遥感图像裁剪与拼接

合集下载

遥感实验报告裁剪拼接(3篇)

遥感实验报告裁剪拼接(3篇)

第1篇一、实验目的本次实验旨在学习遥感影像处理中的裁剪与拼接技术,通过对遥感影像进行裁剪和拼接,提高遥感数据的可用性和分析效率。

二、实验背景遥感技术是获取地球表面信息的重要手段,广泛应用于资源调查、环境监测、灾害评估等领域。

遥感影像经过处理和提取后,才能为实际应用提供有价值的信息。

裁剪与拼接是遥感影像处理中的基本操作,通过对影像进行裁剪和拼接,可以去除无关信息,提高影像的可用性。

三、实验材料1. 遥感影像数据:包括多景遥感影像,如Landsat、Sentinel-2等;2. 裁剪与拼接软件:如ENVI、ArcGIS等;3. 实验环境:计算机、遥感数据处理软件等。

四、实验步骤1. 数据准备(1)选择遥感影像数据,确保影像质量良好、覆盖范围完整;(2)对遥感影像进行预处理,包括辐射校正、大气校正等,提高影像质量。

2. 裁剪操作(1)确定裁剪范围:根据实验需求,选择合适的裁剪范围,如行政区域、研究区域等;(2)使用裁剪工具对遥感影像进行裁剪,生成新的影像。

3. 拼接操作(1)选择拼接方式:根据实际情况,选择合适的拼接方式,如同名像元拼接、重叠区域拼接等;(2)使用拼接工具对遥感影像进行拼接,生成新的影像。

4. 质量评估(1)检查拼接后的影像是否完整,是否存在缝隙、错位等问题;(2)分析拼接区域的地物特征,确保拼接效果良好。

五、实验结果与分析1. 裁剪结果经过裁剪操作,生成了新的遥感影像,去除了无关信息,提高了影像的可用性。

2. 拼接结果经过拼接操作,生成了新的遥感影像,拼接区域地物特征良好,拼接效果满意。

3. 质量评估(1)拼接后的影像完整,无缝隙、错位等问题;(2)拼接区域地物特征良好,拼接效果满意。

六、实验结论通过本次实验,掌握了遥感影像的裁剪与拼接技术,提高了遥感数据的可用性和分析效率。

在实际应用中,可根据具体需求选择合适的裁剪与拼接方法,为遥感数据处理提供有力支持。

七、实验心得1. 裁剪与拼接是遥感影像处理中的基本操作,对于提高遥感数据的可用性具有重要意义;2. 在实际操作中,应根据具体需求选择合适的裁剪与拼接方法,确保拼接效果良好;3. 学习遥感影像处理技术,有助于提高遥感数据的分析和应用水平。

遥感影像处理知识

遥感影像处理知识

1.几何校正:几何校正是利用地面控制点和几何校正数学模型来矫正非系统因素产生的误差,同时也是将图像投影到平面上,使其符合地图投影系统的过程。

2.图像镶嵌:指在一定的数学基础控制下,把多景相邻遥感影像拼接成一个大范围、无缝的图像的过程。

3.图像裁剪:图像裁剪的目的是将研究之外的区域去除。

常用方法是按照行政区划边界或自然区划边界进行图像裁剪。

在基础数据生产中,还经常要进行标准分幅裁剪。

按照ENVI 的图像裁剪过程,可分为规则裁剪和不规则裁剪。

4.图像分类:遥感图像分类也称为遥感图像计算机信息提取技术,是通过模式识别理论,分析图像中反映同类地物的光谱、空间相似性和异类地物的差异,进而将遥感图像自动分成若干地物类别。

5.正射校正:正射校正是对图像空间和几何畸变进行校正生成多中心投影平面正射图像的处理过程。

6.面向对象图像分类技术:是集合邻近像元为对象用来识别感兴趣的光谱要素,充分利用高分辨率的全色和多光谱数据的空间、纹理和光谱信息来分割和分类,以高精度的分类结果或者矢量输出。

