第四章土的变形性质及地基沉降计算
(固结沉降)计算

分层总和法计算步骤
1) 选择沉降计算剖面,在每一个剖面上选择若干计算点;求出基底附加压 力的大小和分布;选择沉降计算点的位置(通常为基础的中心点)。 2) 地基分层 。天然土层的交界面和地下水位面必为分层面,在同一类土层中分层厚度不宜过 大。一般取分层厚hi≤0.4b或hi=1~2m,b为基础宽度。 3) 求出计算点垂线上各分层 层面处的竖向自重应力c ( 从地面起算),并绘 出它的分布曲线。 4) 求出计算点 垂线上各分层层面处的竖向附加应力z,并绘出它的分布曲线,取z =0.2c (中、 低压缩性土)或z =0.1c (高压缩性土)处的土层深度为地基沉降计算深度。 5) 求出各分层的平均自重应力p1i 和平均附加应力pi。 6) 由各分层的平均自重应力p1i 和平均自重应力p1i 与平均附加应力pi 之和 (p1i+ pi ) ,在压缩曲线上查出相应的初始孔隙比和压缩稳定后的孔隙比。 7) 计算各分层土的压缩量si。 8) 地基最终沉降量 s 的分层总和法公式:
(2): elogp曲线。 (3): elnp曲线。
压缩试验曲线特征 压缩试验条件下土体体积变化特征: (1)卸荷时,试样不是沿初始压缩曲线,而是沿曲线bc回弹,可见土体的变形是由可 恢复的弹性变形和不可恢复的塑性变形两部份组成。 (2)回弹曲线和再压线曲线构成一迴滞环,土体不是完全弹性体的又一表征; (3)回弹和再压缩曲线比压缩曲线平缓得多。 (4)当再加荷时的压力超过b点,再压缩曲线就趋于初始压缩曲线的延长线。
前期固结压力的确定
确定先期固结压力步骤如下: (1)从e~logp曲线上找出曲率半 径最小的一点A,过A点作水平线 A1和切线A42; (2)作lA2的平分线A3,, 与
e~logp 曲线中直线段的延长线相交
土力学第四章土的变形性质及地基沉降计算【优秀完整版】可编辑全文

s
VV1e0
Vs 1
压缩前
VV2 e
Vs 1
压缩后
H0 Hi H0si 1e0 1ei 1ei
si
e0 ei 1 e0
H0
ei
e0
si H0
1e0
e0
ds10w1
压力p与相应的稳定孔隙比的关系曲线称为压缩曲线。
a图:压力与加荷历时 关系。
b图:各级压力下,试 样孔隙比随时间的变化 过程。
(1) 压缩系数
P1——一般指地基某深度处土中竖向自重应力; P2——地基某深度处自重应力与附加应力之和; e1——相应于p1作用下压缩稳定后土的孔隙比; e2——相应于p2作用下压缩稳定后土的孔隙比;
ataα nΔee1e2 Δp p2p1
用单位压力增量 所引起的孔隙比的改 变,即压缩曲线的割 线坡度表征土的压缩 性的高低。
原始压缩曲线是由直线或折线组成,通过Cc或Ce两个压缩性指标即可计算,使用方便。
分层总和法计算地基的最终沉降量
1 Mpa-1
属低压缩性土。
1、土的压缩性:地基土在压力作用下体积减小的特性。
由e~p或e~lgp曲线求得
土体在无侧向变形条件下,竖直应力与竖向应变之比。
该式称为一维固结微分方程,
OCR>1 超固结状态
在整个固结过程中,土的渗透系数、压缩系数视为常数。
土层的平均固结度是时间因数Tv的单值函数,它与所加的附加应力的大小无关,但与土层中附加应力的分布形态有关。
分层总和法计算地基的最终沉降量
我国《建筑地基基础设计规范》规定
变形模量与压缩模量之间的关系
压缩模量Es:土在完全侧限条件下,竖向正应力与相应 的变形稳定情况下的竖向应变的比值。
