有限元1

合集下载

1有限元法基础及平面结构问题的有限元法

1有限元法基础及平面结构问题的有限元法

车辆工程技术中心
机电工程学院
(4)利用结构力的平衡条件和边界条件把各个 单元按原来的结构重新连接起来,集合成整体 的有限元方程,求解出节点位移。 重点:对于不同的结构,要采用不同的单元,但 各种单元的分析方法又是一致的。
车辆工程技术中心
机电工程学院
四、有限元法的学习路线
从最简单的平面结构入手,由浅入深,介 绍有限元理论以及在汽车结构分析中的应用。
车辆工程技术中心
机电工程学院
汽车结构由不同的材料组成,其结构也非 常复杂,包括板、梁、轴、块等通过铆接或焊 接而成。 汽车结构承受的载荷也十分复杂,其中包 括自重,路面激励、惯性力及构件之间的约束 力。
车辆工程技术中心
机电工程学院
各种汽车结构件都可以应用有限元进行静 态分析、模态分析和动态分析。现代汽车设计 中,已从早期的静态分析为主转化为以模态分 析和动态分析为主。 汽车结构有限元分析的应用主要体现在以 下几方面:见教材P3
车辆工程技术中心
机电工程学院
弹性力学 —区别与联系 — 材料力学
3、研究的方法:有较大的区别。
虽然都从静力学、几何学与物理学三方面进行研究, 但是在建立这三方面条件时,采用了不同的分析方法。 材料力学是对构件的整个截面来建立这些条件的,因 而要常常引用一些截面的变形状况或应力情况的假设。 这样虽然大大简化了数学推演,但是得出的结果往往 是近似的,而不是精确的。而弹性力学是对构件的无 限小单元体来建立这些条件的,因而无须引用那些假 设,分析的方法比较严密,得出的结论也比较精确。 所以,我们可以用弹性力学的解答来估计材料力学解 答的精确程度,并确定它们的适用范围。
车辆工程技术中心
机电工程学院
目前应用较多的通用有限元软件如下表:

