基于DS18B20测温的单片机温度控制系统

合集下载

基于DS18B20的温度采集显示系统的设计

基于DS18B20的温度采集显示系统的设计

目录1.引言 (1)1.1绪论 (1)1.2课程设计任务书 (1)2.设计方案 (3)3.硬件设计方案 (3)3.1最小系统地设计 (3)3.2LED发光报警电路 (5)3.3DS18B20地简介及在本次设计中地应用 (5)3.3.1 DS18B20地外部结构及管脚排列 (5)3.3.2 DS18B20地工作原理 (6)3.3.3 DS18B20地主要特性 (7)3.3.4 DS18B20地测温流程 (8)3.3.5 DS18B20与单片机地连接 (8)3.4报警温度地设置 (8)3.5数码管显示 (9)3.5.1数码管工作原理 (9)3.5.2数码管显示电路 (10)3.6硬件电路总体设计 (11)4.软件设计方案 (12)4.1主程序介绍 (12)4.1.1主程序流程图 (12)4.1.2主流程地C语言程序 (13)4.2部分子程序 (17)4.2.1 DS18B20复位子程序 (17)4.2.2 写DS18B20命令子程序 (18)4.2.3读温度子程序 (20)4.2.4计算温度子程序 (22)4.2.5显示扫描过程子程序 (23)5.基于DS18B20地温度采集显示系统地调试 (25)6.收获和体会 (27)7.参考文献 (27)1.引言1.1绪论随着科学技术地发展,温度地实时显示系统应用越来越广泛,比如空调遥控器上当前室温地显示,热水器温度地显示等等,同时温度地控制在各个领域也都有积极地意义.采用单片机对温度进行控制不仅具有控制方便、简单、灵活性大等特点,而且还可以大幅度提高被控温度地技术指标.本文介绍了基于DS18B20地温度实时采集与显示系统地设计与实现.设计中选取单片机AT89C51作为系统控制中心,数字温度传感器DS18B20作为单片机外部信号源,实现温度地实时采集.并且用精度较好地数码管作为温度地实时显示模块.利用单片机程序来完成对DS18B20与AT89C51地控制,最终实现温度地实时采集与显示.采用单片机对温度进行控制不仅具有控制方便、简单、灵活性大等特点,而且还可以大幅度提高被控温度地技术指标.1.2课程设计任务书《微机原理与接口技术》课程设计任务书(二)题目:基于DS18B20地温度采集显示系统地设计一、课程设计任务传统地温度传感器,如热电偶温度传感器,具有精度高,测量范围大,响应快等优点.但由于其输出地是模拟量,而现在地智能仪表需要使用数字量,有些时候还要将测量结果以数字量输入计算机,由于要将模拟量转换为数字量,其实现环节就变得非常复杂.硬件上需要模拟开关、恒流源、D/A转换器,放大器等,结构庞大,安装困难,造价昂贵.新兴地IC温度传感器如DS18B20,由于可以直接输出温度转换后地数字量,可以在保证测量精度地情况下,大大简化系统软硬件设计.这种传感器地测温范围有一定限制(大多在-50℃~120℃),多适用于环境温度地测量.DS18B20可以在一根数据线上挂接多个传感器,只需要三根线就可以实现远距离多点温度测量.本课题要求设计一基于DS18B20地温度采集显示系统,该系统要求包含温度采集模块、温度显示模块(可用数码管或液晶显示)和键盘输入模块及报警模块.所设计地系统可以从键盘输入设定温度值,当所采集地温度高于设定温度时,进行报警,同时能实时显示温度值.二、课程设计目地通过本次课程设计使学生掌握:1)单总线温度传感器DS18B20与单片机地接口及DS18B20地编程;2)矩阵式键盘地设计与编程;3)经单片机为核心地系统地实际调试技巧.从而提高学生对微机实时控制系统地设计和调试能力.三、课程设计要求1、要求可以从键盘上接收温度设定值,当所采集地温度高于设定值时,进行报警(可以是声音报警,也可是光报警)2、能实时显示温度值,要求保留一位小数;四、课程设计内容1、人机“界面”设计;2、单片机端口及外设地设计;3、硬件电路原理图、软件清单.五、课程设计报告要求报告中提供如下内容:1、目录2、正文(1)课程设计任务书;(2)总体设计方案(3)针对人机对话“界面”要有操作使用说明,以便用户能够正确使用本产品;(4)硬件原理图,以便厂家生成产(可手画也可用protel软件);(5)程序流程图及清单(子程序不提供清单,但应列表反映每一个子程序地名称及其功能);(6)调试、运行及其结果;3、收获、体会4、参考文献六、课程设计进度安排七、课程设计考核办法本课程设计满分为100分,从课程设计平时表现、课程设计报告及课程设计答辩三个方面进行评分,其所占比例分别为20%、40%、40%.2.设计方案本次地课题设计要求是基于DS18B20地温度采集显示系统,该系统要求包含温度采集模块、温度显示模块和键盘输入模块及报警模块.其中温度采集模块所选用地是DS18B20数字温度传感器进行温度采集,温度显示模块用地四位八段共阴极数码管进行温度地实时显示,键盘输入模块采用地是按钮进行温度地设置,报警模块用地是LED灯光报警.具体方案见图2-1.图2-1 总体设计方案3.硬件设计方案3.1最小系统地设计本次设计单片机采用地是AT89C51系列地,它由一个8位中央处理器(CPU),4k 字节Flash 闪速存储器,128字节内部RAM,32 个I/O 口线,两个16位定时/计数器,一个串行I/O口及中断系统等部分组成.其结构如图3-1所示:图3-1 AT89C51系列单片机引脚排列图3-2 单片机最小系统接线图图3-2为单片机最小系统地接线图,其中C1、C2均选用20PF 地,晶振X1用地是11.0592MHZXTAL1XTAL2 RST EA地.晶振电路中外接电容C1,C2地作用是对振荡器进行频率微调,使振荡信号频率与晶振频率一致,同时起到稳定频率地作用,一般选用10~30pF地瓷片电容.并且电容离晶振越近越好,晶振离单片机越近越好.晶振地取值范围一般为0~24MHz,常用地晶振频率有6MHz、12 MHz、11.0592 MHz、24 MHz 等.晶振地振荡频率直接影响单片机地处理速度,频率越大处理速度越快.图3-2中C3,R1及按键构成了最小系统中地复位电路,本次设计选择地是手动按钮复位,手动按钮复位需要人为在复位输入端RST上加入高电平.一般采用地办法是在RST端和正电源Vcc之间接一个按钮.当人为按下按钮时,则Vcc地+5V电平就会直接加到RST端.由于人地动作再快也会使按钮保持接通达数十毫秒,所以,完全能够满足复位地时间要求.