第4章 土的压缩性与地基沉降计算

中应力P2(自重与附加应力之和)
为了便于应用和比较,通常采用压力由P1=100kPa增加到P2 = 200kPa时所得的压缩系数a1-2来评定土的压缩性:
a1-2 <0.1 MPa-1时,低压缩性土 0.1≤a1-2 <0.5MPa-1时,中压缩性土 a1-2 ≥0.5MPa-1时,高压缩性土 Cc <0.2时,低压缩性土 Cc≥0.4时,高压缩性土
依侧限压缩试验原理可知: 土样压缩前后试样截面积A不变, 土粒体积不变,即VS0=VS1,则有
e-p 曲线确定压缩系数
H0 H0 S S ei e0 (1 e0 ) 1 e0 1 ei H0
(4-2)
常规试验中,一般按P=100kPa、200kPa 、 300kPa 、 400kPa 四级加荷,测定各级压力下的稳定变形量 S , 然后由式(4-1)计算相应的孔隙比e 。
3.5 土的压缩性
如果在地基上修建建筑物,地基土内各点不仅要承受土体本身的 自重应力,而且要承担由建筑物通过基础传递给地基的荷载产生的附 加应力作用,这都将导致地基土体的变形。 土体变形可分为:体积变形和形状变形。 本章只讨论由正应力引起的体积变形,即由于外荷载导致地基内 正应力增加,使得土体体积缩小。 在附加应力作用下,地基土将产生体积缩小,从而引起建筑物基 础的竖直方向的位移(或下沉)称为沉降。
缩量,然后累加得总沉降量。
计算步骤
1.确定沉降计算深度范围内的分层界面
沉降计算分层面可按下述原则确定: 第一,不同土层的分界面与地下水位 面; 第二,每一分层厚度不大于基础宽度 的0.4倍。
土的变形性质及地基沉降计算(5,6)

2.压缩指数
e - logp曲线后段直线段的斜率 e1 - e2 Cc lg p2 - lg p1 压缩指数Cc 越大, 土的压缩性越大。
低压缩性土; Cc 0.2 0.2 Cc 0.4 中压缩性土
Cc 0.4
高压缩性土。
粘性土的Cc值一般在0.1—1.0之间
反压重物
反力梁
千斤顶 百分表 荷载板
基准梁
变形模量E0、压缩模量Es的关系
无侧限条件 完全侧限条件
变形模量
压缩模量
换算关系
σx=σy=K0σz
x x
E0
y
E0
z
E0
0
K 0 /(1 )
z Es z y z z x E0 E0 E0
地基土产生压缩的原因
内因
土是三相体,土体受外力引起的压缩包括三部分: ①固相矿物本身压缩,极小,物理学上有意义,对建筑工程来 说无意义; ②土中液相水的压缩,在一般建筑工程荷载σ=(100~600) Kpa作用下,很小,可忽略不计; ③土中孔隙的压缩,土中水与气体受压后从孔隙中挤出,使土 的孔隙减小。 土体的压缩变形主要是由于孔隙减小引起的。
土的压缩性指标除从室内压缩试验得到外, 也可通过现场原位测试得到。 如在浅层土中进行静载荷试验可以得到变 形模量; 在现场进行旁压试验或触探试验都可以间接 确定土的模量。
原位测试
原位测试(In-Situ Testing ):在岩土体原 有的位置上,在保持岩土的天然结构、天然含 水量以及天然应力状态条件下测定岩土性质称 为原位测试。 土体原位测试:一般指的是在工程地质勘察现 场,在不扰动或基本不扰动土层的情况下对土 层进行测试,以获得所测土层的物理力学性质 指标及划分土层一种土工勘察技术。
土力学-第四章地基的沉降计算3

z k p0
II. 荷载不是瞬时施加。 因此,不同的附加应力条件下,其固结度的公式也不同。
那么,怎么求解其他应力条件下的固结度呢?
