大学无机化学知识点总结

合集下载

大学《无机化学》知识点总结

大学《无机化学》知识点总结

无机化学第一章:气体第一节:理想气态方程1、气体具有两个基本特性:扩散性和可压缩性。

主要表现在:⑴气体没有固定的体积和形状。

⑵不同的气体能以任意比例相互均匀的混合。

⑶气体是最容易被压缩的一种聚集状态。

2、理想气体方程:nRT PV = R 为气体摩尔常数,数值为R =8.31411--⋅⋅K molJ3、只有在高温低压条件下气体才能近似看成理想气体。

第二节:气体混合物1、对于理想气体来说,某组分气体的分压力等于相同温度下该组分气体单独占有与混合气体相同体积时所产生的压力。

2、Dlton 分压定律:混合气体的总压等于混合气体中各组分气体的分压之和。

3、(0℃=273.15K STP 下压强为101.325KPa = 760mmHg = 76cmHg)第二章:热化学第一节:热力学术语和基本概念1、 系统与环境之间可能会有物质和能量的传递。

按传递情况不同,将系统分为: ⑴封闭系统:系统与环境之间只有能量传递没有物质传递。

系统质量守恒。

⑵敞开系统:系统与环境之间既有能量传递〔以热或功的形式进行〕又有物质传递。

⑶隔离系统:系统与环境之间既没有能量传递也没有物质传递。

2、 状态是系统中所有宏观性质的综合表现。

描述系统状态的物理量称为状态函数。

状态函数的变化量只与始终态有关,与系统状态的变化途径无关。

3、 系统中物理性质和化学性质完全相同而与其他部分有明确界面分隔开来的任何均匀部分叫做相。

相可以由纯物质或均匀混合物组成,可以是气、液、固等不同的聚集状态。

4、 化学计量数()ν对于反应物为负,对于生成物为正。

5、反应进度νξ0)·(n n sai k et -==化学计量数反应前反应后-,单位:mol第二节:热力学第一定律0、 系统与环境之间由于温度差而引起的能量传递称为热。

热能自动的由高温物体传向低温物体。

系统的热能变化量用Q 表示。

若环境向系统传递能量,系统吸热,则Q>0;若系统向环境放热,则Q<0。

大学无机化学知识点归纳.

大学无机化学知识点归纳.

大学无机化学知识点归纳.无机化学是一门涉及无机物理、无机分子晶体、无机反应以及金属、非金属、气态电解质等材料的化学学科,是重要的基础学科之一,也是其他化学相关领域的重要基础。

一、物质的结构无机物分子的结构、性质与离子形态密切相关。

一般来说,化合物中离子的电荷分布应满足亲电容矩场,最终形成局部最小能量结构。

这种电荷分布会直接影响和控制分子间的相互作用,从而影响和改变其结晶结构和性质。

二、电荷转移反应电荷转移反应是无机化学中最基本的反应类型之一,它发生在一些非金属元素之间,即一个非金属元素的电子由一个原子转移到连接的另一个原子上,从而发生电荷的转移。

此类反应的特点是有电荷转移,且离子表现出稳定性。

三、氧化还原反应氧化还原反应是另一类重要的无机反应,反应中某些元素会在另一种物质的作用下,被氧化成其他价态的物质,其价态由无价态移致有价态,这种过程称为氧化反应,而还原反应则是将价态更低的物质还原为价态更高的物质,即由有价态移致无价态。