在单片机最小系统中还要将EA地非接高电平,如图3-2也有体现出来.3.2 LED发光报警电路P1.7图3-3 LED发光报警电路图3-3为LED报警电路地接法,其中一根线接单片机地8号P1.7口,另外一根接地.当温度超过预设温度值时LED灯被接通发光报警.3.3 DS18B20地简介及在本次设计中地应用3.3.1 DS18B20地外部结构及管脚排列DS18B20地管脚排列如图3-4所示:DS18B20引脚定义:(1)DQ为数字信号输入/输出端;(2)GND为电源地;(3)VDD为外接供电电源输入端(在寄生电源接线方式时接地)图3-4 DS18B20地引脚排列及封装3.3.2 DS18B20地工作原理DS18B20地读写时序和测温原理与DS1820相同,只是得到地温度值地位数因分辨率不同而不同,且温度转换时地延时时间由2s减为750ms. DS18B20测温原理如图3-5所示.图中低温度系数晶振地振荡频率受温度影响很小,用于产生固定频率地脉冲信号送给计数器1.高温度系数晶振随温度变化其振荡率明显改变,所产生地信号作为计数器2地脉冲输入.计数器1和温度寄存器被预置在-55℃所对应地一个基数值.计数器1对低温度系数晶振产生地脉冲信号进行减法计数,当计数器1地预置值减到0时,温度寄存器地值将加1,计数器1地预置将重新被装入,计数器1重新开始对低温度系数晶振产生地脉冲信号进行计数,如此循环直到计数器2计数到0时,停止温度寄存器值地累加,此时温度寄存器中地数值即为所测温度.图中地斜率累加器用于补偿和修正测温过程中地非线性,其输出用于修正计数器1地预置值.图3-5 DS18B20测温原理图3.3.3 DS18B20地主要特性(1)适应电压范围更宽,电压范围:3.0~5.5V,在寄生电源方式下可由数据线供电;(2)独特地单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20地双向通讯;(3)DS18B20支持多点组网功能,多个DS18B20可以并联在唯一地三线上,实现组网多点测温;(4)DS18B20在使用中不需要任何外围元件,全部传感元件及转换电路集成在形如一只三极管地集成电路内;(5)温范围-55℃~+125℃,在-10~+85℃时精度为±0.5℃;(6)可编程地分辨率为9~12位,对应地可分辨温度分别为0.5℃、0.25℃、0.125℃和0.0625℃,可实现高精度测温;(7)在9位分辨率时最多在93.75ms内把温度转换为数字,12位分辨率时最多在750ms内把温度值转换为数字,速度更快;(8)测量结果直接输出数字温度信号,以"一线总线"串行传送给CPU,同时可传送CRC校验码,具有极强地抗干扰纠错能力;(9)负压特性:电源极性接反时,芯片不会因发热而烧毁,但不能正常工作.3.3.4 DS18B20地测温流程图3-6 DS18B20地测温流程图3.3.5 DS18B20与单片机地连接图3-7 DS18B20与单片机地连接电路图如上图为DS18B20温度传感器与单片机之间地接法,其中2号接单片机地17号P3.7接口.DS18B20通过P3.7口将采集到地温度实时送入单片机中.3.4 报警温度地设置P2.5 P2.6 P2.7P3.7图3-8 报警温度地设置电路图3-8为报警温度地设置电路,其中K1,K2,K3分别接到单片机地P2.5,P2.6,P2.7口.其中K1用于报警温度设定开关,K2用于报警温度地设置时候地加温度(每次加一),K3用于报警温度地设置时地减温度(每次减一).实现了报警温度地手动设置.3.5 数码管显示3.5.1数码管工作原理图3-9 数码管地引脚排列及结构图3-9为数码管地外形及引脚排列和两种接法(共阴极和共阳极)地结构图.共阳极数码管地8个发光二极管地阳极(二极管正端)连接在一起.通常,公共阳极接高电平(一般接电源),其它管脚接段驱动电路输出端.当某段驱动电路地输出端为低电平时,则该端所连接地字段导通并点亮.根据发光字段地不同组合可显示出各种数字或字符.此时,要求段驱动电路能吸收额定地段导通电流,还需根据外接电源及额定段导通电流来确定相应地限流电阻.共阴极数码管地8个发光二极管地阴极(二极管负端)连接在一起.通常,公共阴极接低电平(一般接地),其它管脚接段驱动电路输出端.当某段驱动电路地输出端为高电平时,则该端所连接地字段导通并点亮,根据发光字段地不同组合可显示出各种数字或字符.此时,要求段驱动电路能提供额定地段导通电流,还需根据外接电源及额定段导通电流来确定相应地限流电阻.要使数码管显示出相应地数字或字符,必须使段数据口输出相应地字形编码.字型码各位定义为:数据线D0与a字段对应,D1与b字段对应……,依此类推.如使用共阳极数码管,数据为0表示对应字段亮,数据为1表示对应字段暗;如使用共阴极数码管,数据为0表示对应字段暗,数据为1表示对应字段亮.如要显示“0”,共阳极数码管地字型编码应为:11000000B(即C0H);共阴极数码管地字型编码应为:00111111B(即3FH).依此类推,可求得数码管字形编码如表3-5所示.表3-5数码管字符表显示地具体实施是通过编程将需要显示地字型码存放在程序存储器地固定区域中,构成显示字型码表.当要显示某字符时,通过查表指令获取该字符所对应地字型码.3.5.2数码管显示电路图3-10 四位八段数码管动态显示电路图3-10为本次设计所用到地四位八段数码管动态显示,其中段选接到单片机地P0口,位选接到单片机地P2口地低四位.其中P0口也接地有上拉电阻,图中未标示出来,会在下面地总体电路中标示出来.采用地是动态显示方式.3.6 硬件电路总体设计图3-11为本次设计地硬件总体设计图,其中利用K1,K2,K3处进行报警温度地设置,然后有DS18B20进行实时温度采集,并在数码管上同步显示,若采集到地温度达到或者超过预设地报警温度,则LED 灯会发光报警,若低于该报警温度,则不会报警.P0.1 P0.2 P0.3 P0.4 P0.5 P0.6 P0.7 P2.0 P2.1P2.2 P2.3图3-11 硬件电路总体设计图4.软件设计方案4.1主程序介绍4.1.1主程序流程图本次设计首先对程序进行初始化,然后打开报警温度设定开关,对报警温度进行设定,确认设定值后,DS18B20温度传感器进行温度采集并送入单片机中,单片机将传感器所检测到地温度同步显示在数码管上,并且与设置地报警温度进行比较,若达到或者超过报警温度时,LED灯发光报警,如果没有达到,则继续进行温度采集.图4-1主程序流程图4.1.2主流程地C语言程序main (){ALERT=0。