叠加原理
U F U a Fa U b Fb
任意随深度而变的应力图形可以分解为若干个图形,则 总应力图形的固结度乘上其总应力面积,等于各分力应 力图形的固结度乘上各应力面积之和。
1 U (t ) 1 2 Hp
udz
0
并代入u的表达式
U (t ) 1 2
1 exp( M 2Tv ) U (Tv ) (U与Tv为一一对应关系) 2 m0 M
近似式
U (Tv ) 1
8
exp( 2
2
4
Tv ) (U (t ) 30%)
U(t)是Tv的单值 函数,Tv可反映 固结的程度
(2)有效应力逐渐增大,最终与总应力相等。 (3)变形随固结过程逐渐增大,最终达到稳定。
11
2、Terzaghi一维渗透固结数学模型
基本假定: 1. 土层是均质且完全饱和
2. 3. 4. 5. 6. 土颗粒与水不可压缩 水的渗出和土层压缩只沿竖向发生 渗流符合达西定律且渗透系数k保持不变 压缩系数av是常数 荷载均布,瞬时施加,总应力不随时间变化
de av du
dV
故孔隙体积变化与孔隙水压的关系为
1 ∂e dz 1 e ∂t
av u u dV dz mv dz 1 e t t
16
(3)由dQ=dV 建立固结方程
k 2u dQ dz 2 w z
由此得到固结方程
u dV mv dz t
∂ 2u ∂ u Cv 2 ∂z ∂t
第4章-土的压缩性

e1
0.9
e2
0.8
0.7
e
p
高压缩性土 中压缩性土
0.6
p1 p2 e-p曲线
p(kPa )
低压缩性土
§4.2 土的压缩特性
三、土的压缩性指标
(三)压缩指数与回弹再压缩指数 e
1.0 0.9 0.8
1
Cc
在较高的压力范围内, e-lgp曲线近似地为一直线,可 用直线的坡度——压缩指数Cc 来表示土的压缩性高低,即
z
z
z
2 2 z 2 2 E 1 Es 1 z 1 1
无侧向变形条件下二者的理论关系式,用于由Es 求E ,Es恒小于E
§4.2 土的压缩特性
三、土的压缩性指标
土体在侧限条件下孔隙比减 少量与有效压应力增量的比 值(MPa-1)。
§4.4 地基沉降计算的e-p曲线法
一、分层总和法简介
h0
t0
附加应力: z=p 附加有效应力: z=0
0t
附加应力:σz=p 附加有效应力:σz>0
t
附加应力:σz=p 超静孔压: u =0
超静孔隙水压力: u=z=p 超静孔压: u <p
u+ Z'=p
u+ Z'=p
附加有效应力:σz=p
u+ Z'=p
§4.2 土的压缩特性
压缩系数av:
av
e1 e 2 p 2 p1
av mV = 体积压缩系数mv: 1 e1 土在侧限条件下的竖向应变 与应力之比。
e1 e2 Cc 压缩指数Cc: lg p2 lg p1 土体在侧限条件下孔隙比减 少量与有效压应力常用对数 值增量的比值。
土力学第四章
施加σ1-σ3时 排水
不排水 不排水
量测 体变 孔隙水压力 孔隙水压力
4.1 土的变形特性试验方法
4.1.2 常规三轴压缩试验
z
1
1
Et
Ei
z
维持围压不变
割线变形模量
E sec
z z
切线模量
Et
d z d z
Et随应力增大而变小
v 123 泊松比3 1(1v)
SSi
4.3 地基沉降量
4.3.2 沉降计算的分层总和法
2、计算步骤 不考虑地基回弹的情形: •沉降量从原基底算起; •适用于基础底面积小,埋深浅,施工快。
考虑地基回弹的情形: •沉降量从回弹后的基底算起; •基础底面大,埋深大,施工期长。
4.3.2 沉降计算的分层总和法
2、计算步骤——不考虑回弹
⑤ 直线BC即为原位压缩曲线。
4.3 地基沉降量
Sd :初始瞬时沉降
t
Sc:主固结沉降
S