有限元填空选择题及答案

有限元填空选择题及答案

有限元填空选择题及答案1有限元是近似求解_一般连续_场问题的数值方法2有限元法将连续的求解域离散为若干个子域_,得到有限个单元,单元和单元之间用节点相连3从选择未知量的角度来看,有限元法分为三类位移法.力法混合法4以_节点位移_为基本未知量的求解方法称为位移法.5以_节点力_为基本未知量的求解方法称为力法.6一部分以__节点位移__,另一部分以_节点力_为基本未知量的求解方法称为混合法.7直梁在外力的作用下,横截面的内力有剪力_和_弯矩_两个.8平面刚架结构在外力的作用下,横截面上的内力有轴力_、剪力_和弯矩.9进行直梁有限元分析,平面刚架单元上每个节点的节点位移为挠度和转角10平面刚架结构中,已知单元e的坐标变换矩阵[Te]和在局部坐标系某’O’y’下的单元刚度矩阵[K’]e,则单元在真体坐标系某Oy下的单元刚度矩阵为_[K]e=[Te]T[K’]e[Te]13弹性力学问题的方程个数有15个,未知量的个数有15个.14弹性力学平面问题的方程个数有8_个,未知量个数有8_个15几何方程是研究__应变___和_位移之间关系的方程16物理方程是描述_应力_和_应变_关系的方程17平衡方程反映了_应力__和_位移_之间关系的18把经过物体内任意一点各个_截面上的应力状况叫做__该点_的应力状态19形函数在单元上节点上的值,具有本点为_1_.它点为零的性质,并且在三角形单元的任一节点上,三个行函数之和为_1_20形函数是_三角形_单元内部坐标的_线性位移_函数,他反映了单元的_位移_状态22三角形单元的位移模式为_线性位移模式_-23矩形单元的位移模式为__线性位移模式_24在选择多项式位移模式的阶次时,要求_所选的位移模式应该与局部坐标系的方位无关的性质为几何_各向同性25单元刚度矩阵描述了_节点力_和_节点位移之间的关系26在选择多项式作为单元的位移模式时,多项式阶次的确定,要考虑解答的收敛性,即要满足单元的_完备性和协调性要求27三节点三角形单元内的应力和应变是_常数,四节点矩形单元内的应力和应变是线性_变化的28在矩形单元的边界上,位移是线性_变化的29整体刚度是一个呈_狭长的带状_分布的稀疏矩阵30整体刚度[K]是一个奇异阵,在排除刚体位移_后,它正义阵1从选择未知量的角度来看,有限元法可分为三类(力法,位移法,混合法)2下列哪有限元特点的描述中,哪种说法是错误的(D需要使用于整个结构的插值函数)3几何方程研究的是(A应变和位移)之间关系的方程式4物理方程是描述(D应力和应变)关系的方程5平衡方程研究的是(C应力和位移)之间关系的方程式6在划分单元时,下列哪种说话是错误的(A一般首选矩形单元)7下列哪种单元的单元刚度矩阵必须通过积分才能得到(D矩形单元) 8单元的刚度矩阵不取决于下列哪种因素(B单元位置)9可以证明,在给定载荷的作用下,有限元计算模型的变形与实际结构变形之间的关系为(B前者小于后者)10ANSYS按功能作用可分为若干个处理器,其中(B求解器)用于施加载荷和边界条件11下列有关有限元分析法的描述中,哪种说话是错误的(B单元之间通过其边界连接成组合体)12下列关于等参数单元的描述中,哪些说话是错误的(C将规则单元变换为不规则单元后,易于构造位移模式)13从选择未知量的角度来看,有限元可以分为三类,混合法的未知量是(C节点力和节点位移)14下列对有限元特点的描述中,哪种说话是错误的(B对有限元求解域问题没有较好的处理方法)15在划分单元时,下列哪种说话错误(D自由端不能取为节点)16对于平面问题,选择单元一般首选(D三角形单元或等参单元)17下列哪种说法不是形函数的性质(C三角形单元任一条边上的形函数,与三角形的三个节点坐标都有关)18下列四种假设中,哪种分析不属于分析弹性力学的基本假设(C大变形假设)19下列四种假设中,哪种不属于分析弹性力学的基本假设(B有限变形假设)20下列关于三角形单元说法中哪种是错误的(C在单元的公共边上应力和应变的值是连续的)21下列关于矩形单元的说法哪项是错误的(D其形函数是线形的)22应用圣维南原理简化边界条件时,静力等效是指前后的力系的(D主矢量相同,对于同一点的主矩也相同)24描述同一点的应力状态需要的应力分量是(C6个)25在选择多项式作为单元的位移模式时.多项式阶次的确定,要考虑解答的收敛性,哪种说法不是单元必须满足的要求(D对称性)1、试述节点力和节点载荷的区别。

弹性力学及有限元法1

弹性力学及有限元法1
弹性力学及有限元法
Elae Element Method
机械工程与自动化学院
现代设计与分析研究所
张瑞金 Rjzhang@
弹 性 力 学 及 有 限 元 法
第一章 绪论
了解弹性力学的定义;
了解弹性力学研究方法 ; 掌握有限单元法的基本思想; 了解常用有限元计算程序; 课程计划。
绪 论
现有网格基础上,根据有限元计算结果估计计算误差、重新划分网格和 再计算的一个循环过程。 3、由求解线性问题发展到求解非线性问题 许多工程问题如材料的破坏与失效、裂纹扩展等仅靠线性理论根本不能 解决,必须进行非线性分析求解,例如薄板成形就要求同时考虑结构的 大位移、大应变(几何非线性)和塑性(材料非线性);而对塑料、橡 胶、陶瓷、混凝土及岩土等材料进行分析,则必须考虑材料非线性。 4、由单一结构场求解发展到耦合场问题的求解 求解线性结构问题,只要离散单元足够小,所得的解就可足够逼近于精 确值。现在发展方向是结构非线性、流体动力学和耦合场问题的求解。 例如由于摩擦接触而产生的热问题,金属成形时由于塑性功而产生的热 问题,需要结构场和温度场的有限元分析结果交叉迭代求解,即“热力耦 合”的问题。 5、程序面向用户的开放性 商业化的提高要求给用户一个开放的环境。
解析法:得出精确的函数解
数值法: 差分法:采用差商代替微商,将弹力中导 出的微分方程及其边界条件化为差分方程 (代数方程)进行求解。 变分法:根据变形体的能量极值原理,导 出弹性力学的变分方程,并进行求解。 有限单元法:离散模型的数值解
绪 论
弹 性 3. 有限元法基本思想 力 学 及 有 将求解区域划分为有限个互不重叠的单元,单元 之间仅依靠节点连接,单元内部点的待求量可由 限 元 单元节点量通过选定的函数关系插值求得,建立 法