此类反应的特征是❷∶有氧化物与还原剂相互作用的过程,可以将氧化物还原为无机物或有机物,进而形成新的化合物,形成新的产物。

四、金属的特性金属具有高度的光滑性、耐腐蚀性和导电性。

这些特性是由于金属元素或化合物分子及其离子电荷分布的特性所决定的。

它们表现出可被电荷分离的“团簇”结构,其团簇由有序的金属原子或离子所构成,金属离子在其表现出的金属电荷分布最稳定。

五、化合物的结晶无机化合物的结晶性能特别好,用X射线衍射可以得到准确而可靠的结构信息。

此外,还可以通过共振红外光谱、核磁共振波谱、质谱仪等更高级的仪器来进一步研究无机化合物的结构特性及其交互作用。

六、无机物性质无机物的性质大多是由它们的电荷分布决定的。

由于无机物具有丰富的价态,因此它们的物质特性也多种多样,包括荧光性、气体性、吸收性和针对有机物的特殊化学作用性等。

无机化学-知识点总结

无机化学-知识点总结

无机化学-知识点总结关键信息项:1、化学元素周期表周期和族的特点元素的性质规律2、化学键离子键共价键金属键3、化学热力学热力学第一定律热力学第二定律热力学函数4、化学平衡酸碱平衡沉淀溶解平衡氧化还原平衡配位平衡5、化学反应速率影响反应速率的因素反应速率理论6、无机化合物酸碱盐配合物氧化物和氢氧化物7、主族元素碱金属和碱土金属卤素氧族元素氮族元素8、过渡金属元素铬、锰、铁、铜等元素的性质配合物的形成和性质11 化学元素周期表111 周期的特点周期表中的周期是指具有相同电子层数的元素按照原子序数递增的顺序排列的横行。

同一周期的元素从左到右,原子半径逐渐减小,金属性逐渐减弱,非金属性逐渐增强。

112 族的特点族是指具有相似化学性质的元素纵列。

主族元素的族序数等于最外层电子数,副族元素的族序数与价电子排布有关。

113 元素的性质规律包括原子半径、电离能、电子亲和能、电负性等性质在周期表中的变化规律。

原子半径一般随原子序数的增大而呈现周期性变化;电离能反映元素原子失去电子的难易程度,呈周期性递增;电子亲和能表示原子获得电子的倾向,也有一定的周期性;电负性用于衡量原子在化合物中吸引电子的能力,同样具有周期性。

12 化学键121 离子键离子键是由阴阳离子之间的静电引力形成的化学键。

通常在活泼金属与活泼非金属之间形成。

离子键的特点是无方向性和饱和性。

122 共价键共价键是原子之间通过共用电子对形成的化学键。

分为极性共价键和非极性共价键。

共价键具有方向性和饱和性。

123 金属键金属键是金属阳离子与自由电子之间的相互作用。

金属键使得金属具有良好的导电性、导热性和延展性。

13 化学热力学131 热力学第一定律即能量守恒定律,在任何热力学过程中,能量的总量保持不变。

表达式为△U = Q + W,其中△U 为内能的变化,Q 为吸收或放出的热量,W 为做功。

132 热力学第二定律指出在孤立系统中,自发过程总是朝着熵增加的方向进行。

大一无机化学重要知识点

大一无机化学重要知识点

大一无机化学重要知识点一、原子结构和元素周期表1. 原子的组成和结构1.1 常见粒子:质子、中子、电子1.2 质子和中子位于原子核中,电子绕核运动1.3 原子的电荷相互平衡,整体为中性2. 元素和原子序数2.1 元素由同种原子组成,每种元素具有唯一的原子序数 2.2 元素周期表按原子序数排列2.3 周期性表现:周期性重复性质3. 元素的电子排布3.1 电子排布遵循能级、亚能级和配位数规律3.2 主层、次层和轨道的概念3.3 主量子数和角量子数决定电子的能级二、化学键和分子结构1. 化学键的类型1.1 离子键:电子转移形成离子1.2 共价键:电子共享形成分子1.3 金属键:金属离子形成金属结晶 1.4 杂化键:共价键和离子键的混合2. 分子结构的确定2.1 分子式和化学式的区别2.2 利用共价键和亲电性确定分子结构 2.3 氢键和范德华力对分子结构的影响三、化学反应和化学平衡1. 化学反应的基本概念1.1 反应物、生成物和化学方程式1.2 反应物摩尔比和反应物的相对分子质量 1.3 反应的热力学和动力学过程2. 化学平衡和平衡常数2.1 平衡的定义和特征2.2 反应速率和反应速率常数2.3 平衡常数和化学平衡表达式3. 影响化学平衡的因素3.1 温度、压力和浓度的影响3.2 Le Chatelier原理的应用3.3 平衡常数与化学反应的倾向性四、氧化还原反应1. 氧化还原反应的基本概念1.1 氧化和还原的定义1.2 氧化态和还原态的变化1.3 氧化还原反应的氧化数法和电子转移法2. 氧化还原反应的应用2.1 电化学反应和电池2.2 腐蚀和防腐蚀措施2.3 氧化还原反应在工业上的应用五、酸碱中和反应1. 酸碱的概念和性质1.1 酸和碱的定义1.2 酸碱的强度和pH值1.3 酸性、碱性和中性溶液的判断2. 酸碱中和反应2.1 酸碱强度对中和反应的影响2.2 阻滞力和酸碱中和滴定原理2.3 酸碱中和反应在生活和工业中的应用六、配位化合物1. 配位化合物的基本概念1.1 配位键和配体的定义1.2 配位数和配体的选择1.3 配位生活和配位离子的形成2. 配位化合物的性质和应用2.1 配位化合物的颜色和磁性2.2 配位反应和配位化学计量法2.3 配位化合物在医学和生物学中的应用以上是大一无机化学的重要知识点,通过对这些知识的深入学习和理解,能够为后续的学习打下坚实的基础。