Ss: 次固结沉降
SSdScSs
4.3 地基沉降量
4.3.1 一维压缩基本课题
p
H/2
H sz 2
H/2
σ sz
σz=p H
压缩前
侧限条件 压缩后
p1 sz
e1
p2 sz z
e2
1 2 1
4.1 土的变形特性试验方法
4.1.2 常规三轴压缩试验
z p 侧限压缩试验
常规三轴试验
z
E Es 1 2 2
1
4.1 土的变形特性试验方法
4.1.3 土的变形特点和本构关系
土的主要变形特征: 非线性 弹塑性 剪胀(缩)性 压硬性 时间效应
土力学-第四章-概述 土的压缩性测试方法 张丙印
t
s
s3
s2
s1
t
§4.2 土的压缩性测试方法 – 压缩试验
智者乐水 仁者乐山
压缩曲线及特点
• 侧限变形(压缩)模量:
加载:
Es
Δσ z Δεz
卸载和重加载:
Ee
Δσz Δεz
非线性 弹塑性
土的一般化的压缩曲线
z= p
1 Ee 1 Es
e
z
( e )
侧限压缩试验
18
§4.2 土的压缩性测试方法 – 三轴试验
常规三轴:
• 存在破坏应力
侧限压缩试验:
• 不存在破坏应力 • 存在体积压缩极限
z=p
侧限压 缩试验
常规三 轴试验
e
z
( e )
常规三轴与侧限压缩试验
22
§4.2 土的压缩性测试方法
智者乐水 仁者乐山
变形模量 Et 与侧限变形模量 Es间的关系
虎 εz
σz Et
νt Et
σx σy
克 定 律
墨西哥某宫殿
左部:1709年 右部:1622年 地基:20多米厚粘土
问题: 沉降2.2米,且左右 两部分存在明显的 沉降差。左侧建筑 物于1969年加固
智者乐水 仁者乐山
工程实例
6
§4.1 概述
智者乐水 仁者乐山
墨西哥城的一幢建筑, 可清晰地看见其发生的 沉降及不均匀沉降。该 地的土层为深厚的湖相 沉积层,土的天然含水 量高达 650 %,液限 500% ,塑性指数 350 , 孔隙比为 15 ,具有极 高的压缩性。
《土力学1》之第四章
土的压缩性与地基沉降计算
张丙印
清华大学土木水利学院 岩土工程研究所
第四章土的变形特性和地基沉降计算
第四章土的变形特性和地基沉降计算土的变形特性和地基沉降计算是土木工程中非常重要的内容。
土的变形特性研究土体在外力作用下的变形规律和特性,而地基沉降计算则是根据土的变形特性来预测地基的沉降情况。
下面将详细介绍土的变形特性和地基沉降计算的相关内容。
1.土的变形特性土体受到外力作用时会发生变形,主要有弹性变形、塑性变形和剪切变形。
(1)弹性变形:土体在外力作用下,会发生弹性变形。
当外力去除后,土体会恢复到原来的状态。
弹性模量是衡量土体抗弯刚度的指标,可以通过简单的试验来确定。
(2)塑性变形:土体在超过一定应力范围时,会发生塑性变形。
土体的塑性是由于土颗粒之间存在黏聚力和内摩擦力。
土壤的塑性特性可以通过塑性指数来描述,塑性指数越大,土体的可塑性越强。
(3)剪切变形:土体在受到剪应力作用时,会出现剪切变形。
剪切变形会导致土体体积变化,产生剪切应变。
土壤剪切特性可以通过剪切强度来描述,剪切强度是土体抵抗剪切破坏的能力。
地基沉降是指地基在建筑物或其他荷载作用下产生的垂直变形。
地基沉降计算是为了预测和控制建筑物在使用过程中由于地基沉降而产生的沉降量。
地基沉降计算可以分为弹性沉降和塑性沉降两部分。
(1)弹性沉降:建筑物的地基沉降可以通过应力-应变关系来进行计算。
根据土体弹性模量、建筑物底面积和载荷大小,可以确定建筑物的弹性沉降量。
(2)塑性沉降:塑性沉降是由于土体的塑性变形而产生的沉降。
塑性沉降的计算需要考虑土壤的塑性指数、建筑物底面积和载荷大小。
塑性沉降计算可以使用维罗耐氏公式或其他合适的公式进行。
