高中参考资料化学奥赛有机第二讲 立体化学
第二章 立体化学

(Z)-1,2-二氯-1-溴乙烯 反-1,2-二氯-1-溴乙烯
(E)-1,2-二氯-1-溴乙烯 顺-1,2-二氯-1-溴乙烯
(E)-3, 4-二甲基-2-戊烯 顺-3, 4-二甲基-2-戊烯
(Z)-3, 4-二甲基-2-戊烯 反-3, 4-二甲基-2-戊烯
二、顺反异构体的性质
▪ห้องสมุดไป่ตู้物理性质不同 ▪ 化学性质:基本相同,与空间构型有关的有差别。
次互换,使最不优先的基团位于顶部,剩下3个原子或基团按照从优先到不优
先的顺序,顺时针方向排列为R-构型,逆时针方向排列为S-构型。
(二)对称中心
如果有机分子中存在一个假想的点,从分子中任一原子或基团向该点作一直 线,再从该点将直线延长,在等距离处遇到相同的原子或原子团,则该点即 为该分子的对称中心。
四、判断对映体的方法
➢ 比较一个分子和它的镜像,如果两者不能重合,则为对映体。 ➢ 有对称面或对称中心的分子为非手性分子(没有对映体)。 ➢ 仅有一个手性碳原子(或手性中心)的分子为手性分子(有对映体)。
第三节
手性、手性分子和对映体
一、手性
镜像与实物不能重合的现象称为手性(chirality)。
二、手性分子和对映体
手性分子:与镜像不能重合的分子。 手性碳(不对称中心):连接4个不同原子或基团的碳。
手性碳
与镜像不能重合的分子彼此互为对映异构体(手性异构体)
三、分子中常见对称因素
(一)对称面
对称面:能将分子切分为具有实物与镜像关系的假想平面。有对称面的化合 物不是手性分子。
第二章
立体化学
立体化学:研究有机分子的立体结构、反应的立体选择性 及其相关规律和应用。
碳链异构
位置异构 构造异构
高等有机化学教案2立体化学.ppt

CH3
CH3
A
H
C
C
C H
A
B
NH2
B
H
NH2 H
分子中没有手性中心 端位上连接的基团 处于
垂直 平面
H CH3
CH CH3
不同取代开链叔胺分子不具有旋光活性:
R
R' N R"
R
N
R' R"
两种对映体因快速翻转 相互转化,导致消旋。
手性中心 - 其它杂原子:
S CH2Ph O
[α]27D = +92.4°
下列化合物是否具有芳香性, 其HNMR有何特征?
H H H
H
HH
H HH
H
HH
HH
H H H
H
H O CH3 CH3O H
H
H
手性中心 - C、N、或其它杂原子: H H Ph
Ph H H
手性中心 连接 基团 相似 分子 仍
旋光活性
CH3 HD
C2H5
[α]25D = -0.56
同位素 手性中心
相当于溴代丙酸
CH3 *
CH3
H* * COOH * Br
C COOH H
Br
金刚烷桥头C原子 1, 3, 5, 7位 不同基团 旋光活性
分子构造相同,原子或原子团在空间
分子
的排列不同。
结构
分子构型 对映异构
(Structure) (Configuration) 非对映异构 顺反异构
非对映异构
分子构象 分子构型相同,由于单键 (Conformation) 的自由旋转,原子或原子
团在空间的排列不同。
一. 对映异构 (Enantiomerism)
高中化学竞赛辅导专题讲座——三维化学

高中化学竞赛辅导专题讲座——三维化学第二节规则晶体的密度计算在第一节中,我们学习了空间正方体与正四面体的关系,能把四面体型的碳化硅原子晶体(或金刚石)用正方体模型表示出来。
本节我们将着重讨论如何来计算其密度。
先来了解一下有关密度的问题吧。
【讨论】在初中物理中,我们学习了密度概念。