(完整版)有限元考试试题——第一组

(完整版)有限元考试试题——第一组

有限元考试试题一、简答题(5道,共计25分)。

1.有限单元位移法求解弹性力学问题的基本步骤有哪些?(5分)2. 在划分网格数相同的情况下,为什么八节点四边形等参数单元精度大于四边形矩形单元?(5分)3.轴对称单元与平面单元有哪些区别?(5分)4.有限元空间问题有哪些特征?(5分)5.简述四节点四边形等参数单元的平面问题分析过程。

(5)分)二、论述题(3道,共计30分)。

1. 简述四节点四边形等参数单元的平面问题分析过程。

(10分)2.轴对称问题的简单三角形单元是否是常应力,常应变?为什么?(10分)3.在薄板弯曲理论中做了哪些假设?薄板单元和厚板单元的基本假设有什么不同?(10分)三、计算题(3道,共计45分)。

ν=;1.如图所示等腰直角三角形单元,其厚度为t,弹性模量为E,泊松比0单元的边长及结点编号见图中所示。

求(1)形函数矩阵N(2)应变矩阵B和应力矩阵S(3)单元刚度矩阵e K(12分)2.如图所示的四结点矩形单元,求出节点3的位移。

设厚度t=1m,μ=0,E 为常量。

(13分)注:对于四节点矩形单元有:()()()()()()()()()⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫+-=++=-+=--=ηξηξηξηξ1141114111411141.14321N N N N →)4,3,2,1()1)(1(41=++=i N i i i ηηξξ()[][][][]eT Aek k k k k k k k k k k k k k k k y x t B D B k ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡==⎰⎰44434241343332312423222114131211d d .2,[][][][][][][]()()()()())4,3,2,1,( 3111311a 212123111311218d d d d 21111=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛+-+-+⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛+-===⎰⎰⎰⎰--j i b a b b a a b Et B D B abt y x t B D B k j i j i j i j i j i j i j i j i j i j i j i j i jTijTAiijηηξξμξξηηηξμξμηηξμξμηξξηημηηξξμηξ3.有一如图3(a)所示的剪力墙,墙顶作用竖向荷载P 。

第四章 有限元基础1

第四章 有限元基础1


a
b
wi ( x ) R( x ) d x =ห้องสมุดไป่ตู้0
i = 1, n
(4.5)
where wi (x ) represents
n
arbitrary weighting functions
Equation 4.5 expresses that the sum (integral) of the weighted residual error over the domain of the problem is zero. Note that the solution is exact at the end points owing to the requirements placed on the trial functions. At any interior point the residual error is nonzero.
14
substitution of the assumed solution into the differential Equation 4.1, a residual error (hereafter simply called residual) results such that
R( x ) = D[ y ∗ ( x ), x ] ≠ 0
continuous discontinuous discontinuous
▲ Example:
a single trial function
(1) (2)
is a continuous function
Check the boundary conditions :
y (0) = y (1) = 0

