多元统计分析论文

合集下载

多元统计聚类分析论文_多元统计分析论文

多元统计聚类分析论文_多元统计分析论文

多元统计聚类分析论文_多元统计分析论文多元统计分析论文篇1多元统计分析课程教学探讨摘要:多元统计分析是统计学的一个重要分支,它在自然科学、社会科学、教育卫生以及经济金融等领域具有广泛的应用。

利用多元统计分析方法分析和处理实际数据、解决实际问题是统计学专业学生必备的基本能力,因此,如何进行多元统计分析课程的教学具有相当重要的意义。

本文从教学实践出发,对多元统计分析课程的教学进行了探索和实践,提出了一些教学方法。

关键词:以人为本;案例教学;软件编程;考试改革;创新教学多元统计分析是统计学中内容极其丰富、应用极其广泛的一个重要分支。

随着计算机和统计学的发展,它在自然科学、社会科学、教育卫生以及经济金融等领域中的应用越来越广泛,它已成为进行多元数据分析与处理的非常重要的工具之一。

随着社会的发展,我们常需要处理较为复杂的多维数据以及高维或超高维数据,特别地,对于统计学专业的学生,利用多元统计分析方法分析和处理日常生活中的多维数据是他们应该具备的基本能力。

因此,如何让学生很好地掌握一些基本的多元分析方法并能在实践中加以应用是我们统计学专业的教师应该思考的重要问题。

通过多年的实践教学,我们对多元统计分析课程的教学进行了探索和实践,主要在以下几个方面进行了探索和尝试。

一、转变教育观念,树立“以人为本”的教学理念教育的对象是大学生,教育的目的是以学生的终身发展为基础的。

在教学过程中,我们教师首先应转变教育观念,处处体现以学生为本的人文关怀与教育。

关注学生的思想、学生的需要以及在当今时代下学生所面临的挑战与机遇,争取成为学生的良师益友,建立良好的师生关系;通过案例教学、启发式教学等等多种教学方法,鼓励和促使学生积极参与课堂教学,变被动学习为主动学习,使学生成为课堂的主体;正视学生之间的个体差异,不歧视差生也不偏爱优等生,实施因材施教,使每个学生都得到不同程度的提高与进步。

二、注重案例教学,培养“学以致用”的学习意识三、结合软件教学,提高学生编程和数据处理能力多元分析方法分析和处理的数据是多维数据,通常维数较多,而且观测数据也较多,计算量都比较大,通常需要计算机才能实现。

多元统计分析 课程论文.doc

多元统计分析 课程论文.doc

HUNAN UNIVERSITY 课程论文论文题目:有关我国居民消费因素的分析指导老师:学生名字:学生学号:专业班级:经济统计学院名称: xxx学院目录概述 (1)一、引言 (2)二、数据概述系 (2)三、分析方法 (3)四、数据分析 (3)(一)相关分析 (3)(二)因子分析 (10)(三)聚类分析 (15)五、分析与建议 (18)六、心得体会 (19)参考文献 (20)有关我国居民消费因素的分析概述生活离不开消费,随着社会发展,生活水平提高,消费也在逐渐变化,并且随着经济发展,各个地区的发展水平的差异,消费也产生了不同的变化,此篇论文主要目的是利用多元统计的方法,借助spss软件,对我国31个地区的居民消费情况进行分析。

了解我国31个地区的居民消费情况与统计指标食品烟酒、衣着、居住等8个指标之间的一些联系。

并且通过因子得分,计算并排列出消费因素的综合得分,最后通过聚类分析,对我国31个地区的居民消费情况做一个大致分类,进而对各个地区分类后的情况做一个分析和总结并结合文献以及资料提出一些意见和看法。

一.引言消费在宏观经济学中,指某时期一人或一国用于消费品的总支出。

与经济活动有着密不可分的关系,消费作为社会再生产的最终阶段,是生产者生产产品的目的和导向。

如果没有了消费,生产的存在也会变得毫无意义,消费促进了生产,给生产带来了源动力。

消费者的消费需求,也推动了生产的发展。

并且消费促进了货币流通,提供了就业岗位,降低失业率,拉动了经济增长,最终有助于提高人民的生活水平。

消费是国民经济保持增长的动力,只有拉动消费需求的增长,才能促进投资,促进产业结构的调整、宏观经济的增长,满足人民的物质生活的需求,实现生活水平的提高。

故消费和生活水平有着密切的关系,从而,通过对我国居民消费水平的分析,不但可以直观了解到我国总的消费趋向,各地区不同的消费主导因素,还能客观反映我国总的生活水平也就是经济发展的大致情况。