无机化学大一知识点归纳

无机化学大一知识点归纳

无机化学大一知识点归纳无机化学是研究无机物质的组成、性质、结构和反应的一门化学学科。

下面是大一无机化学知识点的归纳:1.元素和元素周期表-元素是组成物质的基本单位,由原子构成。

-元素周期表是一种将元素按照一定规律排列的表格,包含元素的原子序数、原子量、元素符号等信息。

2.原子结构-原子由质子、中子和电子构成。

-质子位于原子核中,带有正电荷。

-中子位于原子核中,不带电荷。

-电子围绕原子核运动,带有负电荷。

3.化学键-离子键:由正负电荷的离子相互吸引而形成的键。

-共价键:由共享电子对形成的键。

-金属键:由金属原子之间的电子云共享形成的键。

4.化合物的命名和化学式-无机化合物通常由元素符号和下标表示。

-以电负性较低的元素为中心,其他元素按一定规则命名。

-阴离子添加前缀“亚”或“次”。

5.分子、离子和化学平衡-分子是两个或两个以上原子共用电子对形成的物质。

-离子是由失去或获得电子而带电荷的原子或原子团。

-化学平衡是指反应物和生成物在化学反应中达到一定比例的状态。

6.配位化学-配位化学研究由配位子与中心金属离子或原子形成的配合物。

-配位子是一种带有孤对电子的离子或分子,能形成与金属离子配位的化合物。

7.酸碱中和反应-酸是能提供H+离子的物质,碱是能提供OH-离子的物质。

-酸碱反应是指酸和碱在适当条件下生成盐和水的反应。

8.氧化还原反应-氧化是指物质失去电子;还原是指物质获得电子。

-氧化还原反应包括氧化剂和还原剂之间的电子转移。

9.配位数和配位几何-配位数是指配位物与中心离子相结合时的配位键数目。

-配位几何是指配位物形成的平面、三维结构。

10.键合理论-价键理论:电子通过共享方式存在于分子中。

-晶体场理论:金属和配位物的结合由于静电相互作用。

这些知识点是大一无机化学的基础,并为进一步学习无机化学提供了基础。

熟悉这些知识点将有助于理解物质的性质和化学反应的原理。

无机化学 基本知识点总结

无机化学 基本知识点总结

无机化学基本知识点总结一、原子结构1. 原子的组成原子是由质子、中子和电子组成的。

质子和中子位于原子核中,电子围绕原子核运动。

2. 元素的原子序数和质量数原子序数表示元素的质子数,而质量数表示元素的质子数和中子数之和。

原子序数决定了元素的化学性质,而质量数决定了元素的同位素。

3. 电子结构原子的电子结构决定了元素的化学性质。

电子在原子内的分布遵循一定的规律,即电子遵循能级分布,并且填充规律是按照“2-8-18-32”规则进行填充。

二、元素周期表1. 周期表的性质元素周期表是根据元素的化学性质和原子结构而排列的。

周期表中的元素按照原子序数排列,具有周期性。

2. 元素的周期性规律元素周期表中的元素具有周期性规律,即元素的周期表现出周期性变化。

这种周期性变化可以通过元素的原子结构和电子的排布规律来解释。

三、化学键1. 化学键的形成化学键是由原子之间的相互作用形成的。

化学键的形成使得原子之间形成更加稳定的结构,从而形成化合物。

2. 化学键的类型化学键主要包括离子键、共价键和金属键。

离子键是正负离子之间的电荷吸引力,共价键是原子间电子的共享,金属键是金属原子之间的电子云共享。

3. 极性与非极性化学键化学键可以分为极性和非极性两种。

极性化学键是由于原子电负性差距所产生的电荷分布不均匀的现象,而非极性化学键则是由于原子电负性相等而产生的电荷分布均匀的现象。