密度是某一物质单位体积的质量,就是某一物质质量与体积的比值。
密度是物质的一种属性,我们无限分割某一物质,密度是不变的(初中老师说过)。
这儿请注意几个问题:其一,密度受环境因素,如温度、压强的影响。
“热胀冷缩”引起物质体积变化,同时也改变了密度。
在气体问题上,更是显而易见。
其二,从宏观角度上来看,无限分割的确不改变物质的密度;但从微观角度来看呢,当把物质分割到原子级别时,我们拿出一个原子和一块原子间的空隙,或在一个原子中拿出原子核与核外部分,其密度显然都是不一样的。
在化学中有关晶体密度的求算,我们是从微观角度来考虑的。
宏观物质分到何时不应再分了呢?我们只要在微观角度找到一种能代表该宏观物质的密度的重复单位。
一般我们都是选取正方体型的重复单位,它在三维空间里有规则地堆积(未留空隙),就构成宏观物质了,也就是说这个正方体重复单位的密度代表了该物质的密度。
我们只要求出该正方体的质量和体积,不就是可以求出其密度了吗?现在,我们先主要来探讨一下正方体重复单位的质量计算。
【例题1】如图2-1所示为高温超导领域里的一种化合物——钙钛矿的结构。
该结构是具有代表性的最小重复单元。
确定该晶体结构中,元素钙、钛、氧的个数比及该结构单元的质量。
(相对原子质量:Ca 40.1 Ti 47.9 O 16.0;阿佛加德罗常数:6.02×1023)【分析】我们以右图2-1所示的正方体结构单元为研究对象,讨论钙、钛、氧这三种元素属于这个正方体结构单元的原子(或离子)各有几个。
首先看钙原子,它位于正方体的体心,自然是1;再看位于顶点上的钛原子,属于这个正方体是1/8吗?在第一节中,我们曾将一个大正方体分割成八个小正方体,原来在大正方体的一个原子被分割成了八个,成为小正方体的顶点。
高中化学奥赛培训教程全集---之有机化学

黄冈中学化学奥赛培训教程系列(精美wor d版)有机化学第一节 有机化学基本概念和烃1、下列构造式中:①指出一级、二级、三级碳原子各一个。
②圈出一级烷基、二级烷基、三级烷基各一个。
CH 3CCH 2CH 3CH 3C CHCH 3CH 3CH 3CHCH 2CH 3CH 3解析:↓1℃2℃3℃↑↑↑三级烷基三级烷基一级烷基CH 3CH 3CHCH 3CH 3CH 3CH 3CH 2CCH 3CCH CH 2CH 32、已知下列化合物的结构简式为:(1)CH 3CHClCHClCH 3 (2)C H3CHBrCHClF (3)CH 3CHClCHCH 2CH 3CH 3分别用透视式、纽曼式写出其优势构象。
解析:用透视式和纽曼式表示构象,应选择C 2—C 3间化学键为键轴,其余原子、原子团相当于取代基。
这四个化合物透视式的优势构象为(见图)其纽曼式的优势构象见图3、(2000年广东省模拟题)用烃A分子式为C10H16,将其进行臭氧化后,水解得到HCHO 和A催化加氢后得烃B,B化学式为C10H20,分子中有一个六元环,用键线式写出A,B的结构。
解析:从A催化加氢生成的B的化学式可推知,原A分子中有两个C=C键和一个六元环。
从水解产物可知,C1与C6就是原碳环连接之处HCHO的羰基,只能由C3支链上双键臭氧化水解生成。
所以A的结构为,B的结构为。
4、下列化合物若有顺反异构,写出异构体并用顺、反及E、Z名称命名。
5、(河南省98年竞赛题)写出符合C6H10的所有共轭二烯烃的异构体,并用E—Z命名法命名。
解析:6、用化学方法鉴别下列化合物:CH3CH2CH2CH3,CH3CH2CH=CH2,CH3CH2C≡CH。