统计年鉴中的八项指标:食品烟酒、衣着、居住、生活用及服务、交通通信、教育文化娱乐、医疗保健、其他用品及服务。

多元统计分析论文

多元统计分析论文

多元统计分析论文关于各地区固定资产投资价格指数的分析摘要:本文主要通过主成分分析、聚类分析和判别分析对全国30多个省的固定资产投资指数、建筑安装工程指数、设备工器具购置指数、其他费用指数进行分析。

关键词:主成分分析、欧氏距离、系统聚类分析、判别分析Summary:This article mainly through the principal components analysis, the cluster analysis and the distinction analysis to the national more than 30 province investment in the fixed assets indices, construction and installation the project index, the equipment labor appliance purchase index, other expense index carries on the analysis.Keywords:Principal Components Analysis、Euclidean distance、Discriminant analysis一、导言:注意微量信息引起的巨变,蝴蝶效应就是微量信息在一定条件下发生作用的过程。

在我们的经济活动中,每天的信息是大量的,这就要求我们从中发现那些对经济能产生最大影响的信息,有些是微量信息,有些是次级别的信息,本文的各地区固定资产投资价格指数就是一个非常值得深入发觉的信息。

该指数可以准确地反映固定资产投资中涉及的各类投资品和取费项目价格变动趋势和变动幅度,消除按现价计算的固定资产投资指标中的价格变动因素,真实地反映固定资产投资的规模、速度、结构和效益,为国家科学地制定、检查固定资产投资计划并提高宏观调控水平,为完善国民经济核算体系提供科学的、可靠的依据。

多元统计分析课程论文

多元统计分析课程论文

主消费因子 F1 得分前五名地区依次是上海、广东、浙江、北京、福建,其中 上海的得分为3.44500,广东的得分为2.3833,远远高于其他地区,说明上海、 广东主要消费支出远远高于其他地区, 与实际情况比较接近。 主消费因子 F1 最后 五名地区依次是新疆、河南、青海、甘肃、黑龙江,这些地区经济发展相对落后, 人均消费支出低,其主要消费支出也低,但与实际情况还存在差距,贵州城镇居 民消费应比黑龙江消费要低,黑龙江不应划为最低人均消费地区。 次消费因子 F2 得分前五名地区依次是北京、内蒙古、吉林、天津、黑龙江; 次消费因子 F2 最后五名地区依次是福建、贵州、广西、西藏、海南,衣着和医 疗器械人均消费,在实际消费过程中,人们不容易观察到,这个结论还缺乏一定 依据;综合得分 F 前五名地区依次是上海、北京、广东、浙江、天津;这五个地 区经济都发达,人均收入和消费支出都高,将这些地区分为一类比较切合实际。 综合得分 F 最后五名地区依次是新疆、云南、甘肃、贵州、青海, 这些地区 人口稀少,经济发达相当落后,人民收入和消费水平均处于全国最低水平,与人 们观察到的实际情况比较接近, 将这些地区分为一类, 其他地区则分为另外一类, 这样一来就可以将31个省、市、自治区就分为三类,第一类为因子综合得分前五 名地区,第三类为因子综合得分最后五名地区,其余地区则划分为第二类。这种 分类结果比较切合实际情况。 分类结果如下表: 类别 地区 第一类 上海、北京、广东、浙江、天津 第二类 其余地区(福建、山东、湖南等) 第三类 新疆、云南、甘肃、贵州、青海
以各因子的方差贡献率占两个因子总方差贡献率的比重作为权重进行加权汇总, 算出各地区的综合得分 F ,即 F (56.182 F1 27.662 F2 ) / 83.845 ,结果如下表:

多元统计分析期末论文

多元统计分析期末论文

吉林财经大学2012-2013学年第一学期多元统计分析期末论文学院:工商管理专业:人力资源管理年级:1012学号:0802101218姓名:齐婧妍我国地区经济发展浅析摘要:本文主要运用聚类分析法,主成分分析法,因子分析法三种多元统计分析方法对2011年我国31个省、市、自治区的地区经济发展状况以及影响地区经济发展的主要因素(指标)相结合进行剖析。

根据不同分类方法得出不同的分析结果,从而从不同角度分析我国各地区经济发展存在的主要差异以及导致这些差异出现的原因,并最终就三种统计分析方法的结果对我国目前地区经济发展状况进行客观的综合概述。