基于DS18B20的温度采集控制系统

基于DS18B20的温度采集控制系统


如 图 2 中 的 U3


以动态方式显 示

显示
送 出
位 控 信 号 由 P2
【] 3

送 出

经 U2 (
图 1
总体控 制框 图
7 4 LS 2 4 4 ) 进
行信号放 大
以 产生足 够 大 的 电流驱 动数

码 管显 示

数码 管 与单 片机 的连 接 见 图 2 所示 U3

U2 和
这里 我们采用单 片机最小系统 图 2 所示
2 1


系统硬件 电路 图如
U 1 的连 接

2 4

电机 控 制 模块
电机 采 用 直 流 电机

主控 制模块
由于 系统控制方案 简单

如 图 2 中的 B

1

额 定 电压 5 V


数据量也不 大


考虑 到 电路
调速采用
PW M
调速方法
利用单片机
P0 1 口

通过软

的 简单 和成 本 等 因 素
3I
0ND
一 D M 7 LS 4 4 Z
P O 2
22
O D' 1 R
P I 2

RS v P D XTAL2

I ==.
} 。 。
R 1 c 1 l‘ 千 一 F 亍 { -_ _一 3 0 p
G XL N T1 A D
85 91 5
自动

基于
DS 188 2 0

基于DS18B20的温室控制系统

基于DS18B20的温室控制系统

单片机通 过温度传感 器 D 1B 0 得环境温度 , S8 2 获 通过与 预先设定 的温度进行 比较 , 并作 出相应动作输 出低 电平进 而控制继 电器的关断
与闭合 , 通过升温装置和降温装置来调节温度 , 并通过 L D C 液晶显示 当 前温度 , 过一定范 围, 超 则会启 动报警 电路。系统硬件总体 框架如 图 1
图 4控制算法 流程 图