解析:(1)用Br2,CH3CH2CH=CH2与CH3CH2C≡CH可褪色,CH3CH2CH2CH3不反应。
(2)用[Ag(NH3)2]+溶液,CH3CH2C≡CH可生成白色沉淀,CH3CH2CH=CH2不反应。
有机化学中的立体化学

有机化学中的立体化学立体化学是有机化学中的重要分支,研究有机化合物中分子的空间结构和立体构型。
在有机化学中,分子的立体结构对于物质的性质和反应具有重要影响。
本文将介绍有机化学中的立体化学的基本概念、立体异构体、手性化合物以及应用等方面。
1. 立体化学的基本概念立体化学研究的是物质的三维结构,即分子中原子的排列方式。
分子的立体结构包括空间位置、原子的相对位置和键的属性。
有机化学中的立体化学是基于分子之间键的空间取向,包括空间立体异构体和手性化合物等。
2. 空间立体异构体空间立体异构体是指分子在空间中排列方式不同而化学性质相同的化合物。
其中最常见的是构象异构体和构型异构体。
构象异构体是由于分子的单键和双键的自由旋转而形成的异构体。
例如,正丁烷和异丁烷就是一对构象异构体,它们的分子式相同,但空间结构不同。
构型异构体是由于化学键的旋转或键的断裂而形成的异构体。
常见的构型异构体包括顺式异构体和反式异构体。
例如,顺式-1,2-二氯乙烷和反式-1,2-二氯乙烷就是一对构型异构体。
3. 手性化合物手性化合物是指分子在镜像超格操作下非重合的分子。
具有手性的化合物称为手性化合物(或不对称化合物),而没有手性的化合物称为非手性化合物(或称为对称化合物)。
手性是指一个物体不能与其镜像重合的性质。
在有机化学中,手性的原因除了分子的立体构型之外,还包括碳原子上的手性中心。
手性中心是指一个碳原子上连接着四个不同基团的情况。
手性化合物具有光学活性和对映体的特性。
同一手性化合物存在两个对映体,即左旋和右旋对映体。
这两种对映体的化学和物理性质相同,但旋光性质和酶的催化性质等却不同。
4. 应用立体化学在有机合成、药物设计和生物活性研究中具有重要应用。
一方面,立体化学可以指导合成路线的设计,提高合成产率和选择性。
另一方面,对药物的立体构型进行研究可以优化药物的活性、选择性和毒性。
例如,拟肽药物的立体构型对于其相互作用的特异性和选择性很关键。
有机化学02立体化学PPT课件

a
Ph
C10H7-
CCC
-H7C10
Ph
36
第36页/共133页
a
b
a
b
a
b
HO2C
H
H
CH3
first resolved in 1909
H HO2C
第37页/共133页
b a
H CO2H
37
联苯型 Biphenyls
NO2 O2N
HO2C CO2H
ab
ba
OH OH
38
第38页/共133页
NH2
HO2CC* H C* HCO2H OH OH
29
第29页/共133页
问题:有无手性碳原子?
OH OH
CH2CHCHCHCHCHO
OH OH OH
OH
CH3
H Br
CO2H
30
第30页/共133页
Other chiral atoms:
:NR1R2R3
非手性氮
R1
R1
R3
N . flipping . N
3、手性面
CO2H
CO2H
(S)-(-)-[10]paracyclophane2-carboxylic acid
O
O
CO2H
可拆分,200 ºC 仍稳定
39
第39页/共133页
4、螺旋性 Helicity Helices (cylindrical, conical) are chiral objects.