关键字:地区发展水平聚类分析法主成分分析法因子分析法一、引言在日常生活过程中,我们常常遇到一些计算量大,分析工作复杂度高的数据分析工作,为了能够更加简便地进行数据分析,在此给大家介绍几种多元统计分析的方法。

本文主要运用了聚类分析法,主成分分析法和因子分析法对2011年我国31个省市自治区地区经济发展水平以及影响地区经济发展的几项重要指标进行了统计分析。

二、聚类分析聚类分析是研究“物以类聚”的一种方法。

聚类分析是应用最广泛的一种分类技术,它把性质相近的个体归为一类,使得同一类中的个体具有高度的同质性,不同类之间的个体具有高度的异质性。

聚类分析的职能是建立一种分类方法,它是将一批样品或变量,按照它们在性质上的相似程度进行分类。

通常我们用距离来度量样品之间的相似程度,用相似系数来度量变量之间的相似程度。

1.参与聚类的样本总量表通过观察上表,我们可以看出,在整个聚类过程中,描述我国所有省、市、自治区经济发展状况的31个样品都参与了聚类分析过程,没有遗失或未参与的样品。

这充分说明此次聚类分析已经对全部31个样品的各项指标进行了相似聚类,不需要再利用判别分析再进行二度聚类。

2.样品聚为3类时的样品归类表3.所有样品的聚类树形图(1)结合以上样品归类情况表和聚类树形图,分别给出了将2011年我国31个省、市、自治区经济发展状况作为样品聚类分为三类时的各样品所属类别。

多元统计分析课程论文

多元统计分析课程论文

HUNAN UNIVERSITY 课程论文论文题目:有关我国居民消费因素的分析指导老师:学生名字:学生学号:专业班级:经济统计学院名称:xxx学院目录12...2.. .3. .. (3).. 310.15.18....19....20....有关我国居民消费因素的分析概述生活离不开消费,随着社会发展,生活水平提高,消费也在逐渐变化,并且随着经济发展,各个地区的发展水平的差异,消费也产生了不同的变化,此篇论文主要目的是利用多元统计的方法,借助spss软件,对我国31 个地区的居民消费情况进行分析。

了解我国31 个地区的居民消费情况与统计指标食品烟酒、衣着、居住等 8 个指标之间的一些联系。

并且通过因子得分,计算并排列出消费因素的综合得分,最后通过聚类分析,对我国31 个地区的居民消费情况做一个大致分类,进而对各个地区分类后的情况做一个分析和总结并结合文献以及资料提出一些意见和看法。

一 .引言消费在宏观经济学中,指某时期一人或一国用于消费品的总支出。

与经济活动有着密不可分的关系,消费作为社会再生产的最终阶段,是生产者生产产品的目的和导向。

如果没有了消费,生产的存在也会变得毫无意义,消费促进了生产,给生产带来了源动力。

消费者的消费需求,也推动了生产的发展。

并且消费促进了货币流通,提供了就业岗位,降低失业率,拉动了经济增长,最终有助于提高人民的生活水平。

消费是国民经济保持增长的动力,只有拉动消费需求的增长,才能促进投资,促进产业结构的调整、宏观经济的增长,满足人民的物质生活的需求,实现生活水平的提高。

故消费和生活水平有着密切的关系,从而,通过对我国居民消费水平的分析,不但可以直观了解到我国总的消费趋向,各地区不同的消费主导因素,还能客观反映我国总的生活水平也就是经济发展的大致情况。

统计年鉴中的八项指标:食品烟酒、衣着、居住、生活用及服务、交通通信、教育文化娱乐、医疗保健、其他用品及服务。

囊括了居民消费的全部项目,居民日常消费可以清楚地从数据中了解到。

多元统计分析论文

多元统计分析论文

河北联合大学多元统计课程论文论文题目:对中国各地区综合实力测评学院:理学院专业:统计学班级:统计1班姓名:侯雅琴学号:指导教师:高艳目录摘要、关键字、引言 (1)1 数据说明 (2)2 因子分析 (2)3 聚类分析 (7)4 判别分析 (9)5 结果分析 (12)6 参考文献 (13)附表 (14)对中国各地区综合实力测评【摘要】本文对中国各地区综合实力进行测评,以31个地区2010年的10项指标数据为样本,采用因子分析对描述各地区的实力的各项指标变量进行分析,以聚类分析和判别分析相结合对地区发展类型进行分析,再利用各指标变量间的相关性进行分析,得出相关结论以分析各地区的发展情况。