7.DEM:数字高程模型是用一组有序数值阵列形式表示地面高程的一种实体地面模型。

8.立体像对:从两个不同位置对同一地区所摄取的一对相片。

9.遥感动态监测:从不同时间或在不同条件获取同一地区的遥感图像中,识别和量化地表变化的类型、空间分布情况和变化量,这一过程就是遥感动态监测过程。

10.高光谱分辨率遥感:是用很窄而连续的波谱通道对地物持续遥感成像的技术。

在可见光到短波红外波段,其波谱分辨率高达纳米数量级,通常具有波段多的特点,波谱通道多达数十甚至数百个,而且各波谱通道间往往是连续的,因此高光谱遥感又通常被称为"成像波谱遥感"。

11.端元波谱:端元波谱作为高光谱分类、地物识别和混合像元分解等过程中的参考波谱,与监督分类中的分类样本具有类似的作用,直接影响波谱识别与混合像元分解结果的精度。

12.可视域分析:可视域分析工具利用DEM数据,可以从一个或多个观察源来确定可见的地表范围,观测源可以是一个单点,线或多边形13.三维可视化:ENVI的三维可视化功能可以将DEM数据以网格结构、规则格网或点的形式显示出来或者将一幅图像叠加到DEM数据上。

遥感实验五_影像镶嵌、裁剪、融合

遥感实验五_影像镶嵌、裁剪、融合
在Mosaic Tool视窗菜单条中,点击Edit/setOverlap Function—打开setOverlap Function对话框,如图1.2.6示,设置以下参数:
.设置相交关系(Intersection Method):No Cutline Exists。
.设置重叠图像元灰度计算(select Function):Average。
图2.1.5
点击DataPrep,在弹出的下拉菜单中单击Subset Images,在Input File中输入裁切的底图xianqiang.img,在Output File中设置输出文件路径和文件名,这里保存名为jianqie3.img。
单击From Inquire Box,然后点击AOI,在弹出的Choose AOI中点击Viewer,点击OK。,最后在subset点击OK,步骤如图2.1.6示。
图2.1.6
图2.1.7
在新视图窗口中打开裁切结果,如图2.1.8示。
图2.1.8
同理对全色影像进行剪切。
操作步骤如图2.2.1—2.2.3示。
图2.1.1
图2.2.2
图2.2.3
全色影像裁切效果如图2.2.4示。
图2.2.4
2.3.按已有图像范围裁切(掩膜)
按已有图像的范围从一幅较大图像中裁切一部分图像时,按下图所示方法操作:其中4处为较大图像文件(即待裁切图像),5处为限定范围的图像文件(即裁切范围),6处为结果文件(即裁切后图像),如图2.3.1示。
.Apply—close。
图像拼接线设置,在Mosaic Tool视窗菜单条中选择Set Mode For Intersection按钮 ,两幅图像之间将出现叠加线,单击两幅图像的相交区域,重叠区域将被高亮显示。根据实际需要,选择拼接线模式:

遥感影像的拼接、裁剪、不显示黑色区域问题

遥感影像的拼接、裁剪、不显示黑色区域问题

小知识:
1、如何利用arcgis10.2将多个**.img(**.tif)格式遥感影像图的图层拼接成一个图层?
打开arcmap软件,加载要拼接的遥感影像多个图层,依次打开arctoolbox→数据管理工具→栅格→栅格数据集→镶嵌,出现镶嵌对话框,在镶嵌对话框中,选择其中一个图层为“目标栅格”要加载的图层,将剩余几个要拼接的图层均加载至“输入栅格”中,“NoData值”中填入0(目的是为了使影像图中的黑色区域不显示),其余设置保持默认值,确定即可。

(时间较长,耐心等待)
2、如何利用arcgis10.2将遥感影像图的图层按照指定边界范围进行裁剪?
首先按照上面方法进行遥感影像图的拼接,使其为一个图层,然后加载指定边界范围图层,打开arctoolbox→数据管理
工具→栅格→栅格处理→裁剪,出现裁剪对话框,“输入栅格”位置即要裁剪的遥感影像图图层,输出范围即指定边界范围图层,勾选“使用输入要素裁剪几何”,勾选“保持裁剪范围”,点击右下角“环境”,出现“环境设置”对话框,点击处理范围,找到指定边界范围图层,点击确定,确定即可,时间较长,耐心等待。