地基沉降计算的结果可以作为设计和施工的依据,可以预测建筑物在使用过程中的变形情况,从而保证建筑物的安全和稳定。
总结:土的变形特性和地基沉降计算是土木工程中重要的内容,了解土的变形特性可以帮助预测地基的变形情况,地基沉降计算是为了预测和控制建筑物的沉降量。
研究土的变形特性和进行地基沉降计算能够保证建筑物的安全和稳定。
第四章 土的压缩性和地基沉降计算题解
第四章 土的压缩性和地基沉降计算一、名 词 释 义1.角点沉降系数:单位均布矩形荷载在其角点处引起的沉降。
2.地基沉降计算深度:计算地基沉降时,超过基底下一定深度,土的变形可略去不计,该深度称为地基沉降计算深度。
3.压缩性:土在压力作用下体积缩小的特性。
4.固结:土的压缩随时间而增长的过程。
5.压缩曲线:室内土的侧限压缩试验结果,是土的孔隙比与所受压力的关系曲线。
6.压缩系数:反映土在一定压力作用下或在一定压力变化区间其压缩性大小的参数,其值等于e-p曲线上对应一定压力的切线斜率或对应一定压力变化区间的割线斜率。
7.压缩指数:采用半对数直角坐标绘制的p e log −压缩曲线,其后段接近直线,直线的斜率称为土的压缩指数。
8.压缩模量:土在完全侧限条件下的竖向附加压应力与相应的应变增量之比值。
9.变形模量:根据土体在无侧限条件下的应力应变关系得到的参数,定义同弹性模量,但由于变形模量随应力水平而异,加载和卸载时的值不同,故未称作弹性模量,而称为变形模量。
10.地基最终沉降量:地基土层在荷载作用下,达到压缩稳定时地基表面的沉降量。
11.应力比法:地基沉降计算深度取地基附加应力等于自重应力的20%处,在该深度以下如有高压缩性土,则继续向下取至10%处,这种确定沉降计算深度的方法称为应力比法。
12.平均附加应力系数:基底下一定深度范围内附加应力系数的平均值。
13.变形比法:由基底下一定深度处向上取规范规定的计算厚度,若计算厚度土层的压缩量不大于该深度土层总压缩沉降量的2.5%,即可确定该深度为地基沉降计算深度,这种确定地基沉降计算深度的规范方法称为变形比法。
14.前期固结压力:天然土层在历史上所经受过的最大固结压力。
15.正常固结土:历史上所经受过的最大固结压力等于现有覆盖土自重应力的土体。
16.超固结土:土体历史上曾经受过大于现有覆盖土自重应力的前期固结压力的土体。
17.欠固结土:指在目前自重应力下还未达到完全固结的土体,土体实际固结压力小于现有覆盖土自重应力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.2
地基最终沉降量计算
地基最终沉降量地基变形稳定后基础底面的沉降量
• 一、分层总和法
为了弥补假定 所引起误差,取 地基是均质、各向同性的半无限线性 基底中心点下的 变形体,可按弹性理论计算土中应力 附加应力进行计 在压力作用下,地基土不产生侧向变 算,以基底中点 形,可采用侧限条件下的压缩性指标 的沉降代表基础 的平均沉降 2.单一压缩土层的沉降计算
z n b(2.5 0.4 ln b)
为了提高计算精度,地基沉降量乘以一个沉降计算经验 系数s,可以查有关系数表得到 地基最终沉降 量修正公式
s
z
z
0
1 dz Es Es
A 0 z dz Es
z
附加应力面积
附加应力通式 σz=K p0
A z dz p0 Kdz
0 0
z
z
代入
引入平均附 加应力系数
A p0 z
因此
z
0
Kdz z
A p0 z
因此附加应力 面积表示为
s p0
可压缩土层
H1 H0
s
3.单向压缩分层总和法
a p s ( p2 p1 ) H1 H1 1 e1 Es
分别计算基础中心点下地基中各个分 层土的压缩变形量△si,基础的平均沉 降量s等于△si的总和