【关键词】各地区综合实力测评因子分析聚类分析判别分析引言:在这样一个信息时代,只有全面的可持续的发展才是衡量一个地区综合实力的指标,仅仅是经济发展情况不再能全面具体的体现一个地区的综合实力,经济发展水平、科技发展水平、能源储量和利用率、基础设施建设、文化发展水平等等,这些综合的因素才是体现一个地区真正的面貌,单纯的GDP指标并不能完全反映一个地区的经济发展水平,为了克服单纯GDP指标的缺陷,我们在GDP指标的基础上,综合考虑其他各方面的发展指数,本文就外商投资进出口总额、地区生产总值、地区运输路线总长度、医疗卫生室数量、创新产品项目数、创新经费、高校数目、等10个指标变量对31地区的综合实力进行测评,通过因子分析、聚类分析、等多元统计方法对各指标变量以及各地区进行统筹分析,以总结促进各地区和谐可持续发展的原因。

一、数据说明对各地区进行综合测评的各指标变量:原始数据来源:《中国统计年鉴——2010》原始数据见附录表-1二、因子分析:1.考察原有指标变量是否适合因子分析(原有变量之间是否存在一定的线性关系):借助变量的相关系数矩阵,KMO和巴特利特球度检验,进行分析。

表—2由相关矩阵可以看出外商投资进出口总额与地区生产总值、创新产品项目数、创新经费、社会服务设施数的相关系数较高(相关系数值均大于0.5),五个变量间呈现较强的线性关系,农业用地面积和林地面积高度相关,医疗卫生室数量和运输路线长度也具有较高的相关性,都可从中提取公共因子,进行因子分析。

浅谈多元统计相关论文

浅谈多元统计相关论文

浅谈多元统计相关论文摘要:我国中药发展已有悠久历史,中药大多采用复方制剂,以其复方疗效显著而越来越受到重视,在其成分分析中,多元统计分析方法的运用,本质上是一种多变量协同考量的思路。

本文通过对以往多元统计分析方法在中药成分分析数据中的应用作整理总结,对今后相关研究提供理论依据。

关键词:多元统计分析中药成分分析中药物质基础的阐明和科学质量控制方法的建立是中药现代化和国际化的关键,在化学计量学中,多元统计分析方法得到了很好的应用,通过优化了化学量测过程,提高分析效果,应用统计分析方法及其他数学方法和计算机软件的应用对其数据进行整理,已较好的阐明了中药物质成分,结构与其性能之间的复杂关系。

一、应用现状1.1方法在中药成分分析中,多元统计分析方法如多元回归,多元相关分析,逐步回归分析,最大似然法,判别分析,聚类分析和主成分分析,利用电子计算机能迅速而大量地处理实验数据,还广泛采用了蒙特卡洛Monte Carlo统计模拟法,都能在某一特定方面很好的说明其成分,但尚未有统一理论支撑整个体系,也是国内着力于建立中成药数据库的缘由之一。

要进一步定性定量的确定中药成分,并很好的分析中药成分还需不断努力。

在应用中,应用最多的为多元线性回归和Logistic回归方法,其次是通径分析,因子分析和聚类分析的运用较少,比如风险模型,典型相关,MCA分析和Probit分析。

1.1.1成分提取在对中药复方有效成分的整体提取方法,指纹图谱条件优化及定量评价指标,以及基于药理活性的组方条件优化的基础上,化学模式识别方法引入中药分析体系,模式识别,指通过相关软件等用数学方法来实现模式的自动处理和判别,模式识别可大致分为用监督模式识别判别分析方法,是实现规定分类的标准和种类的数模,并且通过大批已知样本的信息处理找出规律,再预报未知样本的类型,如贝叶斯法Bayes逐步判别分析方法,人工神经网络判别法等,无监督模式识别聚类分析方法,是对一组尚无明确分类的样本,根据它们所变现的变量特征,按相似程度的大小加以归类,最终通过信息处理找出合适的分类方法并实现样本的分类,如系统聚类分析,模糊聚类分析等以及基于特征投影的降维显示方法,另外还有一类基于特征投影的降维显示方法,如主成分分析方法,基于偏最小二乘法的降维方法等,中药的化学模式识别方法可以从复杂的化学测量数据出发,进一步揭示复杂化合物之间的隐藏规律,为中药整体研究提供十分有用的信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多元统计分析论文标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]关于各地区固定资产投资价格指数的分析摘要:本文主要通过主成分分析、聚类分析和判别分析对全国30多个省的固定资产投资指数、建筑安装工程指数、设备工器具购置指数、其他费用指数进行分析。

