波节管换热器计算书
第三节_换热器计算方法

第三节 换热器计算方法
换热器:在不同温度的流体间传递热能的装置
称为换热器。 在化工、石油、动力、制冷、食品等行业中 广泛使用各种换热器,且它们是上述行业的通用 设备,占有十分重要的地位。
1、热力设计 根据使用单位提出的基本要求,合理地选择运 行参数,并进行传热计算。 计算出总传热系数、传热面积 2、流动设计 计算压降,为换热器的辅助设备提供选择参数 3、结构设计 根据传热面积的大小计算其主要零部件的尺寸 4、强度设计 应力计算。考虑换热器的受力情况,特别是在 高温高压下换热器的受压部件应按照国家压力容 器的标准设计。
先流体的压强、防腐蚀和清洗等要求,再校核对流传热系数和压强降。
二、流体流速的选择 •增加流速
对流传热系数↑ ,污垢热阻↓→总传热系数 ↑ →传热面积↓ 流动阻力↑和动力消耗↑
还需考虑结构上:
一定传热面积
高流速→管子数目↓→较长管子或增加程数
管子太长不易清洗,且管长都有一定标准; 程数增加使平均温度差下降
若冷、热流体的温度都由工艺条件所规定,就不存在确 定两端温度的问题。 若其中一个流体已知进口温度,则出口温度应由设计者 来确定。
例如:用冷水冷却某热流体,冷却水进口温度可根据当地 气温条件作出估计,出口温度需根据经济衡算来决定。
为节省水量,出口温度提高,则传热面积要大些;
为减少传热面积,出口温度降低,则要增加水量。
考虑到外界因素的影响,根据经验取实际传热面积为估算 值的1.15倍,则实际传热面积为:
Ap 1.15 A 22.07m2
4.井水用量
m= Q1 c pi ti
376.8 103 = 4.51kg / s 16250.8kg / h 3 4.174 10 40 20
换热器计算书

t > [ ]cr 2 (l / i ) 2 cr
2
mm
换热管稳定许用压应力 当 ������������ 时 ([ ]cr [ ]t [ ]cr t 时 , 取
[ ]cr [ ]t t)
=141.875
144.50 ≥ 合格
II
燕京理工学院
浮头式换热器管板计算 计算单位 设 计 条 件 壳程设计压力 Ps 2.5 管程设计压力 Pt 0.1 壳程设计温度 ts 200 管程设计温度 tt 200 换热器公称直径 Di 900 壳程腐蚀裕量 Cs 0.00 管程腐蚀裕量 Ct 2.00 换热管使用场合 一般场合 换热管与管板连接方式 ( 胀接 焊接 或焊接) 初始数据 材料(名称及类型) 20 输入管板名义厚度 n 70.00 0.40 管 管板强度削弱系数 0.40 管板刚度削弱系数 隔板槽面积 Ad 0.00 板 换热管与板胀接长度焊脚高度 l 6.00 设计温度下板材弹性模量 E p 1.96× 105 设计温度下板材许用应力 许用拉脱力 [q] 壳程侧结构槽深 h1 管程侧隔板槽深 h2 材料名称 换热管外径 d 换热管壁厚 t
换 热 管
换热管根数 n 换热管中心距 S 换热管长 Lt 换热管受压失稳当量长度 l cr 设计温度下管材弹性模量 E t 设计温度下换热管材料屈服点 st 设计温度下管材许用应力 [ ] tt 垫片外径 Do 垫片内径 Di 垫片厚度 g 垫片压紧力作用中心园直径 DG 垫片材料源自垫 片IIIMPa
q
校核 合格 注:带#号的材料数据是设计者给定的。
开孔补强计算 接 管: 设 a, φ325× 10 计 条 件 2.5 200
波节管换热器计算例题(国家容标委提供)

锅炉压力容器标准案例案例编号CC-003-1 材料牌号奥氏体不锈钢案例名称奥氏体不锈钢波纹管换热器设计适用标准GB151-1999《管壳式换热器》批准日期2004年3月10日失效日期2009年3月10日咨询:当采用奥氏体不锈钢波纹管(简称波纹管)作为换热管时,换热器应如何设计?回复:本案例提供了波纹管换热器的设计方法。
给出了有关波纹换热管设计参数的确定方法,供设计参考,其余部分仍按GB 151—1999《管壳式换热器》的有关规定执行。
一、案例1 适用范围1.1 本案例适用于换热管为奥氏体不锈钢波纹管的管壳式换热器(以下简称为波纹管换热器)的设计。
1.2 对本案例未作规定者,还应符合GB 151—1999各有关章节的要求。