21
第21页/共133页
手性分子的判据: 一般,若分子既没有对称面 m 也无对称中心 i, 就是手性分子, 不能 与其镜像重叠。
高中化学竞赛中的立体化学解读

Ta b l e 2 Nu mb e r o f X a t o ms i n b l a y e r
c . Ts 超 四面体 中有 6种不 同环 境 的 x原 子
D. T 超 四面 体 的化 学式 为 A。 X
【 分 析】 将超 四面体 中 A 原 子层和 X原 子层 分 别 标记 为 a层 和 b层 。“ 超 四面体 ”从上 到下 A、B
1 . 1 正 四面体 的考 查
— —
1 . 1 . 1 考查 N ( P 4 、As )的正 四面体结 构 【 例1 】( 2 0 1 1年浙江 省化 学竞赛 第 2 6题节 选 ) 某化 合物 X是 由第 三 周 期 2种 相 邻 的元 素 A 和 B
N一 -
/ 。
\
I X ) I :1 0 . 1 3 8 8 4 / j . 1 0 0 3 — 3 8 0 7 h x j y . 2 0 1 4 1 1 0 1 3 5
2 0 1 4年 中 国化 学 奥 林 匹 克竞 赛 浙 江 省 预赛 已 于4 月2 0日顺 利 落下 帷 幕 。试 题关 注化 学 科 学前
4
\N 一 /
]● _ _ j J
—
所组成 ,其中 A元素的含量为 4 3 . 6 4 。经测定 X
的摩 尔 质 量 为 2 2 0 g・t oo l ~ ,在 X分 子 中所 有 原 子 均满足 8电子稳定 结构 ,B处 于 2种 不 同 的化学
F i g . 2 T h e s t r u c t u r e o f N 4 Hl +a n d A s 4 S 4
沿 ,知 识 与思 维并 重 ;有 所 创 新 ,难 度 略 有上 升 。
有机化学中的立体化学

有机化学中的立体化学立体化学是有机化学中的重要分支,研究有机化合物中分子的空间结构和立体构型的相关规律。
随着分析仪器和实验技术的发展,立体化学在有机合成和药物研发等领域中具有重要的应用价值。
一、立体化学的基本概念立体化学关注有机分子中的空间结构和分子的各个部分的排列方式。
在立体化学中,我们关注的主要是手性和立体异构体。
1. 手性:手性是指一个分子无法与其镜像重叠的特性。
具有手性的分子称为手性分子,两个互为镜像的手性分子称为对映异构体。
例如,氨基酸和糖类等有机分子都有手性。
2. 立体异构体:立体异构体是指拥有相同分子式但不同立体结构的化合物。
立体异构体分为构象异构体和对映异构体两种。
构象异构体是由于分子的旋转或扭曲而产生的不同构型,它们在空间结构上有一定的自由度。
例如,环状化合物的立体异构体就是构象异构体,如环己烷的椅式和船式异构体。
对映异构体是由于分子的立体中心存在不对称而产生的异构体。
对映异构体在物理和化学性质上通常非常相似,但与其他对映异构体之间的相互作用却往往存在巨大差异。
拥有对映异构体的有机分子是手性分子,也是立体化学中研究的重点。
二、立体化学的研究方法立体化学的研究方法主要包括实验方法和理论方法。
实验方法主要包括X射线衍射、核磁共振(NMR)光谱、圆二色光谱、旋光度测量和质谱等技术。
这些技术通过测量和分析分子的物理性质来确定其立体结构,为揭示分子构形提供了重要的实验依据。
理论方法主要包括量子化学、分子力学和分子动力学等。
量子化学通过计算分子在不同构型下的能量和性质来预测和解释分子的立体结构、反应机理和性质。
分子力学和分子动力学通过计算机模拟方法模拟和预测分子的构型和动态行为。
三、立体化学的应用立体化学广泛应用于有机合成、药物研发和生物化学等领域,并取得了重要的研究成果。