四、晶体结构1. 晶体结构的定义晶体结构是指晶体中原子、离子或者分子的排列规律和空间结构。

不同的元素或化合物在晶体中具有不同的晶体结构。

2. 晶体结构的分类晶体结构主要可以分为离子晶体、共价分子晶体和金属晶体。

离子晶体是由正负离子通过离子键结合而形成的,共价分子晶体是由共价键结合而形成的,而金属晶体则是由金属键结合而形成的。

五、酸碱性质1. 酸碱的定义酸是指能够释放出H+离子的物质,而碱则是指能够释放出OH-离子的物质。

酸碱的定义主要有布朗斯特德理论和劳里亚-布隆斯特德理论。

无机化学大一必背知识点

无机化学大一必背知识点无机化学是化学学科中的一个重要分支,研究的是无机物质的性质、结构、组成等方面的知识。

作为大一学生,了解无机化学的基本知识点对于深入理解化学原理以及日后的学习都具有重要意义。

以下是大一必背的无机化学知识点。

1. 元素周期表元素周期表是无机化学中必须掌握的基础知识。

了解元素周期表的布局和常见元素的分布,掌握元素的周期性规律以及元素符号、原子序数、相对原子质量等基本信息。

2. 离子化合物与共价化合物了解离子化合物与共价化合物的基本特点。

离子化合物是由离子通过静电作用相互结合而形成的化合物,如NaCl;共价化合物是由共用电子对相互结合而形成的化合物,如H2O。

3. 配位化合物与配位键了解配位化合物的概念以及配位键的形成。

配位化合物是由中心金属离子与其周围的配体通过配位键结合而形成的化合物,如[Fe(CN)6] 4-。

配位键是指金属离子与配体之间通过配位作用形成的化学键。

4. 氧化还原反应了解氧化还原反应的基本概念以及常见的氧化还原反应类型,包括氧化反应、还原反应、氧化剂、还原剂等。

掌握氧化数的变化规律以及如何平衡氧化还原方程式。

5. 酸碱中和反应了解酸碱中和反应的基本概念以及常见的酸碱反应类型,包括强酸与强碱的中和反应、强酸与弱碱的中和反应等。

理解酸碱中和反应的过程及pH值的计算方法。

6. 氧化态与电子结构了解氧化态的概念以及不同氧化态对应的电子结构。

掌握常见元素的氧化态变化规律,了解氧化态在无机化学中的重要作用。

7. 晶体结构和晶体性质了解晶体结构和晶体性质的基本知识。

理解晶体的结构分类、晶体的几何形态、晶体的物理性质和化学性质。

8. 配位化学了解配位化学的基本概念和原理。

包括金属离子与配体的配位作用、配位化合物的结构、配位化合物的性质及应用。

9. 主族元素与副族元素了解主族元素和副族元素的特点和性质。

掌握主族元素和副族元素在元素周期表中的分布、离子化趋势、电子亲和力等基本信息。

大学无机化学知识点总结

大学无机化学知识点总结大学无机化学知识点总结无机化学是化学的重要分支之一,主要研究无机化合物的性质、结构和反应机制等方面的知识。

本文将对大学无机化学的知识点进行总结,以供学习参考。

一、化学键化学键是由电子密度较高的原子间共享或转移电子而形成的力。

在无机化学中,比较重要的化学键包括离子键、共价键、金属键和范德华力等。

1.1 离子键离子键是由正负离子之间的静电力所形成的一种化学键。

常见于碱金属和碱土金属等阳离子与氧化物、硫化物、卤化物等阴离子的结合。

例如Na+与Cl-之间的化学键就是离子键。

1.2 共价键共价键是由两个原子间共享一个或多个电子而形成的一种化学键。