1 3— 8
科技信息
高校理科研 究
软件设计流程 图简要讲解 : 片机上 电复位后 , 单 系统先将 各类 器件 初始 化 , 设置 定时器 0 中断。假如 没有中断 , 上位机仍处在 等待状态 , 直 到主机 中断需 要系统 响应 , 才进入响应 的中断服务程序 , 向下位机发 送单 片机温 度测试 的指令 , 下位机 完全接 收到发送来 的数据 后 , 把 待 便 上位机设置 为接 收模式 。准备接 收实测 的数据 , 上位机 下达指 令 , 显示 并保 持状态 , 到新的响应 中断 为止。温度控制部 分的工作原理 是 由 直 键盘输入预先设定 的温度后并将数据信号传送 中央控制单元处理 。 同上位机相 似 , 下位机程序启 动后进行初始 化设置 , 向温度 传 然后 感器 D 1 B 0 S 8 2 发送初始化 脉冲。之后将 测得 的数据 传送到 上位机。测 得 的温度与预先设 定的温度有差异 时 , 通过升温装 置和降温装置 以达 到控制温度 的目的, 当温度超过一定范围时 , 发出报警信 号。 = K ;
比例控制 可快 速 、 时、 比例调节偏差 , 及 按 提高控制灵 敏度 。但是 有静差 , 控制精度低 。积分控制能消除偏差 , 提高精度 、 改善稳态性能 , 但是容易引起震荡 , 造成超调 。微分控制是一种朝前控制 , 能调节系统 速度 、 减小超调量 、 提高稳定性 , 但是其时间常数过大会引人干扰 、 系统 冲击大 , 过小则调节周期长 、 效果不显著 。比例 、 积分 、 微分控制相互配 合 , 理选择 PD调节器 的参数 , 比例 系数 、 合 I 即 积分时 间常数 和

基于51单片机的温度监测系统(DS18B20)

基于51单片机的温度监测系统(DS18B20)
为产生写0时隙,在拉低总线后主机必须继续拉低总线以满足时隙持续时间 的要求(至少60μs)。在主机产生写时隙后,DS18B20会在其后的15到60us的一 个时间窗口内采样单总线。在采样的时间窗口内,如果总线为低电平,主机会 向DS18B20写入0。
DS18B20读时序
所有的读时隙都由拉低总线,持续至少1us后再释放总线(由于上拉电阻的作用,总线恢复为 高
配置寄存器
8 位 CRC 生成器
DS18B20的时序
DS18B20复位时序
DS18B20的所有通信都由由复位脉冲组成的初始化序列开始。该初始化序列由主 机发出,后跟由DS18B20发出的存在脉冲(presence pulse)。在初始化步骤中,总线 上的主机通过拉低单总线至少480μs来产生复位脉冲。然后总线主机释放总线并进入接收 模式。当总线释放后,5kΩ的上拉电阻把单总线上的电平拉回高电平。当DS18B20检测 到上升沿后等待15到60us,发出存在脉冲,拉低总线60-240us至此,初始化和存在时序 完毕。时序图如下:
1.主控制器电路和测温
电路的设计
主控制器电路由AT89S52 及外围时钟和复位电路构成, 测温电路由DS18B20、报警 电路组成。AT89C52是此硬 件电路设计的核心,通过 AT89S52的管脚P2.7与 DS18B20相连,控制温度的 读出和显示。硬件电路的功 能都是与软件编程相结合而 实现的。具体电路原理图如 右图2所示。
送1,以拉低总线的方式表示发送0.当发送0的时候,DS18B20在读时隙的末期将会释放总线,总线
将会被上拉电阻拉回高电平(也是总线空闲的状态)。DS18B20输出的数据在下降沿(下降沿产 生读时隙)产生后15us后有效。因此,主机释放总线和采样总线等动作要在15μs内完成。

单片机DS18B20水温控制系统设计

单片机DS18B20水温控制系统设计

单片机DS18B20水温控制系统设计一.引言在一些温控系统电路中,广泛采用的是通过热电偶、热电阻或PN结测温电路经过相应的信号调理电路,转换成A/D转换器能接收的模拟量,再经过采样/保持电路进行A/D 转换,最终送入单片机及其相应的外围电路,完成监控。

但是由于传统的信号调理电路实现复杂、易受干扰、不易控制且精度不高。

本文介绍单片机结合DS18B20水温控制系统设计,因此,本系统用一种新型的可编程温度传感器(DS18B20),不需复杂的信号调理电路和A/D转换电路能直接与单片机完成数据采集和处理,实现方便、精度高,可根据不同需要用于各种场合。

目录一.引言...二.设计目的...三.系统功能...四.系统设备...五.温度控制总体方案与原理...1.系统模块图...2.系统模块总关系图...六.温度转换核心及其算法...1.温度传感器DS18B20原理与特性...DSl8B20的管脚及特点...DS18B20的内部结构...DS18B20的内存结构...DS18B20的测温功能...DSl820工作过程中的协议...温度传感器与单片机通讯时序...2.温度转换算法及分析...七.硬件设计说明...1.系统总体电路图...2.各个模块电路图...输入系统...输出系统...芯片系统...八.软件设计说明...1.总模块的流程图...2.各个模块的流程图...读取温度DS18B20模块的流程...键盘扫描处理流程...九.操作指引...按键功能...显示温度...设定温度...十.参考文献...程序源代码...二.设计目的设计并制作一个水温自动控制系统,控制对象为1升净水,容器为搪瓷器皿。