3、如何使遥感影像图的黑色区域不显示?
右击遥感影像图层→属性,出现图层属性对话框,点击符号系统,勾选“显示背景值”,确定即可。

(最新)ENVI对图像进行配准、校正、拼接、裁剪

(最新)ENVI对图像进行配准、校正、拼接、裁剪

目录第一部分利用ENVI对图像进行配准-校正-拼接-裁剪 (2)一、图像配准与校正 (2)(一)基础知识 (2)(二)ENVI操作 (4)二、图像镶嵌(图像拼接) (16)(一)基础知识 (16)(二)ENVI操作 (16)三、图像裁剪 (20)(一)基础知识 (20)(二)ENVI操作 (21)第二部分:下载影像及介绍 (26)(一)基本信息 (26)(二)日期信息 (26)(三)云量信息 (26)(四)空间信息 (26)第一部分利用ENVI对图像进行配准-校正-拼接-裁剪一、图像配准与校正(一)基础知识1、图像配准就是将不同时间、不同传感器(成像设备)或不同条件下(天候、照度、摄像位置和角度等)获取的两幅或多幅图像进行匹配、叠加的过程,它已经被广泛地应用于遥感数据分析、计算机视觉、图像处理等领域。

2、几何校正是指利用地面控制点和几何校正数学模型,来矫正非系统因素产生的误差,非系统因素如传感器本身的高度、地球曲率、空气折射或地形等的影响。

由于校正过程中会将坐标系统赋予图像数据,所以此过程包括了地理编码。

简单来说,图像校正是借助一组控制点,对一幅图像进行地理坐标的校正。

本文将采用地面控制点+校正模型的几何校正方式中的Image to Image,利用Image格式的基准影像对2006年兰州TM影像进行配准与校正。

3、图像选点原则[1]选取图像上易分辨且较精细的特征点,如道路交叉点、河流弯曲或分叉处、海岸线弯曲处、飞机场、城廓边缘等。

[2]特征变化大的地区需要多选。

[3]图像边缘部分一定要选取控制点。

[4]尽可能满幅均匀选取。

[5]保证一定数量的控制点,不是控制点越多越好。

4、数理知识:[1]多项式模型x=a0+a1X+a2Y+a3X²+a4XY+ a5Y²+....y=b0+ b1X+b2Y+b3X²+ b4XY +b5Y²+ ....X,Y:校正前该点的位置;x,y:校正后该点的位置[2]最少控制点个数: ( n+1 )²[3]误差计算:RMSEerror= sqrt( (x' -x)²+ (y' -y)²)5、重采样方法(插值算法)[1]最近邻法概念:取与所计算点( x,y )周围相邻的4个点,比较它们与被计算点的距离,哪个点距离最近就取哪个亮度值作为 ( x,y )点的亮度值优点:简单易用,计算显小缺点:图像的亮度具有不连续性,精度差[2]双线性内插法概念:取(x,y)点周围的4个邻点,在y方向内插2次,再在x方向内插1次,得到( x,y)点的亮度值 f ( x,y)优点:双线性内插法比最近邻法虽然计算虽有所增加,但精度明显提高,特别是对亮度不连续现象或线状特征的块状化现象有明显的改善。

ERDAS Imagine裁剪与拼接以及几何校正

ERDAS Imagine裁剪与拼接以及几何校正

班级:11生态二班姓名:王国庆学号:201130020220一、实验目的与要求1.了解ERDAS IMAGINE8.4软件的图标面板、综合菜单及其功能2.熟悉基本的ERDAS IMAGINE软件的视窗操作3.掌握ERDAS中图形的输入与输出4.遥感图像的裁剪和拼接5.遥感图像的几何校正二、实验内容(一)遥感图像裁剪(Subset Image)1.规则裁剪1)打开ERDAS IMAGINE8.4,显示视窗面板,点击viewer打开一个视窗,在左上角的文件夹里面.打开一个文件2)在文件中点击右键,打开Inquire box按键,会出现以下的矩形裁剪窗口,可以调整矩形的大小确定裁剪的大小。