通常情况下,共价键的形成是为了满足原子外层电子的电子互补原则。

常见的共价键有单键、双键和三键等。

1.3 金属键金属键是由金属原子间的自由电子形成的一种特殊的化学键。

这些自由电子可以在整个金属晶体中流动,因此金属具有良好的电导率和热导率。

金属键通常有一定的共价特性,因此金属化合物中的金属离子具有一定的嵌入性。

1.4 范德华力范德华力是由电子云间呈现出的瞬时极性和感应极性所形成的一种分子间相互作用力。

这种力是导致非极性分子之间相互吸引的主要力之一。

例如,甲烷分子之间就是通过范德华力相互作用而形成气态的状态。

二、化合物的分类无机化合物可能以离子、分子或金属晶体的形式存在。

这些化合物可以按不同的分类方法进行分类,常见的分类方法包括化合价、氧化态、酸碱性、配位数和配位体等。

2.1 化合价化合价指的是元素在化合物中所带的电荷值,通常是在化学反应过程中,原子与其他元素结合而形成化合物时确定的。

化合价通常也可以由元素的电子组态推算得到。

2.2 氧化态氧化态是元素在复合物中所带的电荷状态,而氧化反应是指将化合物中的某些原子的氧化态发生变化的化学反应。

例如,CuSO4中铜离子的氧化态为2+,而Fe3O4中铁的氧化态分别为+2和+3。

2.3 酸碱性酸碱性是化合物的一种性质,通常是指化合物的解离产生的氢离子或氢氧根离子的浓度。

(完整版)大学无机化学知识点

第一章物质的聚集状态§1~1基本概念一、物质的聚集状态1.定义:指物质在一定条件下存在的物理状态。

2.分类:气态(g)、液态(l)、固态(s)、等离子态。

等离子态:气体在高温或电磁场的作用下,其组成的原子就会电离成带电的离子和自由电子,因其所带电荷符号相反,而电荷数相等,故称为等离子态,(也称物质第四态)特点:①气态:无一定形状、无一定体积,具有无限膨胀性、无限渗混性和压缩性。

②液态:无一定形状,但有一定体积,具有流动性、扩散性,可压缩性不大。

③固态:有一定形状和体积,基本无扩散性,可压缩性很小。

二、体系与环境1.定义:①体系:我们所研究的对象(物质和空间)叫体系。

②环境:体系以外的其他物质和空间叫环境。

2.分类:从体系与环境的关系来看,体系可分为①敞开体系:体系与环境之间,既有物质交换,又有能量交换时称敞开体系。

②封闭体系:体系与环境之间,没有物质交换,只有能量交换时称封闭体系。

③孤立体系:体系与环境之间,既无物质交换,又无能量交换时称孤立体系。

三、相体系中物理性质和化学性质相同,并且完全均匀的部分叫相。

1.单相:由一个相组成的体系叫单相。

多相:由两个或两个以上相组成的体系叫多相。

单相不一定是一种物质,多相不一定是多种物质。

在一定条件下,相之间可相互转变。

单相反应:在单相体系中发生的化学反应叫单相反应。

多相反应:在多相体系中发生的化学反应叫多相反应。

2.多相体系的特征:相与相之间有界面,越过界面性质就会突变。

需明确的是:①气体:只有一相,不管有多少种气体都能混成均匀一体。

②液体:有一相,也有两相,甚至三相。

只要互不相溶,就会独立成相。

③固相:纯物质和合金类的金属固熔体作为一相,其他类的相数等于物质种数。

§1~2 气体定律一、理想气体状态方程PV=nRT国际单位制:R=1.0133*105Pa*22.4*10-3 m 3/1mol*273.15K=8.314(Pa.m3.K-1.mol-1)1. (理想)气体状态方程式的使用条件温度不太低、压力不太大。