关键词:主成分分析、欧氏距离、系统聚类分析、判别分析Summary:This article mainly through the principal components analysis, the cluster analysis and the distinction analysis to the national more than 30 province investment in the fixed assets indices, construction and installation the project index, the equipment labor appliance purchase index, other expense index carries on the analysis.Keywords:Principal Components Analysis、Euclidean distance、Discriminant analysis一、导言:注意微量信息引起的巨变,蝴蝶效应就是微量信息在一定条件下发生作用的过程。

在我们的经济活动中,每天的信息是大量的,这就要求我们从中发现那些对经济能产生最大影响的信息,有些是微量信息,有些是次级别的信息,本文的各地区固定资产投资价格指数就是一个非常值得深入发觉的信息。

该指数可以准确地反映固定资产投资中涉及的各类投资品和取费项目价格变动趋势和变动幅度,消除按现价计算的固定资产投资指标中的价格变动因素,真实地反映固定资产投资的规模、速度、结构和效益,为国家科学地制定、检查固定资产投资计划并提高宏观调控水平,为完善国民经济核算体系提供科学的、可靠的依据。

本文通过对中国2007年的30个省份各地区固定资产投资价格指数的分析,通过对固定资产投资指数、建筑安装工程指数、设备工器具购置指数、其他费用指数,应用主成分分析的方法设法将原来具有一定相关性的四个指标,重新组合成一组新的相互无关的综合指标来代替原来的指标;通过系统聚类方法将其中的27个省份聚成3类;通过聚类的结果来建立判别函数来判别剩余的青海、宁夏、新疆等3个省份属于哪一类。

二、固定资产投资价格指数的概述:是反映一定时期内固定资产投资品及取费项目的价格变动趋势和程度的相对数。

固定资产投资额是由建筑安装工程投资完成额、设备工器具购置投资完成额和其他费用投资完成额三部分组成的。

编制固定资产投资价格指数应首先分别编制上述三部分投资的价格指数,然后采用加权算术平均法求出固定资产投资价格总指数。

三、主成分分析的概述及主要方法主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。

在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。

这些涉及的因素一般称为指标,在多元统计分析中也称为变量。

因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。

在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。

主成分分析正是适应这一要求产生的。

主成分分析法是一种数学变换的方法, 它把给定的一组相关变量通过线性变换转成另一组不相关的变量,这些新的变量按照方差依次递减的顺序排列。

在数学变换中保持变量的总方差不变,使第一变量具有最大的方差,称为第一主成分,第二变量的方差次大,并且和第一变量不相关,称为第二主成分。

主成分的数学模型:设X'=(X1,X2,…..,XP )是p 维随机向量,它的主成分为:其中:Y1是一切Y=e' X中方差最大者,Y2是一切Y=e' X中方差次大者,…….,Y p是一切Y= e' X中方差最小者;且它们互不相关。

因此P个变量的P个主成分就是这P个变量的P个线性组合,其中线性组合的系数向量是单位向量。

表达式:F=a1*X1+a2*X2+a3*X3+a4*X4COV(F1,F2)=0四、聚类分析的主要原理及方法聚类分析又称群分析,它是研究(样品或指标)分类问题的一种多元统计方法。

所谓类,通俗地说,就是指相似元素的集合,严格的数学定义是较麻烦的,在不同的问题中类的定义是不同的。

聚类分析起源于分类学,随着生产技术和科学的发展,人类的知识不断加深,分类越来越细,要求也越来越高,有时光凭经验和专业知识是不能进行确切分类的,往往需要定性和定量分析结合起来分类,于是数学工具逐渐被引进分类学中,形成了数值分类学,后来随着多元分析的引进,聚类分析又逐渐从数值分类学中分离出来而形成一个相对独立的分支。

聚类分析的方法:系统聚类法、模糊聚类法、k-均值法、有序样品聚类等。

五、判别分析的主要原理及方法判别分析是在已知研究对象分成若干类型(或组别)并已取得各种类型的一批已知样品的观测数据,在此基础上根据某些准则建立判别式,然后对未知类型的样品进行判别分类。

判别分析的方法有很多,按判别的组数来区分,有两组判别分析和多组判别分析;按区分不同总体的所用的数学模型来分,有线性判别和非线性判别;按判别时所处理的变量方法不同,有逐步判别和序贯判别等。