1.3 本案例适用换热器的公称压力PN≤4.0MPa;波纹换热管的公称直径(波峰/波谷的外径)Φ32/25mm、Φ42/33mm;折流板最大间距为波纹管管坯(波谷)外径的25倍。
1.4 计算换热面积,以波纹换热管外表面积为基础,扣除伸入管板内的换热管长度,计算得到的管束外表面积(m2)。
表1给出了一个波距波纹管的外表面积。
(第三章附件4给出了波纹管外表面积计算方法)。
1.5 未经固溶化处理的管坯制成的波纹管,不得用于有应力腐蚀的场合。
2 换热管材料换热管材料应符合下列标准中较高级(或高级)冷轧管或普通级冷轧管的技术要求。
GB 13296—1991 锅炉、热交换器用不锈钢无缝钢管GB/T 14976—1994 流体输送用不锈钢无缝钢管3 波纹换热管设计本设计规定了波纹换热管的结构形式、许用内压力、许用外压力、轴向刚度及稳定许用压应力的设计计算。
波纹换热管是由波纹管和接头两部分组成,其结构尺寸如图1所示。
3.1 符号A——单根管管壁金属横截面积,mm 2 ;A =πδt (d1-δt)B——系数,按GB 150中第6章方法确定;C——许用内压系数,C=0.25C r——系数;Cr=π[2 l cr K b1/(aσs)]1/2d1——波谷外直径(管坯外直径),mm ;d2——波峰外直径,mm ;E t——波纹管材料弹性模量,MPa ;f——波纹圆弧半弦长(半波宽),mm ;F——波距(波纹管波宽与波节直边之和),mm ;I——波纹换热管的回转半径,mm ;I =0.25[d12+(d1-2δt)2]1/2K1——波纹管轴向单波刚度,N/mm ;K b1——长度为l cr的波纹管刚度,N/mm ;K b1 = FK1/l crl cr——波纹换热管轴向受压失稳计算长度,按GB 151—1999图32确定,mm ;p——波纹管换热器的设计压力(管程设计压力为p t,壳程设计压力为p s),MPa ;[p]i——波纹换热管许用内压力,MPa ;[p]o——波纹换热管许用外压力,MPa ;δt——波纹管壁厚,mm ;σs——波纹管材料屈服强度,MPa;σb——波纹管材料抗拉强度,MPa ;[σ]cr——波纹管稳定许用压应力,MPa 。
列管换热器设计计算书资料讲解

列管换热器设计计算书列管式换热器设计第一节推荐的设计程序一、工艺设计1、作出流程简图。
2、按生产任务计算换热器的换热量Q。
3、选定载热体,求出载热体的流量。
4、确定冷、热流体的流动途径。
5、计算定性温度,确定流体的物性数据(密度、比热、导热系数等)。
6、初算平均传热温度差。
7、按经验或现场数据选取或估算K值,初算出所需传热面积。
8、根据初算的换热面积进行换热器的尺寸初步设计。
包括管径、管长、管子数、管程数、管子排列方式、壳体内径(需进行圆整)等。
9、核算K。
10、校核平均温度差D。
11、校核传热量,要求有15-25%的裕度。
12、管程和壳程压力降的计算。
二、机械设计1、壳体直径的决定和壳体壁厚的计算。
2、换热器封头选择。
3、换热器法兰选择。
4、管板尺寸确定。
5、管子拉脱力计算。
6、折流板的选择与计算。
7、温差应力的计算。
8、接管、接管法兰选择及开孔补强等。
9、绘制主要零部件图。
三、编制计算结果汇总表四、绘制换热器装配图五、提出技术要求六、编写设计说明书第二节列管式换热器的工艺设计一、换热终温的确定换热终温对换热器的传热效率和传热强度有很大的影响。
在逆流换热时,当流体出口终温与热流体入口初温接近时,热利用率高,但传热强度最小,需要的传热面积最大。
为合理确定介质温度和换热终温,可参考以下数据:1、热端温差(大温差)不小于20℃。
2、冷端温差(小温差)不小于5℃。
3、在冷却器或冷凝器中,冷却剂的初温应高于被冷却流体的凝固点;对于含有不凝气体的冷凝,冷却剂的终温要求低于被冷凝气体的露点以下5℃。
二、平均温差的计算设计时初算平均温差Dtm,均将换热过程先看做逆流过程计算。
1、对于逆流或并流换热过程,其平均温差可按式(2-1)进行计算:(2—1)式中,、分别为大端温差与小端温差。
当时,可用算术平均值。
2、对于错流或折流的换热过程,若无相变化,则要进行温差校正,即用公式(2-2)进行计算。
(2-2)式中是按逆流计算的平均温差,校正系数可根据换热器不同情况由化工原理教材有关插图查出。
换热器计算书