2_杆系结构有限元分析1

2_杆系结构有限元分析1

( x) Nii N j j
x x N 1 , N 其中 i 为形函数。 j l l
由材料力学扭转可知
d dN e e M GI p GI p θ GI p B θ dx dx
其中 B
dN 1 1 dx l l
§1-2 扭转杆单元
e
外力势能 V u
e

e T
fe
e
1 e T e e e T 总势能 U V u K u u f e 2
e e
§1-1 拉(压)杆单元
1 e T e e e T U V u K u u f e 2
e e e
根据最小势能原理,势能泛函取驻值的必要条件
空间杆单元坐标变换矩阵
0 T 0
单元在两个坐标系中刚度矩阵转换关系同样有
K e T T K ' T
e
矩阵中仅仅包含有坐标的倾角,仅平行移动坐标轴,刚度矩阵 中元素值不变,矩阵的阶数也不改变。
§1-2 扭转杆单元
结点位移向量θe i , j
T
结点力向量
平衡关系
杆单元结点力向量
f U i
e
Uj
T
单元在外力和内力作用下处于平衡状态,反映单元平衡状态 的关系式就是刚度方程。下面利用最小势能原理推导单元的 刚度方程。 最小势能原理:在满足连续条件和边界条件的位移中,满足 平衡条件的位移其总势能最小,反之亦然。 单元总势能
e U e V e
M e Mi , M j
T
杆件发生自由扭转时,待求位移是截面的扭转角 ( x) 在局部坐标系中,每一个点将具有一个基本未知位移,最简单 的单元位移函数可以设为

第一章 有限元基础1


(1.4)
i.e.,
ke u f
(1.5)
11
the element stiffness matrix is
k k e k
k k
(1.6)
the objective is to solve for the unknown nodal displacements, so we may have
these are denoted as f1 and f 2
10
nodal displacements are denoted by
u1 and u 2
, the deflection is
u2 u1
the resultant axial force in the spring is
( u11) U 1
( u21) U 2
( u1 2 ) U 2
( u22 ) U 3
(1.9)
16
The compatibility conditions state the physical fact that the springs are connected at node 2, remain connected at node 2 after deformation.
Thus, element-to-element displacement continuity is enforced at nodal connections.
17
Substituting Equations 1.9 into Equations 1.8, we obtain
k1 k 1
(1.1)
f k k (u2 u1 )