3)点击图标面板中的DataPrep,弹出工具框4)点击Subset Image选项,弹出裁剪窗口5)在input File中查找同一张图片,然后再从Output File中创建文件夹存放文件6)点击From Inquire Box,点击OK完成,打开文件如下2.不规则裁剪1)先打开一个图像窗口,同上2)打开视窗工具栏中的AOI工具栏中的Tools3)点击多边形工具进行裁剪,点击属性盘进行设置4)点击File中的AOI Layor As保存AOI文件。

5)点击图标面板中的DataPrep,弹出工具框,点击Subset Image选项,弹出裁剪窗口,后续步骤同上,在input File中查找同一张图片,然后再从Output File中创建文件夹存放文件。

6)点击ok后在点击下面的AOI选项,选择“AOI Source”中的“Viewer”选项7).退出,点击OK选项,完成裁剪8).打开一个新的Viewer窗口,查看裁剪的文件(二)、图像拼接1.打开ERDAS图标面板菜单条中的DataPre选项,并选择Mosaic Images选项,弹出了拼接视窗。

2.点击左上角的插入文件按钮,加载Mosaic图像,添加三个文件,即“wasia1_mss.img”“wasia2_mss.img”“wasia3_tm.img”,并在下面的“Image Area Options”中选择“ComputerActive Area”。

遥感数据图像处理实验三、遥感图像的几何校正与裁剪

遥感数据图像处理实验三、遥感图像的几何校正与裁剪

实验三、遥感图像的几何校正与裁剪实验内容:1.图像分幅裁剪(Subset Image)2.图像几何校正(Geometric Correction)3.图像拼接处理(Mosaic Imgaes)4.生成三维地形表面(3D Surfacing)1.图像分幅裁剪在实际工作中,经常需要根据研究工作范围对图像进行分幅裁剪,按照ERDAS IMAGINE 8.4实现图像分幅裁剪的过程,可以将图像分幅裁剪为两类型:规则分幅裁剪,不规则分幅裁剪。

1.1规则分幅裁剪(以c:\Program File\ IMAGINE 8.4\examples\lanier.img为例)规则分幅裁剪是指裁剪图像的范围是一个矩形,通过左上角和右上角两点的坐标可以确定图像的裁剪位置,过程如下:方法一:→ERDAS IMAGINE 8.4 图标面板菜单条:Main→Data Preparation(或单击ERDAS IMAGINE 8.4 图标面板工具条“DataPrep”图标)→打开Data Preparation 对话框→单击Subset Image按钮,打开Subset对话框在Subset对话框中需要设置下列参数:→输入文件名(Input File):lanier.img→输出文件名(Output File):lanier_sub.img→坐标类型(Coordinate Type):Map→裁剪范围(Subset Definition):ULX、ULY、LRX、LRY(注:ULX,ULY是指左上角的坐标,LRX,LRY是指右上角的坐标,缺省状态为整个图像范围)→输出数据类型(Output Data Type):Unsigned 8 Bit→输出文件类型(Output Layer Type):Continuous→输出统计忽略零值:Ignore Zero In Output Stats→输出像元波段(Select Layers):2,3,4→OK(关闭Subset对话框,执行图像裁剪)方法二:→ERDAS IMAGINE 8.4图标面板菜单条:Main→Start IMAGINE Viewer(或单击RDAS IMAGINE 8.4图标面板工具条“Viewer”图标)→打开一个二维视窗→单击视窗工具条最左端的“打开文件”图标→打开Select Layer To Add对话框在Select Layer To Add对话框完成以下设置:→Look In:examples→File Name:lanier.img→Files of type:IMAGINE Image→双击OK按钮→在二维视窗中打开lanier.img文件→单击ERDAS IMAGINE 8.4 图标面板工具条“DataPrep”图标 →打开Data Preparation对话框→单击Subset Image按钮→打开Subset对话框在Subset对话框中需要设置下列参数:→输入文件名(Input File):lanier.img→输出文件名(Output File):lanier_sub.img→坐标类型(Coordinate Type):Map→输出数据类型(Output Data Type):Unsigned 8 Bit →输出文件类型(Output Layer Type):Continuous→输出统计忽略零值:Ignore Zero In Output Stats→输出像元波段(Select Layers):2,3,4→单击From Inquire Box按钮→打开Invalid Coordinate Type对话框→单击Continue→在显示图像文件lanier.img视窗中单击工具条的“+”按钮,打开Inquire Cursor 对话框,在视窗中移动十字光标,确定裁剪范围左上角和右下角,读取其坐标分别填入Subset Image对话框的ULX,ULY中和LRX,LRY中→单击OK按钮(关闭Subset对话框,执行图像裁剪)方法三:首先在视窗中打开lanier.img文件→AOI→Tools打开AOI工具面板→单击矩形框确定裁剪范围→File→Save→AOI Layer As→打开Save AOI As对话框,输入文件名:2→单击OK(退出Save AOI As对话框)→单击ERDAS IMAGINE 8.4 图标面板工具条“DataPrep”图标 →打开Data Preparation对话框→单击Subset Image按钮→打开Subset对话框在Subset对话框中需要设置下列参数:→输入文件名(Input File):lanier.img→输出文件名(Output File):lanier_sub.img→坐标类型(Coordinate Type):Map→输出数据类型(Output Data Type):Unsigned 8 Bit→输出文件类型(Output Layer Type):Continuous →输出统计忽略零值:Ignore Zero In Output Stats →输出像元波段(Select Layers):2,3,4→单击AOI按钮→打开Choose AOI对话框→在Choose AOI对话框作如下设置:→AOI Source:File→AOI File:2→单击OK(退出Choose AOI对话框)→单击OK(退出Subset对话框,执行图像裁剪)→单击OK(退出Modeler对话框,完成图像裁剪)1.2不规则分幅裁剪不规则分幅裁剪是指裁剪图像的边界范围是个任意多边形,无法通过左上角和右下角两点的坐标确定图像的裁剪位置,而必须事先生成一个完整的闭合多边形区域,可以是一个AOI多边形,也可以是ArcInfo的一个Polygon Coverage,针对不同的情况采用不同的裁剪过程。