换热器计算书讲详细一点,具体步骤如下:1,确定热负荷,手算机算均可,关键是用户提供数据要全,流量,组分,温度,压力,石油馏分要有D86分割数据;2,确定定性温度,层流为进出口的平均温度,紊流为40%入+60%出口温度; 3,确定在性温度下的两侧流体物性:比热,粘度,导热系数,4,冷凝再沸的要有表面张力,及热释放曲线(里面含干度及比焓,压力依存关系等); 5,确定基管尺寸及材质,两侧污垢系数;6,确定筒体大小及程数等,及换热器型式(T E M A或G B151);7,确定逆或顺流(看是否防止基管壁温过高,或是否存在温度交叉)8,计算对数平均温差;9,计算R,P值,查图或计算F T值;10,FT值小于0.8则用多壳程串联型式;11,计算管程内雷诺数,普郎特数,传热J因子,温度较正因子等(此步要迭代,气体一般不需要),再计算出传热系数;12,计算壳体当量直径,其它如管程,但要特别考虑折流板布置及板间距;注:有冷凝或再沸,有预热或过热的要分段计算,壁温与流体平均温差要迭代出来; 13,有内外翅片的或波节管等强化传热的要计算翅片效率及翅片表面膜传热系数等; 14,计算总K;15,面积F=Q/(K*FT*M DT),再比较换热面积裕量,并验算壁温,16,校核两侧阻力;17,校核两侧介质流速;18,考虑零部件的加工制造,运输及安装等等之类!上面仅仅是管壳式换热器的计算,换热器种类太多,最好用专业软件,但必需知道其中的道理,故推荐先手算或机算!换热器设计计算步骤1.管外自然对流换热2.管外强制对流换热3.管外凝结换热已知:管程油水混合物流量G(m3/d),管程管道长度L(m),管子外径do(m),管子内径d i (m),热水温度t ?,油水混合物进口温度t1’, 油水混合物出口温度t2” ?。
1.管外自然对流换热1.1壁面温度设定首先设定壁面温度,一般取热水温度和油水混合物出口温度的平均值,tw?,热水温度为t ?,油水混合进口温度为?,油水混合物出口温度为?。
管换热器的设计计算书

水箱容量:100L一、确定传热系数:计算盘管内和盘管外的传热系数,必须知道下列各参数: 1、 N 圈盘管所需的长度L ;LL =NN�(222222)22+PP 22 (1)=NN �(222222.1122)22+22.22220022=0.7544N 2、 盘管所占的体积V VV CC =(22/00)dd 2222LL (2)C=�2200�22.2211002222.77770000NN =0.152*10-33、 环形区的体积Va:N VV aa =�2200�(CC 22−BB 22)PPNN (3)由于此换热器整体浸入在内胆中,故B 为0,则VV aa =�2200�22.001122∗22.222200NN =3.169*10-34、 在环形区内可供流体流动的空间V NV ff =(3.169-0.152)*10= Va – Vc (4)-3N=3.017*10-35、 盘形管的壳程当量直径DeNDD ee =00VV ff22dd 22LL (5)=(4*3.017*10-3换热器外部的传热系数h0可用下面公式中的来计算。
h 0=λN U /dN )/(22*0.016*0.7544N )=0.3182 m努谢尔特数:N U =c(Pr.Gr)n Pr >0.7根据Pr.Gr 值可以从表中查得c 和n 的取值。
而Gr =βg ∆tL 3γ ,其中g 为重力加速度,L 盘管故:Gr =βg ∆tL 3γ=(4.5*10-4*9.8*10*0.0163)/(5.53*10-7)2则Pr.Gr =3.63*590674.57=2144148.694,将盘管看成是垂直圆柱,查表得:c=0.59 n=1/4。
=590674.57N U =c(Pr.Gr)n =0.59*2144148.6941/4h 0=λN U /d =0.642*22.577/0.016=905.902 w/㎡.k=22.577流体在盘管内流动的传热系数h i 采用以下一种常规方法计算:h i0=λN U /d N U =0.023Re 0.8Pr 0.4Re =du ρ/μ由于系统采用威乐泵RS15/6,泵的流量平均取为:0.417kg/s ,即0.422*10-3m ³/s,则:流速u=0.422*10-3/[(0.0144/2)2Re =du ρ/μ=0.016*2.59*988.1/5.47*10*π]=2.59 