理科数学2010-2019高考真题分类训练专题九 解析几何第二十九讲 曲线与方程

合集下载

理科数学2010-2019高考真题分类训练专题九解析几何第二十七讲双曲线

理科数学2010-2019高考真题分类训练专题九解析几何第二十七讲双曲线

专题九解析几何第二十七讲双曲线2019 年22一 ―一,__ x y .............................. . .一一1. (2019全国III 理10)双曲线C :刁 y =1的右焦点为F,点P 在C 的一条渐进线上,O 为坐标原点,若 PO= PF ,则4 PFO 的面积为2xOy 中,若双曲线x 2 与 1(b 0)经过点(3, 4),b则该双曲线的渐近线方程是2x 3. (2019全国I 理16)已知双曲线 C: — aF 2,过F 1的直线与C 的两条渐近线分别交于2y 今 1(a 0,b 0)的左、右焦点分别为 曰, buuu uuu uuu uuuA, B 两点.若 F 1A AB, F 1B F 2B 0,则C 的离心率为.x 2 y 24. (2019年全国II 理11)设F 为双曲线C :— 4 1(a 0,b 0)的右焦点,O 为坐标 a b原点,以OF 为直径的圆与圆x 2 y 2 a 2交于P, Q 两点.若PQ OF ,则C 的离心率 为 A.& B. 33C. 2D. 75渐近线方程为土 y=0的双曲线的离心率是 B. 1D. 225)已知抛物线y 4x 的焦点为F ,准线为l ,右l 与双曲线22x y — 1 (a 0,b 0)的两条渐近线分别交于点 A 和点B,且|AB| 4|OF|(O 为a bA.0 3 2B.C. 272D. 372原点),则双曲线的离心率为 A. .2 B 」3C.2D.、. 52. (2019江苏7)在平面直角坐标系 5.(2019 浙江 2)人2A.— 2 C. 26.( 2019天津理、选择题2(2018浙江)双曲线上y23A. ( 72,0),诉0)C. (0,衣),(0,扬2. (2018全国卷I )已知双曲线3.4.5.2010-2018 年1的焦点坐标是B . ( 2,0) , (2,0)D. (0, 2), (0,2)O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为A- I B. 3 (2018全国卷n )双曲线(2018全国卷出坐标原点.过离心率为C.为直角三角形,则|MN | = 0,bC.0)的离心率为痣,则其渐近线方程为F2是双曲线C :2 y b2F2作C的一条渐近线的垂线,垂足为C. ,3 1(aD. y a20,b 0)的左、右焦点,。