1. 有机合成:立体化学对于有机合成的研究具有重要的指导意义。
在合成有机化合物的过程中,了解分子的立体结构能够预测和解释反应的立体选择性和对称性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有机化学第二讲 立体化学【竞赛要求】有机立体化学基本概念。
构型与构象。
顺反异构(trans -、cis -和Z -、E -构型)。
手性异构。
endo -和exo -。
D,L 构型。
【知识梳理】从三维空间结构研究分子的立体结构,及其立体结构对其物理性质和化学性质的影响的科学叫立体化学。
一、异构体的分类按结构不同,同分异构现象分为两大类。
一类是由于分子中原子或原子团的连接次序不同而产生的异构,称为构造异构。
构造异构包括碳链异构、官能团异构、位置异构及互变异构等。
另一类是由于分子中原子或原子团在空间的排列位置不同而引起的异构,称为立体异构。
立体异构包括顺反异构、对映异构和构象异构。
二、立体异构(一)顺反异构但顺反异构体的两个双键碳原子上没有两个相同的取代基用这种命名法就无能为力。
如:系统命名法规定将双键碳链上连接的取代基按次序规则的顺序比较,高序位基在双键同侧的称Z 型,反之称E 型。
如上化合物按此规定应为E 型。
命名为E – 4 – 甲基 – 3 – 已基 – 2 – 戊烯。
(5)当取代基的结构完全相同,只是构型不同时,则R >S ,Z >E 。
按次序规则可以对下列化合物进行标记:对于环状化合物,由于环的存在阻止了碳碳单键的自由旋转,所以也有顺反异构体。
(2Z ,4E) – 庚二烯(二)对映异构1、分子的对称性、手性与旋光性(1)分子的对称因素:对称因素可以是一个点、一个轴或一个面。
H 3C CH 2CH 3 C = H CH(CH 3)2C H H C = CH 3 C 2 1 H C = H CH 2CH 3 C 425 73 顺 –1,4 – 二甲基环乙烷 3 3反 –1,4 – 二甲基环乙对称面:把分子分成互为实物和镜像关系两半的假想平面,称为对称面。
对称中心:分子中任意原子或原子团与P点连线的延长线上等距离处,仍是相同的原子或原子团时,P点就称为对称中心。
凡具有对称面或对称中心任何一种对称因素的分子,称为对称分子,凡不具有任何对称因素的分子,称为不对称分子。
(2)分子的手性和旋光性象人的两只手,由于五指的构型不同,左手和右手互为实物和镜像关系,但不能完全重叠,称为手性。
具有手性的分子,称为手性分子或手征性分子。
判断一个化合物是不是手性分子,一般可考查它是否有对称面或对称中心等对称因素。
而判断一个化合物是否有旋光性,则要看该化合物是否是手性分子。
如果是手性分子,则该化合物一定有旋光性。
如果是非手性分子,则没有旋光性。
所以化合物分子的手性是产生旋光性的充分和必要的条件。
2、含一个手性碳原子的化合物(1)对映异构体当分子中只含一个手性碳原子时,这个分子就一定有手性。
如乳酸分子,其第二个碳原子上连有– O H、– COOH、– CH3和– H四个不相同原子或原子团,即含有手性碳原子(一般用C* 表示)故乳酸有手性。
其分子模型可表示如下:像乳酸分子这样存在构造相同,但构型不同,彼此互为实物和镜像关系,相互对映而不能完全重合的现象,叫做对映异构体。
(+)–乳酸和(-)–乳酸是互为镜像关系的异构体,称对映异构体,简称对映体。
因其对映体的旋光性不同,因此又称旋光性异构体或光学异构体。
在实验室合成乳酸时,得到的是等量的左旋体和右旋体混合物,这种由等量的对映体所组成的混合物称为外消旋体。
因这两种组分比旋光度相同,旋光方向相反。
