)(Ⅱ)不成立。

假设111a c +=能成立,Ⅱa c ac +=.由余弦定理,2222cos b a c ac B =+-,Ⅱ226a c ac =++.Ⅱ2()6a c ac +-=,Ⅱ2()60ac ac --=,Ⅱ3ac =或-2(舍),此时3a c ac +==.不满足a c +≥Ⅱ111a c+=不成立. 18.(1)a n =3n -1;(2)(2)选择① 因为3S n +b n =4,所以3S n -1+b n -1=4(n ≥2),两式相减得3(S n -S n -1)+(b n -b n -1)=0,即4b n -b n -1=0(n ≥2), 所以114n n b b -=(n ≥2),所以数列{b n }是以b 1=1为首项,14为公比的等比数列,故()114n n b -=,因此()134n n n n c a b -==,因为0n c >恒成立,即c 1>0,c 2>0,c 3>0,…, 所以(T n )min =T 1=c 1=1. 选择②由b n =b n -1+2(n ≥2)知{b n }是以b 1=1为首项,2为公差的等差数列, 所以b n =1+2(n -1)=2n -1, 所以12)(13n n n n c a b n --⋅==,因为c n =(2n -1)·3n -1>0,即c 1>0,c 2>0,c 3>0,…, 所以(T n )min =T 1=c 1=1. 选择③由5b n =-b n -1(n ≥2)知{b n }是以b 1=1为首项,15-为公比的等比数列, 所以()115n n b -=-,所以()()11113355n n n n n n c a b ---==⨯-=-,所以()()31553138515nnn T --⎡⎤==--⎢⎥⎣⎦+, 当n 为奇数时,由于()305n-<,故58nT >; 当n 为偶数时,由于()305n->,故58n T <, 由()53185nn T ⎡⎤=--⎢⎥⎣⎦在n 为偶数时单调递增,所以当n =2时,()min 51628255n T =⨯=,综上所述:T n 的最小值为25. 19.(1)(]0,1;(2)(2)因为1a =,设()()2225xh x x x e x =++--,则()()()()2222221441xxxh x x e x x e x x e =++'++-=++-.令()()2441xx x x e ϕ=++-,则()()()()()()2224446842xxxxx x e x x e x x e x x e ϕ=+++'+=++=++,由()()()420xx x x e ϕ'=++=,得4x =-或2x =-.所以()()44410x e ϕϕ-=-=-<极大值,()()210x ϕϕ=-=-<极小值因为()1110eϕ-=-<,()030ϕ=>,所以存在()01,0x ∈-,使()00x ϕ=, 当()0,x x ∈-∞时,()0x ϕ<,()0h x '<;当()0,x x ∈+∞时,()0x ϕ>,()0h x '>, 所以()h x 在()0,x -∞上单调递减,在()0,x +∞上单调递增. 又因为()51750h e -=>,()410410h e-=-<,()030h =-<,()1560h e =->, 故根据零点存在定理,可知()0h x =的根()15,4x ∈--,()20,1x ∈, 所以方程()5f x x =+有且只有两个零点. 20.(1)1)证明:ⅡBE AE ⊥,BE DE ⊥,AE DE E =,ⅡBE ⊥平面ADE .Ⅱ平面ABE ⊥平面ADE ,因为ADE 为锐角三角形, Ⅱ点D 在平面ABE 的射影在线段AE 上,ⅡAED ∠为直线DE 与平面ABE 所成的角,即3AED π∠=.又ⅡAE DE =,ⅡADE 为等边三角形. Ⅱ点M 为DE 的中点,ⅡAM DE ⊥. 又BE AM ⊥,BE DE E ⋂=,ⅡAM ⊥平面BCDE .ⅡDN ⊂平面BCDE ,ⅡAM DN ⊥.ⅡCD DE =,DM EN =,2CDE DEN π∠=∠=,ⅡCDM DEN ≅△△,ⅡEND DMC ∠=∠,Ⅱ2DMC EDN π∠+∠=,ⅡDN CM ⊥.ⅡCM AM M ⋂=,CM AM ⊂,平面ACM , ⅡDN ⊥平面ACM . ;(221.(1)函数()f x 有极小值()12e f =-,无极大值;(2)1,2⎡⎫+∞⎪⎢⎣⎭.22.(1)||1||2TM MN =;(2)设直线PQ 的方程为()()1122,,,,x my t P x y Q x y =+ 222222,220y xy my t y my t x my t⎧=⇒=+--=⎨=+⎩,2212t t m =⇒-=()()()12121212121212t y y y y y y k k x x my t my t my t my t --=-=-=++++()()()12121222222121222t y y t y y y y m y y mt y y t m t m t t t---===+++-++2==为定值.。

相关文档
最新文档