理科数学2010-2019高考真题分类训练专题九解析几何第二十六讲椭圆答案

理科数学2010-2019高考真题分类训练专题九解析几何第二十六讲椭圆答案

专题九 解析几何第二十六讲 椭圆答案部分1. 解析2x =,则22AF x =,所以23BF AB x ==.由椭圆定义122BF BF a +=,即42x a =.又1224AF AF a x +==,22AF x =,所以12AF x =. 因此点A 为椭圆的上顶点,设其坐标为()0,b .由222AF BF =可得点B 的坐标为3,22b ⎛⎫- ⎪⎝⎭.因为点B 在椭圆()222210x y a b a b+=>>上,所以291144a +=.解得23a =.又1c =,所以22b =.所以椭圆方程为22132x y +=.故选B. 2.解析(1)由题设得1222y y x x ⋅=-+-,化简得221(||2)42x y x +=≠,所以C 为中心在坐标原点,焦点在轴上的椭圆,不含左右顶点.3. 解析 由题意,c e a ====所以22244a b a -=,即2234a b =.故选B .4. 解析 设(,)M m n ,,0m n >,椭圆C :22:13620x y C +=的6a =,b =,2c =,23c e a ==,由于M 为C 上一点且在第一象限,可得12||||MF MF >, 12MF F △为等腰三角形,可能1||2MF c =或2||2MF c =,即有2683m +=,即3m =,n = 2683m -=,即30m =-<,舍去.可得M .2010-2018年1.D 【解析】由题意可得椭圆的焦点在x 轴上,如图所示,OyxPF 2F 1A设12||2=F F c ,所以12∆PF F 为等腰三角形,且12=120∠oF F P ,∴212||||2PF F F c ==,∵2||OF c =,∴点P 坐标为(2cos 60,2sin 60)c c c +oo,即点(2)P c .∵点P 在过点A∴26c a =+14c a =.∴14e =,故选D .2.C 【解析】由题意25=a,=a .由椭圆的定义可知,P 到该椭圆的两个焦点的距离之和为2=a ,故选C .3.B 【解析】由题意可知29a =,24b =,∴2225c a b =-=,∴离心率3c e a ==,选B4.A 【解析】以线段12A A 为直径的圆是222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离d a ==,整理为223a b =,即()22222323a a c a c =-⇒=,即2223c a =,3c e a ==,故选A .5.A 【解析】设(0,)E m ,则直线AE 的方程为1x y a b -+=,由题意可知(,)mc M c m a--,(0,)2m和(,0)B a 三点共线,则22mc m m m a c a--=--,化简得3a c =,则C 的离心率13c e a ==.故选A . 6.A 【解析】由题意知2211m n -=+,即222m n =+,222221222221111()2m n n n e e m n n n -+++=⋅=⋅+4242422111122n n n n n n ++==+>++,所以121e e >.故选A .7.D【解析】由题意可设,sin )Q αα,圆的圆心坐标为(0,6)C ,圆心到Q 的距离为||CQ ===,当且仅当2sin 3α=-时取等号,所以max max ||||PQ CQ r +==≤,所以Q P ,两点间的最大距离是.8.D 【解析】设1122(,),(,)A x y B x y ,则12x x +=2,12y y +=-2,2211221x y a b += ① 2222221x y a b+= ② ①-②得1212121222()()()()0x x x x y y y y a b+-+-+=, ∴AB k =1212y y x x --=212212()()b x x a y y +-+=22b a,又AB k =0131+-=12,∴22b a =12,又9=2c =22a b -,解得2b =9,2a =18,∴椭圆方程为221189x y +=,故选D.9.C 【解析】∆21F PF 是底角为30o 的等腰三角形221332()224c PF F F a c c e a ⇒==-=⇔==10.5【解析】设11(,)A x y ,22(,)B x y ,由2AP PB =u u u r u u u r ,得1212212(1)x x y y -=⎧⎨-=-⎩,即122x x =-,1232y y =-.因为点A ,B 在椭圆上,所以222222224(3)44x x m x y m⎧+-=⎪⎪⎨⎪+=⎪⎩,得21344y m =+,所以2222221591(32)(5)444244x m y m m m =--=-+-=--+≤,所以当5m =时,点B 横坐标的绝对值最大,最大值为2.1112;【解析】设椭圆的右焦点为(,0)F c ,双曲线N 的渐近线与椭圆M 在第一象限内的交点为A,由题意可知(2c A ,由点A 在椭圆M 上得,22223144c c a b+=,∴22222234b c a c a b +=,222b ac =-,∴22222222()34()a c c a c a a c -+=-,∴4224480a a c c -+=,∴428+40e e -=椭椭,∴24e =±椭,∴1e =椭(舍去)或1e 椭,∴椭圆M1,∵双曲线的渐近线过点(,)22c A,渐近线方程为y =,故双曲线的离心率2e ==双.12【解析】由题意得(),0F c ,直线2by =与椭圆方程联立可得2b B ⎛⎫ ⎪ ⎪⎝⎭,2b C ⎫⎪⎪⎝⎭,由90BFC ∠=︒可得0BF CF ⋅=u u u r u u u r,2b BF c ⎛⎫=+- ⎪ ⎪⎝⎭u u u r,2b CF c ⎛⎫=- ⎪ ⎪⎝⎭u u u r ,则22231044c a b -+=,由222b a c =-可得223142c a =,则c e a ==. 