无机化学知识点总结

无机化学知识点总结一、无机化学的基本原理1. 原子结构与元素周期表原子是物质的基本单位,由原子核和绕核电子组成。

原子核由质子和中子组成,质子数决定了元素的原子序数,即元素周期表中的元素编号。

而电子的排布决定了元素的化学性质。

元素周期表是基于元素的原子序数和化学性质进行排列的,它反映了元素的周期性规律和趋势。

2. 化学键与晶体结构化学键是原子之间的相互作用力。

根据原子之间的电子共享或转移,化学键可以分为共价键、离子键和金属键。

共价键是通过电子共享形成的,离子键是通过电子转移形成的,金属键是金属原子内的电子云相互重叠形成的。

这些化学键形成了物质的晶体结构,晶体结构的类型决定了物质的性质。

3. 反应平衡与化学反应化学反应是物质之间发生化学变化的过程,通常包括物质的生成和消耗。

化学反应通过反应方程式进行描述,反应平衡是指反应物和生成物的摩尔比在一定条件下保持不变的状态。

化学反应的平衡常数和动力学速率是化学反应研究的重要参数。

4. 配位化学与过渡金属化合物过渡金属化合物是指含有过渡金属元素的化合物,其中过渡金属离子通过配位基与配位子形成配合物。

配位化学研究了配位物的结构、性质和合成方法,配位物的稳定性、配位数、立体化学等是配位化学的重要内容。

二、无机化学的主要知识点1. 主族元素化合物主族元素是元素周期表中的ⅢA、ⅣA、ⅤA、ⅥA和ⅦA族元素,它们可形成氧化物、氢化物、卤化物等化合物。

主族元素的化合物具有多种性质,如ⅢA族元素具有氧化性,ⅣA族元素具有还原性等。

2. 离子化合物离子化合物是由阳离子和阴离子组成的化合物,它们通常具有良好的溶解度、导电性和晶体结构。

离子化合物的性质和结构与其离子的大小、电荷和架构有关。

3. 氧化还原反应氧化还原反应是指物质失去或获得电子,从而使氧化态发生变化的化学反应。

氧化还原反应包括氧化、还原、氧化剂和还原剂等概念,它们是化学反应中的重要参与者。

4. 配合物化学过渡金属离子通过配体与配位子形成配合物,配合物具有不同的结构、性质和应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无机化学,有机化学,物理化学,分析化学无机化学 元素化学、无机合成化学、无机高分子化学、无机固体化学、配位化学(即络合物化学)、同位素化学、生物无机化学、金属有机化学、金属酶化学等。

有机化学 普通有机化学、有机合成化学、金属和非金属有机化学、物理有机化学、生物有机化学、有机分析化学。

物理化学 结构化学、热化学、化学热力学、化学动力学、电化学、溶液理论、界面化学、胶体化学、量子化学、催化作用及其理论等。

分析化学 化学分析、仪器和新技术分析。

包括性能测定、监控、各种光谱和光化学分析、各种电化学分析方法、质谱分析法、各种电镜、成像和形貌分析方法,在线分析、活性分析、实时分析等,各种物理化学性能和生理活性的检测方法,萃取、离子交换、色谱、质谱等分离方法,分离分析联用、合成分离分析三联用等。

的状态。

液体溶液中溶剂或溶质的标准状态—溶液中溶剂可近似看成纯物质的标准态。

在溶液中,溶质的标准态是指压力,质量摩尔浓度,标准质量摩尔浓度θP P =θb b =,并表现出无限稀释溶液特性时溶质的(假想)状态。

标准质量摩尔11-⋅=kg mol b θ浓度近似等于 标准物质的量浓度。

即11-⋅=≈Lmol c b θθ5、物质B 的标准摩尔生成焓(B,相态,T )是指在温度T 下,由参考状态单质生成θm f H ∆物质B ()反应的标准摩尔焓变。

1+=B ν6、参考状态一般指每种物质在所讨论的温度T 和标准压力时最稳定的状态。

个别情况θP 下参考状态单质并不是最稳定的,磷的参考状态是白磷(s,白),但白磷不及红磷和4P 黑磷稳定。

O 2(g)、H 2(g)、Br 2(l)、I 2(s)、Hg(l)和P 4(白磷)是T=298.15K ,下相应θP 元素的最稳定单质,即其标准摩尔生成焓为零。

7、在任何温度下,参考状态单质的标准摩尔生成焓均为零。

8、物质B 的标准摩尔燃烧焓(B ,相态,T )是指在温度T 下,物质B()完θm c H ∆1-=B ν全氧化成相同温度下指定产物时的反应的标准摩尔焓变。

第四节:Hess 定律1、Hess 定律:化学反应不管是一步或分几步完成,其总反应所放出或吸收的热总是相等的。

其实质是化学反应的焓变只与始态和终态有关,而与途径无关。

2、焓变基本特点:⑴某反应的(正)与其逆反应的(逆)数值相等,符号相反。

即θm r H ∆θm r H ∆(正)=-(逆)。

θm r H ∆θm r H ∆⑵始态和终态确定之后,一步反应的等于多步反应的焓变之和。

θm r H ∆3、多个化学反应计量式相加(或相减),所得化学反应计量式的(T )等于原各计量θm r H ∆式的(T )之和(或之差)。

θm r H ∆第五节:反应热的求算1、在定温定压过程中,反应的标准摩尔焓变等于产物的标准摩尔生成焓之和减去反应物的标准摩尔生成焓之和。

=(总生成物)-(总反应物){如果有θm r H ∆θm f H ∆θm f H ∆参考状态单质,则其标准摩尔生成焓为零}2、在定温定压过程中,反应的标准摩尔焓变等于反应物的标准摩尔燃烧焓之和减去产物的标准摩尔燃烧焓之和 。