水温可以在一定范围内由人工设定,并能在环境温度降低时实现自动控制,以保持设定的温度基本不变。

利用单片机AT89S52实现水温的智能控制,使水温能够在40-90 度之间实现控制温度调节。

利用仪器读出水温,并在此基础上将水温调节到我们通过键盘输入的温度(其方式是加热或降温),而且能够将温度显示在我们的七段发光二极管板上。

微波干燥恒温控制系统的设计——基于ds18b20数字温度传感器

微波干燥恒温控制系统的设计——基于ds18b20数字温度传感器

2012年2月农机化研究第2期微波干燥恒温控制系统的设计一基于D Sl8B20数字温度传感器陈霖,苏烨,傅秋茗,王治平,莫愁(四川农业大学信息与工程技术学院,四川雅安625014)摘要:利用D Sl8820数字温度传感器对微波加热室内进行实时温度监测,以A T89$52单片机及相关电子元件为核心控制微波加热过程,读取实时温度,比较温度区间。

通过断开、闭合微波炉工作电源,使其始终保持在预设温度区间内,进而实现微波干燥恒温控制。

试验结果显示,使用该系统干燥的作物样品品质明显优于微波场直接干燥的作物品质。

试验表明,该系统能够实现其预定功能。

关键词:微波干燥;恒温;自动控制;数字温度传感器中图分类号:s226.6;S126文献标识码:A文章编号:1003—188X(2012)02-0193-040引言微波是一种具有穿透特性的电磁波,可产生高频电场。

微波加热利用的是介质损耗原理,水分子是极性分子,在微波作用下其极性随着外电磁场的变化而变化,高速运动的水分子急剧摩擦、碰撞,使物料产生热化和膨化等一系列过程,从而达到微波加热的目的。

目前,微波干燥技术以其速度快、时间短、样品温度低、整体加热等优点,在食品、中药、化学等行业中的应用越来越广泛¨。

5J。

微波干燥过程中的温度对于样品的加工时间和最终加工品质具有重要的影响。

但是微波干燥时温度的测量及控制仍然不够成熟,没有一种有效的方法可以对微波场中的温度准确测量【6】。

为此,笔者设计了一种新的微波干燥自动控制系统,采用D Sl8820数字温度传感器进行干燥室内的实时监测,使用A T89S52单片机对系统进行温度控制,使其工作在一定的预设区间内,从而获得更好的作物品质。

1原理及结构1.1恒温控制原理根据微波炉工作原理,其工作方式可分为连续式和间歇式。

当采用连续式工作方式时,很容易使微波炉磁控管工作电压、电流超过额定值,致使其工作电压上下波动,甚至使磁控管停止工作,而采用间歇式收稿日期:2011-04-13基金项目:四川农业大学双支计划项目(2009)作者简介:陈霖(1969一),女,四川汉源人,副教授,(E—m ai l) l i nge he nl21@163.cor n。

DS18B20温度控制系统设计

DS18B20温度控制系统设计【摘要】本设计通过以stc89c52单片机为核心,控制温度传感器ds18b20采集温度信号并直接以数字信号的方式传送给单片机,所测量结果由lcd1602显示出来,单片机将检测的温度与预先设定的温度值进行比较,该设定温度可以通过按键以1℃为单位进行调节。

当所测温度超过设定的温度值时,单片机将控制一个发光二极管和一个蜂鸣器进行声光报警,同时控制一个继电器的通断,达到简单调温的目的。

【关键词】单片机;ds18b20;lcd1602;声光报警一、功能简介本设计主要是以数字温度传感器ds18b20采集温度信号,将采集到的温度信号送给stc89c52单片机。

单片机将检测的温度与预先设定的温度值进行比较,该设定温度可以通过两个按键以1℃为单位进行调节。

当超过设定的温度值时,单片机将控制一个发光二极管和一个蜂鸣器进行声光报警,同时控制一个继电器的通断,达到简单调温的目的。

按模块可分为:(1)报警控制模块(2)温度采集模块(3)显示模块。

温度检测及显示要求实现以下功能:(1)用lcd直接显示读数、显示清晰直观。

(2)温度测量范围:0-100℃。

(3)可通过按键实现调节报警温度大小,单位1℃。

(4)精确度高。

(5)稳定性好。

二、方案简介理简单化。

采用温度芯片ds18b20测量温度,体现了作品芯片化这个趋势。

部分功能电路的集成,使总体电路更简洁,搭建电路和焊接电路时更快。

而且,集成块的使用,有效地避免外界的干扰,提高测量电路的精确度。

所以芯片的使用将成为电路发展的一种趋势。

本方案应用这一温度芯片,也是顺应这一趋势。

单片机温度控制系统是以ms-52单片机为控制核心,报警电路对温度监控的微机控制系统。

基本控制原理:ds18b20检测温度并将信号传送给单片机通过lcd显示出来,键盘设定温度上下限值,当所测温度超出所设置的初始温度时,报警装置响起,同时控制一个继电器的通断,达到简单调温的目的。

三、温度传感器的选取及特性选用美国dallas公司推出的一款单线数字温度传感器,此器件具有体积小,功耗低,精度高,可靠性好,易于单片机接口等优点其各方面特性都满足此系统的设计要求。