s si i H i
i 1 i 1 n n
i第i层土的
压缩应变
1.基本假设
在一定均匀厚度土层上施加连续均布 荷载,竖向应力增加,孔隙比相应减 小,土层产生压缩变形,没有侧向变 形。
∞
△p
∞
土层竖向应力由p1增加到p2, 引起孔隙比从e1减小到e2, 竖向应力增量为△p 由于 所以
e1 e2 s H1 H 2 H1 1 e1
a e e e2 = 1 p p2 p1
b
第i层土在平均自重压力
p1i
天然地面
ci c(i 1)
p0
c(i 1)
z (i 1)
Hi
第i层土平均附加应力
pi
zi z (i 1)
2
p1i p i
ci
zi
第i层土平均附加应力与自重应力和
p2i
c
z
z 0.2 c z 0.1 c
构造:加荷稳压装置、反 力装置、观测装置。 载荷试验一般适合于在 浅土层进行。优点是压力的 影响深度可达1.5一2b(b为 压板边长),因而试验成果 能反映较大一部分土体的压 缩性;比钻孔取样在室内试 验所受到的扰动要小得多; 土中应力状态在承压板较大 时与实际基础情况比较接近。 缺点:试验工作量大,费时。 对层状土需进行深层土的载 荷试验。
压缩性不同的土,曲线形状不同,曲线愈陡,说明在相同压力 增量作用下,土的孔隙比减少得愈显著,土的压缩性愈高 根据压缩曲线可以得到以下压缩性指标 1.压缩系数a ■2.压缩指数Cc 3.压缩模量Es ■ 4.体积压缩系数 5.变形模量E0
1.压缩系数a
土体在侧限条件下孔隙比减少量与竖向压应力增量的比值 e e0 e1 M1
低压缩性土
0.2≤ Cc <0.4 中压缩性土
1
高压缩性土
p2
P(log)
3.压缩模量Es
土在侧限条件下竖向压应力与竖向总应变的比值,或称为 侧限模量 1 e1
Es a
说明:土的压缩模量Es与土的的压缩系数a成反比, Es愈 大, a愈小,土的压缩性愈低
4.体积压缩系数mv:单位压应力引起的体积变化
z Es
地基沉降计算深度zn
zi
第i层
3 4
△z
3 4 ip0
第 n层
利用附加应力面积A的等代值计算地基任意深度范围内的 沉降量,因此第i层沉降量为
si si si1 Ai Ai 1 p0 ( zi i zi 1 i 1 ) Esi Esi
zi
1 b 5 6
三轴压缩 荷载试验 旁压试 验 标贯试验 静(或动)力触 探试验
• (一)、侧限压缩试验
研究土的压缩性大小及其特征的室内试验方法,亦称 固结试验
三联固结仪
• 1.压缩仪示意图
荷载 加压活塞 刚性护环 透水石 环刀
土样
注意:土样在竖直 压力作用下,由于 环刀和刚性护环的 限制,只产生竖向 压缩,不产生侧向 变形
i土的压缩应变
e1i e2i ai ( p2i p1i ) pi i 1 e1i 1 e1i Esi
e1i———由第i层的自重应力均值从土的压缩曲线上 得到的相应孔隙比 e2i———由第i层的自重应力均值与附加应力均值之 和从土的压缩曲线上得到的相应孔隙比
4.单向压缩分层总和法计算步骤
变形模量E0:土体在无侧限条件 下的应力与应变比值
p1
0 100 200 300 400
p(kPa)
由前面介绍的布辛奈斯克公式得
s z ( z 0) 1 2 pb E0
s1
10
20
30 40
1 2 E0 p1b s1
2 0 . 866 ( 1 ) p1b E0 方形板:
对于透水性大的无粘性土,其压缩过程在很短时间内 就可以完成。而透水性小的粘性土,其压缩稳定所需 的时间要比砂土长得多。
3、蠕变 粘性土在长期荷载作用下,变形随时间而缓 慢持续的现象。
二、侧限条件下土的压缩试验和压缩性指标