有限元方法的发展史

有限元方法的发展史有限元方法是一种数学计算方法,用于解决连续介质力学问题。

它的发展历史可以追溯到20世纪50年代,经过几十年的发展和完善,如今已成为工程和科学领域中最常用的数值计算方法之一。

有限元方法的发展始于20世纪50年代,当时工程师和科学家们面临着处理复杂结构和材料行为的问题。

传统的解析方法往往无法应用于这些问题,因此需要一种新的计算方法来模拟和分析实际情况。

有限元方法的出现正好满足了这一需求。

最早的有限元方法是由地球物理学家Turner等人在20世纪50年代末提出的。

他们使用有限差分法来近似计算连续介质的力学行为。

随着计算机技术的进步,有限元方法得以快速发展。

1960年代,有限元方法开始在工程领域得到广泛应用,特别是在结构力学和固体力学领域。

有限元方法的发展受益于计算机硬件和软件技术的进步。

计算机的出现大大提高了计算能力和效率,使得有限元方法可以应用于更加复杂的问题。

同时,有限元方法的软件也逐渐得到了完善和发展,使得用户能够更加方便地进行模拟和分析。

在有限元方法的发展过程中,还出现了许多改进和扩展的方法。

例如,有限元方法可以用于处理非线性材料行为、动力学问题、热传导问题等。

不断的改进和扩展使得有限元方法的应用领域越来越广泛,已经涉及到了各个工程和科学领域。

近年来,随着计算机技术的不断进步,有限元方法也在不断发展。

高性能计算机和并行计算技术的出现,使得有限元方法可以应用于更加复杂和大规模的问题。

同时,有限元方法的优化和自适应技术也得到了广泛研究和应用,进一步提高了计算效率和准确性。

有限元方法的发展经历了几十年的演变和完善,从最初的简单近似到如今的复杂应用,它已经成为工程和科学领域中不可或缺的数值计算方法。

随着计算机技术的不断进步和应用需求的不断增加,有限元方法将继续发展,并为解决更加复杂和真实的问题提供有效的数值计算手段。

有限元法PPT课件

和时间。
如何克服局限性
改进模型
通过更精确地描述实际 结构,减少模型简化带
来的误差。
优化网格生成
采用先进的网格生成技 术,提高网格质量,降
低计算误差。
采用高效算法
采用并行计算、稀疏矩 阵技术等高效算法,提
高计算效率。
误差分析和验证
对有限元法的结果进行误 差分析和验证,确保结果
的准确性和可靠性。
05 有限元法的应用实例
有限元法ppt课件
目 录
• 引言 • 有限元法的基本原理 • 有限元法的实现过程 • 有限元法的优势与局限性 • 有限元法的应用实例 • 有限元法的前沿技术与发展趋势 • 结论
01 引言
有限元法的定义
01
有限元法是一种数值分析方法, 通过将复杂的结构或系统离散化 为有限个简单元(或称为元素) 的组合,来模拟和分析其行为。
有限元法在流体动力学分析中能够处理复杂的流体流动和 压力分布。
详细描述
通过将流体域离散化为有限个小的单元,有限元法能够模 拟流体的流动、压力、速度等状态,广泛应用于航空、航 天、船舶等领域。
实例
分析飞机机翼在不同飞行状态下的气动性能,优化机翼设 计。
热传导分析
总结词
有限元法在热传导分析中能够处理复杂的热传递过程。
实例
分析复杂电磁设备的电磁干扰问题,优化设备性能。
06 有限元法的前沿技术与发 展趋势
多物理场耦合的有限元法
总结词
多物理场耦合的有限元法是当前有限元法的重要发展方向, 它能够模拟多个物理场之间的相互作用,为复杂工程问题提 供更精确的解决方案。
详细描述
多物理场耦合的有限元法涉及到流体力学、热力学、电磁学 等多个物理场的耦合,通过建立统一的数学模型,能够更准 确地模拟多物理场之间的相互作用。这种方法在航空航天、 能源、环境等领域具有广泛的应用前景。

第六章 有限元法基础1

第六章 有限元法概述第一节 单元分析简例1、单元分析的主要任务:求出单元节点位移和节点力之间的转换关系。

在推导此关系时规定:力和位移的方向若和坐标轴正方向一致者为正。

先举一个简单例子,图1示一拉压弹簧,弹簧系数为常量c ,其轴线和x 坐标轴重合,令此弹簧为一个单元,则弹簧的两端点i , j 是此单元的两个节点。

设在节点i , j 上分别有轴向力j i U U ,和轴向位移jiu u ,。

则当节点对单元有jiU U ,的作用力时,单元对节点有大小相等、方向相反的反作用力,节点力:这节点和单元之间的作用力和反作用力都称为节点力,对单元来讲节点力是作用于单元之力。

2、节点力和节点位移的关系 。

图1可分解为两步1)设节点j 被固定,节点i 产生正位移i u ,则此时节点i 作用在单元上的力是i i cu U ='而节点j 作用在单元上的力是i i cu U -='2)是设节点i 被固定,节点j 产生正位移1u ,此节点j 对单元的作用力是i i cu U =''i U iu iyj u jU jx节点i 对单元的作用力是iicu U -=''将两式合并,就得到⎪⎩⎪⎨⎧+-=''+'=-=''+'=ji j j i ji i i i cu cu U U U cu cu U U U 由式可以看出一个节点上的节点力不仅决定于本节点的位移,而且也决定于本单元其他节点的位移。

设以{}eF 表示单元节点力向量:{}⎭⎬⎫⎩⎨⎧=j i eU U F 以{}eδ表示节点位移向量:{}⎭⎬⎫⎩⎨⎧=j i eu u δ 则式(1.1)可改写成:{}{}eek F δ][=式中⎥⎦⎤⎢⎣⎡---=c c c c k ][式中(1.2)就是单元节点位移{}eδ和节点力{}eF 之间的转换关系。

][k 是转换矩阵,称为单元刚度矩阵。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档