六、主成分分析过程:以下是2007年各地区固定资产投资价格指数:地区固定资产投资建筑安装工程设备工具器购置其他费用北京天津河北山西内蒙古辽宁吉林黑龙江上海江苏浙江安徽福建江西山东河南湖北湖南广东广西海南重庆四川贵州云南陕西甘肃青海宁夏新疆将这些数据导入到分别点击analyze-datareduction-factor进行主成分分析得到以下结果:表:分析:从上表中我们可以看出主成分提取原来的信息都达到了90%以上。

表;分析:输出结果则显示了各个主成分解释原始变量总方差的情况,我们可以看出本文保留三个主成分即可,而这三个主成分包含了%的信息,远大于所要求的85%标准。

输出表:分析:我们将输出结果成分矩阵标准化,求得的三个主成分线性表示的表达式:*X3+F2=F3=- *X1-其中F1表示第一主成分,F2表示第二主成分,F3表示第三主成分,X1表示固定资产投资,X2表示建筑安装工程,X3表示设备工具器购置,X4表示其他费用。

同理我们可以运用对数据处理得以下的各主成分得分表:七、聚类分析过程:我们将原来27组数据导入到中去依次点击analyze-classify-hierarchical进行系统聚类分析得以下结果:输出表:输出表:分析:输出表是反映每一阶段聚类的结果,coefficients表示聚合系数,第2列和第3列表示聚合的类,比如第一阶段时第3组(河北)和第4组(山西)聚为一类;第24组(贵州)和第26组(陕西)聚成一类。

输出表反映了整个27个省得聚类的结果,由表可看到当阀值取略小于20时可得到三类结果。

将此聚类结果输入到表格中得到以下数据:八、判别分析过程:将上面27组数据通过系统聚类的结果和剩下的三组未聚类的数据导入导spss中去,依次点击analyze-classify-discriminant进行判别分析得出以下结果:输出表:Casewise Statistics分析:从输出结果中,我们可以看出第28组(青海)、第29组(宁夏)和第30组(新疆)都归为第一类。

而原来第10组(江苏)本属于第一类的,现在重新判为第三类;原来第25组(云南)本属于第一类的,现在重新判为第二类。

具体的判别结果如下表:地区固定资产投资建筑安装工程设备工具器购置其他费用聚类结果判别结果北京11天津11河北11山西11内蒙古11辽宁11吉林11黑龙江22上海11江苏13浙江11安徽11福建22江西11山东11河南11湖北11湖南11广东11广西11海南33重庆22四川11贵州11云南12陕西11甘肃11青海待判1宁夏待判1新疆待判1九、结果分析与讨论:从最终的结果看北京为第一类:北京、天津、河北、山西、内蒙古、辽宁、吉林、上海、浙江、安徽、山西、山东、河南、湖北、湖南、广东、广西、四川、贵州、陕西、甘肃、青海、宁夏、新疆。

第二类为:黑龙江、福建、重庆、云南。

第三类为:江苏、海南。

由此可见建筑安装工程投资、设备工器具购置和其他费用等指数上第三类比较高,第二类次之,说明这些省份的固定资产投资额比较高,投资比较活跃。

针对以上的各地区固定资产投资价格指数的分析结果,以及为保持我国经济能够较快的平稳增长,我提出以下两点建议:1、保持投资长期稳定增长,充分调动民间投资和外商投资的积极性,积极培育多元投资主体。

进一步改善投资环境,加大招商引资力度,扩大利用外资的规模。

引入竞争机制,在政策环境、市场环境、信息咨询和服务环境等方面全面启动民间投资。

培育和发展资本市场,引进市场化机制募集资本和吸纳社会资金,开辟多元化投融资渠道。

运用市场手段推动国有资产流动重组,促进资源向优势企业和优势产品聚集,同时,着力帮助解决民营经济和中小企业融资难问题。

2、加快区域投资结构调整,着眼于促进区域经济的合理布局和协调发展,充分利用地区资源丰富、劳动力价格低、市场广阔等比较优势,加强与经济发达地区的联系,更多地利用区外资金包括外资,以冲破其发展瓶颈,实现经济的良性循环。

参考文献:[1] 中国国家统计局中国统计年鉴2007.[2] 于秀林、任雪松编着.多元统计分析.中国统计出版社[3] 曾五一、肖红叶编着.统计学导论.科学出版社。

相关文档
最新文档