=(总反应物)-(总生成物){参考状θm r H ∆θm c H ∆θm c H ∆态单质只适用于标准摩尔生成焓,其标准摩尔燃烧焓不为零}第三章:化学动力学基础第一节:反应速率第二节:浓度对反应速率的影响—速率方程1、对化学反应来说,反应速率与反应物浓度的定量关系为:zZ yY bB aA +→+r ,该方程称为化学反应速率定律或化学反应速率方程,式中称为反应速βαB A C kc r =k 率系数,表示化学反应速率相对大小;,分别为反应物A 和B 的浓度,单位为A c B c ;,分别称为A ,B 的反应级数;称为总反应级数。

反应级数可1-⋅L mol αββα+以是零、正整数、分数,也可以是负数。

零级反应得反应物浓度不影响反应速率。

(反应级数不同会导致单位的不同。

对于零级反应,的单位为,一k k 11--⋅⋅s L mol 级反应的单位为,二级反应的单位为,三级反应的单位为k 1-s k 11--⋅⋅s L molk )122--⋅⋅s L mol 2、由实验测定反应速率方程的最简单方法—初始速率法。

、配合物的化学式:配合物的化学式中首先应先列出配位个体中形成体的元素符号,在列出阴离子和中性分子配体,,将整个配离子或分子的化学式括在方括号中。

配合物的命名:命名时,不同配体之间用·隔开。

在最后一个配体名称后缀以“合”、某些难容硫化物的溶度积常数:6、电子云有等密度图和界面图两种图示。

在电子云等密度图中,每一个球面上的数字表示概率密度的相对大小。

在电子云界面图中,界面实际上是一个等密度面,电子在此界面内出现的概率高于90%,在此界面外出现的概率低于10%,通常认为在界面外发现电子的概率可忽略不计。

7、氢原子各种状态的径向分布函数图中锋数等于主量子数与角量子数之差,即N .l n N -=7、原子轨道角度分布图与电子云角度分布图。

第四节:多电子原子结构1、由Pauling近似能级图发现:角量子数相同的能级的能量高低由主量子数决定,主量子数越大能量越高;主量子数相同,能级能量随角量子数的增大而增大,这种现象称为能级分裂;当主量子数与角量子数均不同时,有时出现能级交错现象。

2、Cotton原子轨道能级图(见课本P240)概括了理论和实验的结果,定性的表明了原子序数改变时,原子轨道能量的相对变化。

由此图可以看出不同于Pauling近似能级图的点:⑴反映出主量子数相同的氢原子轨道的兼并性。

也就是对原子序数为1的氢原子来说,其主量子数相同的各轨道全处于同一能级点上。

⑵反映出原子轨道的能量随原子序数的增大而降低。

⑶反映出随着原子序数的增大,原子轨道能级下降幅度不同,因此曲线产生了交错现象。

3、屏蔽效应:一个电子对另一个电子产生电荷屏蔽,使核电荷度该电子的吸引力减弱,即由核外电子云抵消了一些核电荷的作用。

是核电荷减少数,称为屏蔽常数,相当于被抵消的正电荷数。

4、钻穿效应:在多电子原子中每个电子既被其他电子所屏蔽,也对其余电子起屏蔽作用,在原子核附近出现概率较大的电子,可更多的避免其余电子的屏蔽,受到核的较强的吸引而更靠近核,这种进入原子内部空间的作用叫做钻穿效应。