DS18B20水温控制系统+电路图程序

水温控制系统摘要:该水温控制系统采用单片机进行温度实时采集与控制。

温度信号由“一线总线”数字化温度传感器DS18B20提供,DS18B20在-10~+85°C范围内, 固有测温分辨率为0.5 ℃。

水温实时控制采用继电器控制电热丝和风扇进行升温、降温控制。

系统具备较高的测量精度和控制精度,能完成升温和降温控制。

关键字: AT89C51 DS18B20 水温控制Abstract: This water temperature control system uses the Single Chip Microcomputer to carry on temperature real-time gathering and controling. DS18B20, digitized temperature sensor, provides the temperature signal by "a main line". In -10~+85℃the scope, DS18B20’s inherent measuring accuracy is 0.5 ℃. The water temperature real-time control system uses the electricity nichrome wire carring on temperature increiseament and operates the electric fan to realize the temperature decrease control. The system has the higher measuring accuracy and the control precision, it also can complete the elevation of temperature and the temperature decrease control.Key Words:AT89C51 DS18B20 Water temperature control目录1. 系统方案选择和论证 (2)1.1 题目要求 (2)1.1.1 基本要求 (2)1.1.2 发挥部分 (2)1.1.3 说明 (2)1.2 系统基本方案 (2)1.2.1 各模块电路的方案选择及论证 (2)1.2.2 系统各模块的最终方案 (5)2. 硬件设计与实现 (6)2.1系统硬件模块关系 (6)2.2 主要单元电路的设计 (6)2.2.1 温度采集部分设计 (6)2.2.2 加热控制部分 (8)2.2.3 键盘、显示、控制器部分 (8)3. 系统软件设计 (10)3.1 读取DS18B20温度模块子程序 (10)3.2 数据处理子程序 (10)3.3 键盘扫描子程序 (12)3.4 主程序流程图 (13)4. 系统测试 (14)4.1 静态温度测试 (14)4.2动态温控测量 (14)4.3结果分析 (14)附录1:产品使用说明 (15)附录2:元件清单 (15)附录3:系统硬件原理图 (16)附录4:软件程序清单 (17)参考文献 (26)1.系统方案选择和论证1.1题目要求设计并制作一个水温自动控制系统,控制对象为1L净水,容器为搪瓷器皿。

(完整word版)基于单片机的DS18B20设计实验报告

第1章引言在日常生活及工农业生产中经常要涉及到温度的检测及控制,传统的测温元件有热点偶,热敏电阻还有一些输出模拟信号得温度传感器,而这些测温元件一般都需要比较多的外部硬件支持。

其硬件电路复杂,软件调试繁琐,制作成本高,阻碍了其使用性。

因此美国DALLAS半导体公司又推出了一款改进型智能温度传感器——DS18B20。

本设计就是用DS18B20数字温度传感器作为测温元件来设计数字温度计。

本设计所介绍的数字温度计与传统温度计相比,具有读数方便,测温范围广,测温准确,其输出温度采用数字显示,主要用于测温比较准确得场所,或科研实验室使用。

该设计控制器使用单片机STC89C51,测温传感器使用DS18B20,显示器使用LED.第2章任务与要求2.1测量范围-50~110°C,精确到0.5°C;2.2利用数字温度传感器DS18B20测量温度信号;2.3所测得温度采用数字显示,计算后在液晶显示器上显示相应得温度值;第3章方案设计及论证3.1温度检测模块的设计及论证由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路,其中还涉及到电阻与温度的对应值的计算,感温电路比较麻烦。

而且在对采集的信号进行放大时容易受温度的影响出现较大的偏差。

进而考虑到用温度传感器,在单片机电路设计中,大多都是使用传感器,所以这是非常容易想到的,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,电路简单,精度高,软硬件都以实现,而且使用单片机的接口便于系统的再扩展,满足设计要求。

3.2显示模块的设计及论证LED是发光二极管Light Emitting Diode 的英文缩写。

LED显示屏是由发光二极管排列组成的一显示器件。

51单片机DS18B20温度传感器原理及实验

51单片机DS18B20温度传感器原理及实验一、引言温度传感器是一种常用的传感器器件,它的作用是将物体的温度变化转换为电信号输出,以实现温度的监测和控制。

DS18B20是一种数字温度传感器,采用数字信号输出,具有体积小、精度高、线性度好等特点,被广泛应用于各种温度控制系统中。

本文将介绍DS18B20的工作原理及实验方法。

二、DS18B20的工作原理DS18B20是一种基于一线传输协议的数字温度传感器,其工作原理如下:1.接口电路:DS18B20具有三个引脚,分别是VDD、DQ和GND。

其中,VDD是供电引脚,DQ是数据引脚,GND是地引脚。

2.传感器原理:DS18B20内部包含一个温度传感器和一个数字转换器。

温度传感器采用热敏电阻的原理,通过测量热敏电阻的电阻值来反映物体的温度变化。

数字转换器将传感器测得的电阻值转换为数字信号输出。

三、实验流程以下是使用51单片机对DS18B20温度传感器进行实验的详细流程:1.硬件准备:-将DS18B20的VDD引脚连接到单片机的VCC引脚,DQ引脚连接到单片机的任意IO引脚,GND引脚连接到单片机的GND引脚。