Envi4.7图像融合和裁剪

Envi4.7图像融合和裁剪

实验九遥感图像预处理(三)一、实验内容图像融合、镶嵌(2学时)图像裁剪(2学时)二、实验学时4学时二、实验原理、方法和手段图像融合、镶嵌、裁剪原理内容在操作中进行介绍。

三、实验数据实验数据:第四章:遥感图像预处理四、实验步骤1. 图像融合数据:第四章:遥感图像预处理\5-图像融合。

图像融合是将低空间分辨率的多光谱图像或高光谱数据与高空间分辨率的单波段重新采样,生成一幅高分辨率多光谱遥感图像的图像处理技术。

使得处理后的图像既有较高的空间分辨率,又具有多光谱特征。

ENVI中提供了两种融合方法:HSV变换和Brovey变换。

这两种方法均要求数据具有地理参考或者具有相同的尺寸,RGB输入波段必须为无符号8-bit数据或从打开的彩色display中选择。

两种方法基本类似,下面介绍Brovey变换操作过程。

操作过程:1. 打开融合的两个文件:TM-30m.img和bldr_sp.img(分别在两个display 窗口中显示),将TM-30m.img以RGB格式显示在display窗口中。

2. 选择主菜单→transform→image sharpening→color normalized(brovey),在select input RGB对话框中,有两种选择方式(如第一图):可用波段列表中选择或display窗口中选择,选择display#1窗口中的RGB,单击OK按钮。

3. 选中相应波段,双击,进入color normalized(brovey)对话框(如第二图),在color normalized(brovey)对话框中,选择重采样方式(resampling)和输入文件路径及文件名,单击OK按钮输出结果。

融合后结果如下,可以对两幅图像链接进行比较。

对于多光谱图像,ENVI可以利用以下融合技术:Gram-Schmidt:能保持融合前后图像波谱信息的一致性。

Color normalized:要求数据具有中心波长和FEHM主成分(PC)变换下面介绍参数相对较多的Gram-schmidt操作过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

遥感图像拼接(镶嵌)与裁剪一、实验目的与要求图像镶嵌指在一定数学基础控制下,把多景相邻遥感图像拼接成一个大范围、无缝的图像的过程,在ENVI中提供了透明处理、匀色、羽化等功能。