13.22325()24-+=x y 【解析】 由题意圆过(4,0),(0,2),(0,2)-三个点,设圆心为(,0)a ,其中0a >,由4-=a 32a =,所以圆的方程为22325()24-+=x y .14.2【解析】设11(,)A x y ,22(,)B x y ,分别代入椭圆方程相减得 1212121222()()()()0x x x x y y y y a b-+-++=,根据题意有12122,2x x y y +=+=, 且121212y y x x -=--,所以22221()02a b +⨯-=,得222a b =,整理222a c =,所以2e =. 15.12【解析】设MN 交椭圆于点P ,连接1F P 和2F P ,利用中位线定理可得AN BN +=122222412F P F P a a +=⨯==.16.3【解析】由题意可得2(,)b A c a,2(,)b B c a -,由题意可知点D 为1F B 的中点,所以点D 的坐标为2(0,)2b a-,由B F AD 1⊥,所以11AD F B k k ⋅=-,22ac =,解得e = 17.22312x y +=【解析】由题意得通径22AF b =,∴点B 坐标为251(,)33c B b -- 将点B 坐标带入椭圆方程得22221()53()13b c b --+=,又221b c =-,解得222313b c ⎧=⎪⎪⎨⎪=⎪⎩∴椭圆方程为22312x y +=.18.13-【解析】由题意可知,21F MF ∆中,︒=∠︒=∠︒=∠90,30,60211221MF F F MF F MF ,所以有⎪⎩⎪⎨⎧==+==+12212221222132)2(MF MF a MF MF c F F MF MF ,整理得13-==a c e ,故答案为13-. 19.5【解析】由椭圆的性质可知:1AF a c =-,122F F c =,1F B a c =+.又已知1AF ,12F F ,1F B 成等比数列,故2()()(2)a c a c c -+=,即2224a c c -=,则225a c =.故5c e a ==.即椭圆的离心率为5. 20.(0,1)±【解析】设点A 的坐标为(,)m n ,B 点的坐标为(,)c d.12(F F ,可得1()F A m n =u u u r,2()F B c d =u u u u r ,∵125F A F B =u u u r u u u u r ,∴,55m nc d +==,又点,A B 在椭圆上, ∴2213m n +=,225()135n +=,解得0,1m n ==±, ∴点A 的坐标是(0,1)±.21.【解析】(1)由已知得(1,0)F ,l 的方程为1=x .由已知可得,点A的坐标为(1,2或(1,2-. 所以AM的方程为2y x =-2y x =. (2)当l 与x 轴重合时,0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,1221(,),(,)A y x y x B ,则1<x2x MA ,MB 的斜率之和为212122MA MB x x y yk k +=+--. 由11=-y kx k ,22=-y kx k 得121212(23()42)(2)MA MB x x x x k k x x kk k -+++=--.将(1)y k x =-代入2212x y +=得 2222(21)4220k x k x k +-+-=.所以,2122421+=+k k x x ,21222221-=+x k k x .则3131322244128423()4021k k k k kk k k k x x x x --++-++==+. 从而0MA MB k k +=,故MA ,MB 的倾斜角互补,所以OMA OMB ∠=∠. 综上,OMA OMB ∠=∠.22.【解析】(1)设11(,)A x y ,22(,)B x y ,则2211143x y +=,2222143x y +=. 两式相减,并由1212y y k x x -=-得1212043x x y y k +++⋅=.由题设知1212x x +=,122y y m +=, 于是34k m=-.①由题设得302m <<,故12k <-.(2)由题意得(1,0)F ,设33(,)P x y ,则331122(1,)(1,)(1,)(0,0)x y x y x y -+-+-=.由(1)及题设得3123()1x x x =-+=,312()20y y y m =-+=-<.又点P 在C 上,所以34m =,从而3(1,)2P -,3||2FP =u u u r .于是1||22xFA===-u u u r.同理2||22xFB=-u u u r.所以121||||4()32FA FB x x+=-+=u u u r u u u r.故2||||||FP FA FB=+u u u r u u u r u u u r,即||FAu u u r,||FPu u u r,||FBu u u r成等差数列.