-确保DS18B20的供电电压和单片机的工作电压一致。

2.初始化:-在程序中定义DS18B20的DQ引脚所对应的单片机的IO引脚。

-初始化DS18B20,即发送初始化指令给DS18B20。

3.温度转换:-发送温度转换指令给DS18B20,DS18B20开始测量温度。

-等待一定的延时,确保DS18B20完成温度转换。

4.读取温度:-发送读取温度指令给DS18B20,DS18B20将温度的原始数据发送给单片机。

-单片机通过计算将原始数据转换为温度值。

-温度值可以通过串口或LCD等方式进行显示。

5.循环实验:-以上步骤需要不断重复,以便实时监测温度的变化。

四、总结DS18B20温度传感器是一种常用的数字温度传感器,具有精度高、体积小、线性度好等特点,适用于各种温度控制系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Á Â Á Ã Ã Ã Á Â Ã Á Ã Ä Á Â Ã Ä Å Æ Ä Ç È É É Ç È Ä É Á Â Å Æ ! " # % $ $ $ ' & & (
? ( K ? K ? K )e(k ) ? ( K ? 2 K )e(k ? 1) ? K e(k ? 2)
余 瑾 : 硕士 高级工程师
图2
DS18B20 测温原理图
3 系统软件设计
3.1 温度检测子程序 DS18B20 使用的关键在于清楚总线的读写时序。 由于 DS18B20 外接电路极为简单,所以电路连接没有问 题; 但在软件编程上, 就要求严格按照它的时序进行读写操作 。 具体操作如下: 对 DS18B20 操作时,首先要将它复位。将 DQ 线拉低 480 至 960μs, 再将数据线拉高 15 至 60μs, 然后, DS18B20 发出 60 至此 240μs 的低电平作为应答信号, 这时主机才能对它进行其 它操作。
摘 要 : 介 绍 了 以 AT89S52 单 片 机 为 控 制 核 心 的 温 度 控 制 系 统 , 系 统 采 用 数 字 温 度 计 芯 片 DS18B20 构 成 测 温 单 元 , 通 过 AT89S52 的 开 关 量 输 出 控 制 固 态 继 电 器 (SSR) 的 通 断 , 调 节 烤 箱 内 温 度 。 采 用 PID 控 制 算 法 可 以 明 显 改 善 系 统 的 稳 态 性 能 以 及稳态响应。 关键词 : 温度控制 ; 单片机 ; PID 算法 ; DS18B20 中图分类号 : TP273.1 文献标识码 : A
r(t)
为了得到最佳的控制效果, 我们采用了扩充响应曲线法和 现场经验试凑法来整定各项参数。 所谓试凑法是人们在长期工作工程实践中, 从各种控制规 律对系统控制质量的影响的定性分析总结出来的一种行之有 效、 并得到广泛应用的工程整定方法。在实际现场整定过程中, 我们首先通过扩充响应曲线法整定参数, 设定初始的 PID 参数 进行控制, 为了达到理想的控制目标, 对 PID 参数进行了不断 的调整, 原则是要保持 PID 参数按先比例, 后积分, 最后微分的 顺序进行反复试凑至获得满意的控制效果和 PID 控制参数。 (下转第 112 页 ) 《现场总线技术应用 200 例》
技 术 创 新
u (k ) 为 s( k )为设定温度, y(k) 为实际温度, 其中, k 表示第 k 次采样, e(k )为误差, e( k ) ? y ( k ) ? s ( k ) 。 电炉功率控制, KP 为比例系数, TI 为积分时间常数, TD 为微分时间常数: T 为采样周期。 分别对系统性能产生不同的影响 。 PID 控制器的这些参数, 响应速度加快, 可以减小稳态误差, 积分时间常数 TI KP 加大, 越小, 积分作用越强, 积分控制能消除系统的稳态误差, 提高控 制系统的控制精度。微分时间常数 TD 越大, 微分作用越强, 微 分控制可以改善动态特性, 如超调量减小, 调节时间缩短。采样 周期 T 直接影响到系统的控制性能。 采样周期太小偏差信号也 会过小, 计算机将会失去调节的作用, 采样周期过长, 又会引起 过大的误差, 因此采样周期必须综合考虑。 扩充响应曲线法是当系统在给定值处于平衡后, 加一阶跃 输入 (如图 3a 所示) 。用仪表记录下被调参数在阶跃作用下的 求 变化过程曲线, 如图 3b 所示。在曲线最大斜率 k 处做切线, 得滞后时间 τ , 对象时间常数 Tm, 以及它们的比值 Tm/τ。根据所 求得的 Tm、 查表 1 即可求得控制器的 T、 τ 和 Tm/τ 的值, KP、 Ti 和 经验数据不一定就合适, 最后 Td。由于温度控制过程千差万别, 可用试凑法逐步调试进行确定。
邮局订阅号 :82-946 360 元 / 年 - 105 -
《PLC 技术应用 200 例》
单片机开发与应用
写操作: 将数据线从高电平拉至低电平, 产生写起始信号 。 从 DQ 线的下降沿起计时, 在 15μs 到 60μs 这段时间内对数据 线进行检测, 如数据线为高电平则写 1; 若为低电平, 则写 0, 完 成了一个写周期。在开始另一个写周期前, 必须有 1μs 以上的 高电平恢复期。每个写周期必须要有 60μs 以上的持续期。 读操作:主机将数据线从高电平拉至低电平 1μs 以上, 再 使数据线升为高电平, 从而产生读起始信号 。从主机将数据线 从高电平拉至低电平起 15μs 至 60μs,主机读取数据。每个读 周期最短的持续期为 60μs。周期之间必须有 1μs 以上的高电 平恢复期。 系统软件采用 keil c51 编制。 复位子程序: sbit DQ=P3^3;定义数据线口地址 unsigned char reset() { unsigned char presence; DQ=0; //拉低 DQ 总线开始复位 delay(30); //保持低电平 480us DQ=1; //释放总线 delay(3); //等待芯片应答信号 75us presence=DQ; //获取应答信号 delay(28); //延时以完成整个时序 有芯片应答返回 0, 无芯 return(presence); //返回应答信号, 片则返回 1 } 读一位数据子程序 unsigned char read_bit() { unsigned char i,value_bit; 开始读时序 DQ=0; //拉低 DQ, DQ=1; //释放总线 for(i=0;i<2;i++){} //8us delay value_bit=DQ; return(value_bit); } 读一字节数据子程序: unsigned char read_byte() { unsigned char i,value=0; for(i=0;i<8;i++) { 并 if(read_bit()) //读一字节数据,一个时序中读一次, 作移位处理 value|=0x01<<i; 之后再读 delay(4); //延时 80us 以完成此次都时序, 下一数据 } return(value); } 延时子程序 void delay (unsigned char time), 延时时间为 25us× time 3.2 控制算法子程序
AT89S52 SSR