实验要求可以用ENVI解决镶嵌颜色不一致、接边以及重叠区等问题。

图像裁剪的目的是将研究之外的区域去除。

常用的方法是按照行政区划边界或者自然区域边界进行图像裁剪;在基础数据生产中,经常还要进行标准分幅裁剪。

ENVI的图像裁剪过程,可分为规则裁剪和不规则裁剪。

实验要求学生们学会通过ENVI软件对下载的地区图像进行裁剪和拼接,将南京区域裁剪出来。

通过本次实验,初步熟悉ENVI和ARCGIS软件,为今后环境遥感学习奠定基础。

二、实验内容与方法1 实验内容1)图像拼接:ENVI的图像拼接功能提供交互式的方式将没有地理坐标或者有地理坐标的多幅图像合并,生成一幅单一的合成图像。

2)图像裁剪:通常按照行政区划边界或自然区划边界进行图像剪裁,在基础数据生产中,还经常要进行标准分幅裁剪。

2 实验方法1)图像拼接最新ENVI提供了全新的影像无缝镶嵌工具Seamless Mosaic,所有功能集成在一个流程化的界面,它可以:•控制图层的叠放顺序•设置忽略值、显示或隐藏图层或轮廓线、重新计算有效的轮廓线、选择重采样方法和输出范围、可指定输出波段和背景值•可进行颜色校正、羽化/调和•提供高级的自动生成接边线功能、也可手动编辑接边线•提供镶嵌结果的预览使用该工具可以对影像的镶嵌做到更精细的控制,包括镶嵌匀色、接边线功能和镶嵌预览等功能。

2)图像裁剪(1)规则分幅裁剪,是指裁剪图像的边界范围是一个矩形,这个矩形的范围获取途径包括行列号、左上角和右下角两点坐标、图像文件、ROI/矢量文件;(2)不规则分幅裁剪,是指裁剪图像的边界范围是一个任意多边形。

任意多边形可以是事先生成的一个完整的闭合多边形区域,可以是一个手工绘制的ROI(感兴趣区)多边形,也可以是ENVI支持的矢量文件。

三、实验设备与材料1 实验设备装有ENVI的计算机2 实验材料南京市TM影像四、实验步骤1 数据的下载打开地理空间数据云/并登陆用户。

图1 在地理空间数据云上下载数据按空间条件进行查询,输入江苏省-南京市等信息,点击显示查询所需下载的区域。

并且选择LANDSAT5 数据进行查询。

图2 选择南京市作为下载区域通过查看视图可以看出,在2010年这两幅影像才能完全覆盖南京市整个区域,因此需要下载两幅图像进行图像的拼接。

图3 影像板块选择2 图像的拼接1)加载数据(1)打开ENVI Classic,加载下载的两幅多波段影像,并通过5-4-3假彩色保存成一幅影像文件。

图4 保存为ENVI标准格式(2)进入ENVI,选择toolbox – Mosaicking - Seamless Mosic 工具。

并点击将保存的两幅影像文件加载到图5 无缝拼接工具流(3)在Data Ignore Value列表中,可设置透明值,当重叠区区有背景值时候,可设置这个值。

(4)勾选右上角的Show Preview,可以预览镶嵌效果;图6 加载结果2)匀色处理——匀色方法是直方图匹配(Histogram Matching)(1)在Color Correction选项中,勾选Histogram Matching,如图2.3所示:•Overlap Area Only:重叠区直方图匹配•Entire Scene:整景影像直方图匹配图7 Color Matching Action匀色选项面板(2)在main选项中,放在Color Matching Action上单击右键,设置参考(Reference)和校正(Adjust),根据预览效果确定参考图像。

图8 Main选项面板图9 直方图匹配匀色效果3)接边线与羽化接边线包括自动和手动绘制两种方法,也可以结合起来使用。

(1)选择下拉菜单Seamlines > Auto Generate Seamlines,自动绘制接边线,如下图所示,自动裁剪掉TM边缘"锯齿"。

图10 接边线(绿色)(2)自动生成的接边线比较规整,可以明显看到由于颜色不同而显露的接边线。

下拉菜单Seamlines> Start editing seamlines,可以编辑接边线。

通过绘制多边形重新设置接边线,如下图为接边线编辑示意图。

图11 接边线编辑示意图4)输出结果(1)Export面板中,设置重采样方法Resampling method:Cubic Convolution;(2)设置背景值Output background Value:0;(3)选择镶嵌结果的输出路径;(4)单击Finish执行镶嵌。