m/s-4N U =0.023Re 0.8Pr 0.4=0.023*74857.2=74857.20.8*3.630.4h i0=λN U /d =0.642*305.55/0.016=12260.19 w/㎡.k =305.55总传热系数U 由下式给出1/U=1/h 0+1/h i0+x/K e +R t +R 0 (9)由于污垢系数R t 和R 0取决于流体的特性,即流体中存在的悬浮物质、操作温度、流速等因数,而换热器内外的流体都属于清洁水质,但也存在结垢问题,故污垢系数R t +R 0可取7.052*10-41/U=1/h 0+1/h i0+x/K c +R t +R 0=1/905.902+1/12260.19+0.0008/383+7.052*10。
(完整版)换热器计算书

一、已知参数 板式换热器热力计算冷介质流量Gt/h 1825.328584 3对数温差传热系数Δ Tm ℃10.2 2传热面积 K W/m ℃1600Fm 2 911.54 换热面积( 10%的裕量) m 2 1002.7三、设计参数 单板有效换热面积 Fdm28.64 冷介质流程数N1 1 冷介质单道流通面积 A1 m 20.00264热介质流程数 N21 热介质单道流通面积 A2 m20.0156 板片数 n 116.05207 冷介质板间流速 V1 m/s #NAME? 热介质板间流速V2m/s #NAME? 冷介质进、出水口直径 、流速 mm 、m/s 350 #NAME? 热介质进、出水口直径 、流速mm 、m/s900#NAME?换热器参数浆液比热 3.457 kj/kg* ℃ 浆液密度 1180 kg/m 3 粘度0.0022pa*sm /h #NAME? 冷介质比热容kcal/kg ℃ #NAME? 冷介质密度kg/m 3#NAME?冷介质入口水温T 1 ℃ 32 冷介质出口水温T 2℃ 39.00 热介质密度 kg/m3 1180.0 热介质比热容热介质入口温度t 1 kcal/kg ℃℃#NAME?47 热介质出口温度t2℃ 44.7 热介质流量 Wt/h #NAME?m 3/h#NAME?二、传热计算换热量QKW 、kcal/h14860.0 12777300ΔT1=t1-T28.0 ΔT2=t2-T112.7浆液入口温度47.00 ℃浆液出口温度44.74 ℃浆液体积流量#NAME? m3/h 水侧入口温度32.00 ℃水侧出口温度39.00 ℃水侧体积流量#NAME? m3/h 水侧质量流量1825.3 t/h 换热器板片规格7200*1200*1.5 mm 换热器换热面积0 m2 浆液侧板间流速#NAME? m/s 水侧板间流速#NAME? m/s 浆液侧流道宽度24 mm 浆液侧阻力#NAME? m 水侧阻力#NAME? m 换热器净重0.0 kg 换热器荷重0.0 kg浆液参数确保所浆液比热 3.457 kj/kg* ℃3浆液密度1180 kg/m粘度0.0022 pa*s换热器参数板片宽度1200 厚度板片长度7200 1.5水实槽际深测际槽 3.2 浆液流道宽浆侧液实深12 24水测量槽 2.2 通道截面积比当槽量深液当浆侧深13 5.909090909夹紧尺寸0.0实际取整面积接口数量21PL0.6 WN1.0350 20.5400 27.5450 33.5500 40600 54.5 56 700 65 800 87 900 106 1000 123 1200 184 1400 252确保所有标红处参数准确无误!参数计算水侧板间入口处流速#NAME? m/s 板片水侧开口长度半剖管方案截面流速#NAME? m/s 700 椭圆短半轴高度120 mm半椭圆管方案截面流速浆液侧流体阻力#NAME?#NAME?m/sm水侧流体阻力#NAME? m滤总最终取值沿程阻力损失0.47147767#NAME? m浆液测阻力矩形通道尺寸a 流速#NAME? m/sb 运动粘度 1.8644E-06 m2/s 水力半径R动力粘度0.0022 pa*s密度1180.0 kg/m3 当量直径de 雷诺数Re #NAME? 流道长度当量糙粒高度K 4沿程阻力系数0.33404991#NAME?#NAME?