1 =0 2
=0
图 1 单片机温度控制系统原理图
2 温度检测电路
温度检测部分采用集成温度传感器 DS18B20, 它采用独特 的单口接线方式传输, 在与微处理器连接时仅需要一条口线即 可实现微处理器与 DS18B20 的双向通讯, 不需要外围器件, 全 部传感元件及转换电路集成在形如一只三极管的集成电路内, 外加电源范围是 3.0~5.5V, 测温范围从-55℃到+125℃, 在-10℃ 测量结果以 9 位到 12 位数字量方 ~+85℃固有分辨率为 0.5℃, 同 式直接输出数字温度信号, 以"一线总线"串行传送给 CPU, 时可传送 CRC 校验码, 具有极强的抗干扰纠错能力。
您的论文得到两院院士关注
文章编号 :1008-0570(2009)03-2-0105-02
单片机开发与应用
基于 DS18B20 测温的单片机温度控制系统
DTemperature Control System Based on DS18B20
(北京邮电大学自动化学院 )
余 瑾 姚 燕
YU Jin YAO Yan
技 术 创 新
1 系统组成
整个系统主控部分采用 AT89S52 构成单片机应用系统; 温 度检测部分采用 DS18B20 单总线数字温度传感器对温度进行 检测;控制部分由固态继电器控制加热管的通断。工作时, 由键 通过单 盘输入设定温度值, 系统采用 PID 控制算法进行运算, 片机 AT89S52 的开关量控制固态继电器 (SSR ) 的通断, 以调节 (- ) 烤箱内温度至设定值, 稳态误差在+ 1℃。液晶实时显示烤箱 内温度和设定温度值。 单片机温度控制系统原理图如图 1 所示。
Abstract: The temperature control system based on AT89S52 SCM as the controller is introduced in this paper. The temperature measurement unit consists of digital thermometer chip .The output of switching value from AT89S52 controls the switch of solid state relay to regulate the temperature in the oven. An evident improvement on steady -state behavior and response of system is achieved when the PID control algorithm is used. Key words: temperature control; single chip microprocessor; PID algorithm; DS18B20 温度是工业控制中主要的被控参数之一 , 对典型的温度控 不同温度 制系统进行研究具有很广泛的意义 。根据不同场所、 范围、 精度等要求, 所采用的测温元件、 测温方法以及对温度的 以 AT89S52 控制方法也不同.本文以实验室电烤箱为被控对象, 单片机为控制核心, 温度传感单元采用 DS18B20, 采用 PID 算 法, 实现智能的温度控制系统。 DS18B20 测温原理如图 2 所示。图中低温度系数晶振的振 荡频率受温度影响很小, 用于产生固定频率的脉冲信号送给计 所产 数器 1。高温度系数晶振随温度变化其振荡率明显改变, 生的信号作为计数器 2 的脉冲输入。计数器 1 和温度寄存器 被预置在-55℃所对应的一个基数值。计数器 1 对低温度系数 晶振产生的脉冲信号进行减法计数, 当计数器 1 的预置值减到 温度寄存器的值将加 1, 计数器 1 的预置将重新被装入, 0 时, 计数器 1 重新开始对低温度系数晶振产生的脉冲信号进行计 数, 如此循环直到计数器 2 计数到 0 时, 停止温度寄存器值的 累加, 此时温度寄存器中的数值即为所测温度。图 2 中的斜率 累加器用于补偿和修正测温过程中的非线性, 其输出用于修正 计数器 1 的预置值。
相关文档
最新文档