图12 输出参数设置面板图13 镶嵌结果3 图像的裁剪1)规则图像裁剪以TM影像为例,图像存放在"…\图像裁剪\数据"中。

(1)File > Open打开图像,按Linear2%拉伸显示。

(2)File > Save As,进入File Selection面板,选择Spatial Subset选项,打开右侧裁剪区域选择功能。

图14 File Selection面板(3)有多种方法确定裁剪区域:•使用当前可视区域确定裁剪区域:单击Use View Extent,自动读取主窗口中显示的区域。

•通过文件确定裁剪区域:可以选择一个矢量或者栅格等外部文件,自动读取外部文件的区域。

点击右下角Subset By File,单击Open file 按钮,选择矢量数据"矢量.shp"作为裁剪范围。

图15 打开矢量数据作为裁剪范围•手动交互确定裁剪区域:可以通过输入行列数(Columns和Rows)确定裁剪尺寸,按住鼠标左键拖动图像中的红色矩形框来移动以行列数确定的裁剪区域;也可以直接用鼠标左键按钮红色边框拖动来确定裁剪尺寸以及位置(4)可以看到裁剪区域信息,左侧Spectral Subset按钮还可以选择输出波段子集,这里默认不修改,单击OK。

图16 裁剪参数设置面板(5)选择输出路径及文件名,单击OK,完成规则图像裁剪过程。

图17 结果输出2) 不规则图像裁剪不规则图像裁剪,是指裁剪图像的边界范围是一个任意多边形。

任意多边形可以是事先生成的一个完整的闭合多边形区域,可以是一个手工绘制的多边形,也可以是ENVI支持的矢量文件。

针对不同的情况采用不同的裁剪过程。

下面学习这两种方法。

a)手动绘制裁剪区(1)打开图像Beijing_TM.dat,按Linear2%拉伸显示。

(2)在Layer Manager中选中Beijing_TM.dat文件,单击鼠标右键,选择New Region Of Interest,打开Region of interest (ROI) Tool面板。

图18 新建ROI(3)在Region of interest (ROI) Tool面板中点击按钮,在图像上绘制多边形,绘制大致为北京老皇城二环范围内的多边形,作为裁剪区域。

可以修改感兴趣区名称ROI Name、感兴趣区颜色ROI Color等,也可以根据需求绘制若干个多边形,当绘制多个感兴趣区时利用可以进行删减。

图19 Region of interest (ROI) Tool手动绘制ROI(4)在Region of interest (ROI) Tool面板中,选择File-> Save as,保存绘制的多边形ROI,选择保存的路径和文件名。

图20 保存新绘制的ROI(5)在Toolbox中,打开Regions of Interest/ Subset Data from ROIs。

(6)在Select Input File对话框中,选择镶嵌得到的TM数据,打开Subset Data from ROIs Parameters面板。

(7)在Subset Data from ROIs Parameters面板中,设置以下参数:•Select Input ROIs:选择刚才生成的矢量文件roi1•Mask pixels output of ROI?:Yes•Mask Background Value背景值:0(8)选择输出路径和文件名,单击OK执行图像裁剪。

图21 Subset Data from ROIs Parameters面板b)外部矢量数据裁剪图像(1)打开镶嵌得到的TM数据,按Linear2%拉伸显示。

(2)File -> Open,打开"…\10.图像裁剪\数据\矢量数据"下的"矢量.shp"数据。

图22 待裁剪的TM图像加载矢量数据显示(3)在Toolbox中,打开Regions of Interest /Subset Data from ROIs。

Select Input File选择Beijing_TM.dat,点击OK,打开Subset Data from ROIs Parameters面板;(4)在Subset Data from ROIs Parameters面板中,设置以下参数:•Select Input ROIs:选择EVF:矢量.shp•Mask pixels output of ROI?:Yes•Mask Background Value背景值:0(5)选择输出路径和文件名,单击OK执行图像裁剪。

图23 Subset Data from ROIs Parameters面板如下图为裁剪结果。

图24 利用矢量数据生成ROI进行图像裁剪的结果图25 去除黑边的办法。

相关文档
最新文档