所以旋光性正好互相抵消不显旋光性。
(2)费歇尔投影式因对映异构属于构型异构,分子的构型最好用分子模型或立体结构式表示,但书写时相当不方便。
一般用费歇尔投影式表示。
其投影规则如下:一般将分子中含有碳原子的基团放在竖线相连的位置上,把命名时编号最小的碳原子放在上端。
然后把这样固定下来的分子模型投影到纸平面上。
这样将手性碳原子投影到纸面上,把分子模型中指向平面前方的两个原子或原子团投影到横线上,把指向平面后方的两个原子或原子团投影到竖线上,有时手性碳原子可略去不写。
例如乳酸的一对对映体可用下式表示:由此可见,含一个手性碳原子的分子的费歇尔投影式是一个十字交叉的平面式。
它所代表的分子构型是:十字交叉点处是手性碳原子,在纸面上,以竖线和手性碳原子相连的上、下两个原子或原子团位于纸平面的后方,以横线和手性碳原子相连的左右两个基团位于纸平面的前方。
但是,由于同一个分子模型摆放位置可以是多种多样,所以投影后得到的费歇尔投影式也有多个。
费歇尔投影式必须遵守下述规律,才能保持构型不变:①投影式中手性碳原子上任何两个原子或原子团的位置,经过两次或偶数次交换后构型不变。
②如投影式不离开纸平面旋转180度,则构型不变。
③投影式中一个基团不动,其余三个按顺时针或逆时针方向旋转,构型不变。
反之,如基团随意变动位置,则构型可能发生变化。
(3)构型的标示方法两种不同的构型的对映异构体,可用分子模型、立体结构式或费歇尔投影式来表示。
这些表示法只能一个代表左旋体,一个代表右旋体,不能确定两个构型中哪个是左旋体,哪个是右旋体。
因旋光仪只能测定旋光度和旋光方向,不能确定手性碳原子上所连接基团在空间的真实排列情况。
下面介绍两种构型的标示方法。
① D/L 标示法该法是一种相对构型表示法,是人为规定的。
该法选择甘油醛作为标准,规定(+)– 甘油醛为D 构型,其对映体(-)–甘油醛为L 构型。
D – (+) – 甘油醛 L – (-) – 甘油醛然后将其它分子的对映异构体与标准甘油醛通过各种直接或间接的方式相联系,来确定其构型,例如下列化合物都是D 构型:D – (-) –甘油酸 D – (+) – 异丝氨酸 D – (-) – 乳酸D 、L 构型标示法有一定的局限性,它一般只能标示含一个手性碳原子的构型,由于长期习惯,糖类和氨基酸类化合物,目前仍沿用D 、L 构型的标示方法。
CH 3 COOHH HO CH 3 COOH H OH CH 3CHO H HO CH 3 CHO H OH CH 2NH 2 COOH H OH CH 2OH COOH H CH 3 COOH H OH② R/S 标示法R 、S 构型标示的方法,是1970年由国际纯粹和应用化学联合会建议采用的。
它是基于手性碳原子的实际构型进行标示,因此是绝对构型。
其方法是:按次序规则,对手性碳原子上连接的四个不同原子或原子团,按优先次序由大到小排列为a → b → c → d ,然后将最小的d 摆在离观察者最远的位置,最后绕a → b→ c 划圆,如果为顺时针方向,则该手性碳原子为R 构型;如果为逆时针方向,则该手性碳原子为S 构型。
对于费歇尔投影式,直接按照a → b→ c 划圆方向标示R 、S 构型的规律是:当最小的基团在横线上时,如果a → b → c 划圆方向是顺时针,为S 构型,是逆时针为R 构型;当最小基团在竖线上时,如果a → b → c 划圆方向是顺时针,为R 构型,是逆时针,为S 构型。
H2OH4132看的方向R-甘油醛 R-乳酸 S-2-氯丁烷S-2-氨基苯乙酸 S-2-氨基-3-巯基丙酸 R-2-氯-1-丙醇值得注意的是,D 、L 构型和R 、S 构型之间并没有必然的对应关系。