就其实质而言,电子运动具有波动性,电子可在原子区域的任何位置出现,也就是说,最外层电子有时也会出现在离核很近处,只是概率较小而已。

5、主量子数相同时,角量子数越小的电子,钻穿效应越明显,能级也越低。

6、基态原子核外电子排布规则:⑴能量最低原理:电子在原子轨道中的排布,要尽可能使整个原子系统能量最低。

⑵Pauli不相容原理:同一原子轨道最多容纳两个自选方式相反的电子,或者说同一原子中不可能存在一组四个量子数完全相同的电子。

S区元素:包括第一,第二主族,最后一个电子填充在s轨道上,价电子排布为(第一主族)或(第二主族),属于活泼金属。

1ns 2ns P 区元素:包括第三主族到第七主族及零族,最后一个电子填充在p 轨道上,价电子排布为 (第三主族),(第四主族),(第五主族),(第612→np ns 22np ns 32np ns 42np ns 六主族),(第七主族),(零族)52np ns 62np ns d 区元素:包括第三副族到第七副族,最后一个电子填充在轨道上吧,价电子()d n 1-排布为(钪,钇),(第四副族),(第五副族,铌()211ns d n -()221ns d n -()231ns d n -为),(第六副族,钨为),(第七副族),铁1454s d ()151ns d n -2465s d ()251ns d n -为,钴为,镍为,钌为,铑为,钯为,2643s d 2743s d 2843s d 1754s d 1854s d 104d锇为,铱为,铂为(第八族所有元素的价电子数等于列序数,2665s d 2765s d 1965s d 可以为8,9,10)。

一般而言,它们的区别主要在次外层的d 轨道上,由于d 轨道未充满电子(钯除外),他们可以不同程度的参与化学键的形成。

ds 区元素:包括第一,第二副族。

它们院子次外层为充满电子的d 轨道,最外层s 层上有1~2个电子。

电子层结构为(第一副族),(第二副族)。

()1101ns d n -()2101ns d n -ds 区元素族数对应s 轨道上电子数。

f 区元素:包括镧系元素和婀系元素,最后一个电子填充在f 轨道上,价电子排布为()()22014012ns d n f n →→--第六节:元素性质的周期性1、原子半径:原子半径可以分为金属半径,共价半径和Van der Waals 半径。

金属单质晶体中,两个最近邻金属原子核的一半,称为金属原子的金属半径。

同种元素的两个原子以共价单键结合时,其核间距的一半称为该原子的共价单键半径。

在分子晶体中,分子间以Van der Waals 力结合,两个原子核间距离的一半就是Van der Waals 半径。

除金属为金属半径(配位数为12),稀有气体为 Van der Waals 半径,其余皆为共价半径。

2、原子半径变化规律:⑴同一周期,随着原子序数的增加原子半径逐渐减小,但长周期中部(d 区)各元素的原子半径随电荷增加减小减慢。

第一,第二副族元素(ds 区)原子半径略有增大,此后又逐渐减小。

同一周期中原子半径的大小受两个因素制约:一是随着核电荷数增加,原子核对核外层电子的吸引力增强,使原子半径逐渐减小;二是随着核外电子数的增加,电子间斥力增强,使原子半径变大。

因为增加的电子不足以完全屏蔽所增加的核电荷,所以从左到右,有效核电荷数逐渐增大,原子半径减小。

在长周期中从左到右电子逐一填入亚层,对核的屏蔽作用较大,有效核电荷()d n 1-数增加较少,核对外层电子的吸引力增加不多,因此原子半径减少缓慢。

而到了长周期后半部,即第一,第二副族元素,由于电子构型,屏蔽效应显著,所以原子半径10d 又略有增大。

镧系,锕系元素中,从左到右,原子半径也是逐渐减小,只是减小幅度更小。

这是由于新增加的电子填入亚层上,f 电子对外层电子屏蔽效应更大,外层电子()f n 2-感受到的有效核电荷数增加更小,因此原子半径减小缓慢。

镧系元素从镧到镥原子半径减小更缓慢的事实称为镧系收缩。

镧系收缩的结果使镧系以后的该周期元素原子半径与上一周期对应元素的原子半径非常接近。

导致和;和,和Zr Hf Nb Ta Mo 等在性质上极为相似,分离困难。

W ⑵同一主族中,从上到下,外层电子构型相同,电子层增加因素占主导地位,所以原子半径逐渐增大 。

副族元素原子半径,从第四周期过渡到第五周期是增大的,但第五周期和第六周期同一族中过渡元素的原子半径比较接近。

相关文档
最新文档