最终取值0.33404991沿程阻力损失#NAME? m水测阻力矩形通道尺寸a 流速#NAME? m/s b运动粘度#NAME? m2/s 水力半径R动力粘度#NAME? pa*s密度#NAME? kg/m3 当量直径de 雷诺数Re #NAME? 流道长度当量糙粒高度K 4沿程阻力系数0.471477673 0滤网长度1500 2100总面积3150000#DIV/0! 个1.165 m0.024 m0.011757780.0470311197.2 m0.08 m0.0064 m 0.4 35.5 0.002962963 运动粘度#NAME? m2/s动力粘度#NAME? pa*s 0.005925926 密度#NAME? kg/m37.2 m 雷诺数#NAME?摩擦系数#NAME?压降#NAME? Mpa#NAME? m。
换热器计算说明书622讲解

一、 设计题目与参数1.1设计题目:管壳式换热器 1.2设计参数:二、热交换器型式/台数及流动的选择根据已知条件,选定一台<1-2>型管壳式固定管板上式热交换器工作,采用错流方式。
热流体为水,冷流体为氨,由于水比氨更易结垢,并且管侧和壳侧压力和温度都不是很高,因此综合考虑,宜采用管程走水,壳程走氨。
三、设计计算与数据3.1原始数据1.水进口温度:C t ︒=110'12.水出口温度:C t ︒=90"1:3.氨进口温度:C t ︒=15'24.氨出口温度:C t ︒=38"25.水工作表压力:MPa p 4.01=6.氨工作压力:MPa p 5.12=7.水的质量流量:13.89kg/s 50t/h M 1==:3.2流体的物性参数 8.水的定性温度:C t t o m 100)/2t'"(11=+=9.水的比热:1p C =4.220)/(C kg kJ o ⋅ 10.水的密度:1ρ=958.43/m kg 11.水的粘度:1μ=s)kg/(m 10282.5-6⋅⨯12.水的导热系数:1λ=0.683)/(C m W o ⋅ 13.水的普朗特数:1r P =1.7514.氨的定性温度:C t t t m ︒=+=''+'=26.5238152222 15. 氨的比热:2p C =4.813)/(C kg kJ o ⋅ 16. 氨的密度:2ρ=600.73/m kg 17. 氨的粘度:2μ=)/(105.1326s m kg ⋅⨯- 18. 氨的导热系数:2λ=0.4656)/(C m W o ⋅19. 氨的普朗特数:2r P =1.37 3.3传热量及平均温差 20.热量损失系数:l η=0.9821.传热量:KW t t C M Q p 1148.8798.090)-(110220.489.13)"'(1111=⨯⨯⨯=-= 22.氨的流量:s kg t t C Q M p /0.38115)-(3810813.4101148.87)(33'1"222=⨯⨯⨯=-= 23.逆流时算数平均温差:C t t t ︒=-=-=∆751590'2''1max C t t t ︒=-=-=∆7238110''2'1minC t t t c m ︒==∆-∆=∆73.497275ln 72-752min max ,124.参数P 及R :242.015-10115-38'2'1'2''1==--=t t t t P0.870153890110'2''2''1'1=--=--=t t t t R25.温差修正系数:299.0=ϕ,由<1-2>型图查得26.有效平均温差:C C t tm c m 90.7249.37299.0,1=︒⨯=∆⋅=∆ϕ3.4以外径为准,估算传热面积及传热面结构 27.初选传热系数:)/(11002'C m W K ⋅=28.估算传热面积:2''.334190.72011010008.87411m K Q F tm =⨯⨯=∆⋅=29.管子材料及规格:选用碳钢无缝钢管,5.225⨯φ30.管程内水的流速:s m /1.52=ω31.管程所需流通截面:2222009662.01.54.95898.13m M A t =⨯==ωρ32.每程管数:3130.7702.0009662.04422≈=⨯⨯==ππi t d A n ,取31根管子 33.每根管长:m d nZ F l o t 0.349.2025.0231.3341'≈=⨯⨯⨯==ππ,取标准管长3.0m34.管子的排列方式:等边三角形。