例如D – 甘油醛和D – 2– 溴甘油醛,如用R 、S 标示法,前者为R 构型,后者却为S 构型。
此外,化合物的构型和旋光方向也没有内在的联系,例如D – (+) – 甘油醛和D – (-) – 乳酸。
因构型和旋光方向是两个不同的概念。
构型是表示手性碳原子上四个不同的原子或原子团在空间的排列方式,而旋光方向是指旋光物质使偏振光振动方向旋转的方向。
3、含两个手性碳原子的化合物(1)含两个不相同手性碳原子的化合物2,3,4 – 三羟基丁醛,分子中具有两个不相同的手性碳原子。
2号位手性碳原子连接的4个原子或基团分别是–OH 、–CHO 、–CH (OH )CH 2OH 、–H ,而3号位手性碳原子连接的4个原子或基团分别是–OH 、–CH (OH )CHO 、–CH 2OH 、–H 。
这是两个不同的手性碳原子。
由于每一个手性碳原子有两种构型,因此该化合物应有4种构型。
它们的4个光学异构体的费歇尔投影式表示如下:H C 2H 5CH 3 Cl CH 2OH CHO H OH CH 3 COOH H HNH 2 HSH 2C COOH C 6H 5 COOH H H 2N CH 3 CH 2OH H ClD-(-)-赤藓糖 L-(+)-赤藓糖 D-(-)-苏阿糖 L-(+)-苏阿糖(2R ,3R )-赤藓糖 (2S ,3S )-赤藓糖 (2S ,3R )-苏阿糖 (2R ,3S )-苏阿糖(2)含两个相同手性碳原子的化合物2,3 – 二羟基丁二酸(洒石酸),因第三碳原子和第二碳原子上连接的4个原子或基团,都是–OH 、–COOH 、–CH (OH )COO H 、–H ,,所以洒石酸是含两个相同手性碳原子的化合物。
它和含两个不相同手性碳原子的四碳糖不同,只有三种构型。
因其中赤型特征的分子,有对称面和对称中心,这两个手性碳原子所连接基团相同,但构型正好相反,因而它们引起的旋光度大小相等,方向相反,恰好在分子内部抵消,所以不显旋光性。
D –(-)– 酒石酸 L –(+)– 酒石酸 meso – 酒石酸2S ,3S 2R ,3R 2R ,3S像这种分子中虽有手性碳原子,但因有对称因素而使旋光性在内部抵消,成为不旋光的物质,称为内消旋体。
内消旋体和对映体的纯左旋体或右旋体互为非对映体,所以内消旋体和左旋体或右旋体,除旋光性不同外,其它物理性质和化学性质都不相同。
由此可见,分子中有无手性碳原子不是判断分子有无旋光性的绝对依据。
分子有旋光性的绝对依据是其具有手性。
有些化合物,虽然不含有手性碳原子,但由于它有手性,也可以是光学活性物质。
内消旋体和外消旋体是两个不同的概念。
虽然两者都不显旋光性,但前者是纯净化合物,后者是等量对映体的混合物,它可以用化学方法或其它方法分离成纯净的左旋体和右旋体。
(三)构象异构 OH H CHO CH 2OH H OH HO H CHO CH 2OH H HO HO H CHO CH 2OH OH H H OH CHO CH 2OHH HO HO H COOH COOH OH H OH H COOH COOHOH H H OH COOH COOH HHO由于原子或基团绕键轴旋转,引起碳原子上所结合的不同原子或基团的相对位置发生改变而产生若干种不同的空间排列方式,称为构象。
描述构象,一般用纽曼投影式表示。
它是选取分子中两个相连的原子,通过其连线对分子进行投影所得的。
如乙烷的典型构象有:这两种构象中,交叉式的位能比重叠式低11.7 kJ/mol 。
正丁烷分子中,有三个C —C σ 键可以旋转,若选择C 2—C 3单键旋转,可产生四个极限构象:四种极限构象的稳定性次序为:全交叉式 > 斜交叉式 > 部分交叉式 > 全重叠式。