土的压缩性:是指土在压力作用下体积缩小的特性
侧限条件:侧向限制不能变形,只有竖向单向压缩的条件
S(mm)
s1
p1— 比例界限荷载 s1 — 与比例界限荷载对应的沉降
ω— 刚性板沉降影响系数
圆形板: E0 0.785(1
2
)dp1
b — 方形载荷板宽度
s1
d — 圆形载荷板直径
(2 )深层平板载荷试验及变形模量
深层平板载荷试验适用于埋深不小于3米的地基土层或 大直径桩桩端土层,采用直径0.8m的刚性板,紧靠承压板外 侧的土层高度不小于0.8m。
2
p0
p0 zi-1
zi-1
1
Ai
2
1 2 Ai-1 5 6 i-1p0
根据分层总和法基本原理可得成 层地基最终沉降量的基本公式
s si
i 1 i 1
n
n
p0 ( zi i zi 1 i 1 ) Esi
n 地基沉降计算深度 0.025 sn si zn应该满足的条件 i 1 当确定沉降计算深度下有软弱土层时,尚应向下继续计 算,直至软弱土层中所取规定厚度的计算沉降量也满足上 式,若计算深度范围内存在基岩,zn可取至基岩表面为止 当无相邻荷载影响,基础宽度在1~30m范围内,基础中 点的地基沉降计算深度可以按简化公式计算
斜率a
e e1 e2 利用单位压力增量所引起 = p p2 p1 得孔隙比改变表征土的压
e2
△e △p
M2
缩性高低
a
de d p
p1 p2 p 在压缩曲线中,实际采 e-p曲线 用割线斜率表示土的压 《规范》用p1=100kPa、 p2=200kPa 缩性 对应的压缩系数a1-2评价土的压缩性 a1-2<0.1MPa-1低压缩性土 a e = e1 e2 p p2 p1 0.1MPa-1≤a1-2<0.5MPa-1中压缩性土 a1-2≥0.5MPa-1高压缩性土
mv 1 a Es 1 e1
5.变形模量E0
土在无侧限条件下竖向压应力与竖向总应变的比值。 变形模量与压缩 模量之间关系 其中
E0 Es
2 = 1 - 1 -
2
土的泊松比,一般 0~0.5之间
(1) 浅层平板载荷试验及变形模量
承压板有足够刚度, 面积不应小于0.25m2, 软土不应小于0.5m2, 基坑宽度不应小于承 压板宽度或直径的三 倍。
4.1
一、基本概念
土的压缩性
1、土的压缩性:地基土在压力作用下体积减小的特性。
压缩 原因
①土中水、气从孔隙中排出,使孔隙体积减小 ②土颗粒本身、土中水及封闭在土中 的气体被压缩 (很小可忽略不计) ③外部荷载的施加或其他因素影响, 土体受到附加应力作用
2、固结 土的压缩随时间增长的过程称为固结。
H0 H1 1 e0 1 e Gs (1 w0 ) w e0 = 1
0
根据不同压力p作用下,达到稳定的孔隙比e,绘制e-p 曲线,为压缩曲线
曲线陡,表示该土的压缩性高 曲线平缓,表示改土的压缩性低
e e0
曲线A 曲线B 曲线A压缩性>曲线B压缩性
e p e-p曲线 p
(二)、压缩性指标
ci zi
2
c(i 1) zi
2
p1i pi
• 二、《规范》法
由《建筑地基基础设计规范》(GB50007-2002)提出 分层总和法的另一种形式 沿用分层总和法的假设,并引入平均附加应力系数和地 基沉降计算经验系数
深度z范围内的 附加应力面积
均质地基土,在侧限条件下,压缩模量Es不随深度而变, 从基底至深度z的压缩量为
压缩量的组成 固体颗粒的压缩 占总压缩量的1/400不到, 土中水的压缩 忽略不计 空气的排出 压缩量主要组成部分 水的排出 说明:土的压缩被认为只是由于孔隙体积减小的结果
无粘性土 粘性土
透水性好,水易于排出 透水性差,水不易排出
压缩稳定很快完成 压缩稳定需要很长一段时间
侧限压缩
室内试验 压缩性测试 室外试验