设该数列的公差为d,则1212||||||||||2d FB FA x x=-=-=u u u r u u u r将34m=代入①得1k=-.所以l的方程为74y x=-+,代入C的方程,并整理得2171404x x-+=.故122x x+=,12128x x=,代入②解得||28d=.所以该数列的公差为28或28-.23.【解析】设椭圆的焦距为2c,由已知知2259ca=,又由222a b c=+,可得23a b=.由已知可得,FB a=,AB=,由FB AB⋅=可得6ab=,从而3a=,2b=.所以,椭圆的方程为22194x y+=.(2)设点P的坐标为11(,)x y,点Q的坐标为22(,)x y.由已知有120y y>>,故12sinPQ AOQ y y∠=-.又因为2sinyAQOAB=∠,而4OABπ∠=,故2AQ=.由AQAOQPQ=∠,可得1259y y=.由方程组22194y kxx y=⎧⎪⎨+=⎪⎩,,消去x,可得1y=易知直线AB 的方程为20x y +-=,由方程组20y kx x y =⎧⎨+-=⎩,,消去x ,可得221ky k =+.由1259y y =,可得5(1)k += 两边平方,整理得25650110k k -+=,解得12k =,或1128k =. 所以,k 的值为111228或.24.【解析】(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点.又由222211134a b a b +>+知,C 不经过点1P ,所以点2P 在C 上. 因此222111314b ab ⎧=⎪⎪⎨⎪+=⎪⎩,解得2241a b ⎧=⎪⎨=⎪⎩.故C 的方程为2214x y +=.(2)设直线2P A 与直线2P B 的斜率分别为1k ,2k ,如果l 与x 轴垂直,设l :x t =,由题设知0t ≠,且||2t <,可得A ,B 的坐标分别为 (t,(t,).则121k k +-=-,得2t =,不符合题设.从而可设l :y kx m =+(1m ≠).将y kx m =+代入2214x y +=得222(41)8440k x kmx m +++-=由题设可知22=16(41)0k m ∆-+>.设11(,)A x y ,22(,)B x y ,则122841kmx x k +=-+,21224441m x x k -=+. 而12121211y y k k x x --+=+121211kx m kx m x x +-+-=+ 1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得12m k +=-.当且仅当1m >-时,0∆>,欲使l :12m y x m +=-+,即11(2)2m y x ++=--, 所以l 过定点(2,1-)25.【解析】(1)设(,)P x y ,00(,)M x y ,则0(,0)N x ,0(,)NP x x y =-u u u r ,0(0.)NM y =u u u u r.由NP =u u u r u u u r得 0x x =,02y y =. 因为00(,)M x y 在C 上,所以22122x y +=. 因此点P 的轨迹方程为222x y +=.(2)由题意知(1,0)F -.设(3,)Q t -,(,)P m n ,则(3,)OQ t =-u u u r ,(1,)PF m n =---u u u r ,33OQ PF m tn ⋅=+-u u u r u u u r, (,)OP m n =u u u r ,(3,)PQ m t n =---u u u r,由1OP PQ ⋅=u u u r u u u r 得2231m m tn n --+-=,又由(1)知222m n +=, 故330m tn +-=.所以0OQ PF ⋅=u u u r u u u r ,即OQ PF ⊥u u u r u u u r.又过点P 存在唯一直线垂直与OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F . 26.【解析】(1)设椭圆的半焦距为c .因为椭圆E 的离心率为12,两准线之间的距离为8,所以12c a =,228a c=,解得2,1a c ==,于是b =因此椭圆E 的标准方程是22143x y +=.(2)由(1)知,1(1,0)F -,2(1,0)F .设00(,)P x y ,因为点P 为第一象限的点,故000,0x y >>.当01x =时,2l 与1l 相交于1F ,与题设不符. 当01x ≠时,直线1PF 的斜率为001y x +,直线2PF 的斜率为01y x -. 因为11l PF ⊥,22l PF ⊥,所以直线1l 的斜率为001x y -+,直线2l 的斜率为001x y --,从而直线1l 的方程:001(1)x y x y +=-+, ① 直线2l 的方程:001(1)x y x y -=--. ② 由①②,解得20001,x x x y y -=-=,所以2001(,)x Q x y --. 因为点Q 在椭圆上,由对称性,得20001x y y -=±,即22001x y -=或22001x y +=. 又P 在椭圆E 上,故2200143x y +=.由220022001143x y x y ⎧-=⎪⎨+=⎪⎩,解得00x y ==220022001143x y x y ⎧+=⎪⎨+=⎪⎩,无解. 因此点P的坐标为. 27.【解析】(Ⅰ)设F 的坐标为(,0)c -.依题意,12c a =,2pa =,12a c -=,解得1a =,12c =,2p =,于是22234b ac =-=. 所以,椭圆的方程为22413y x +=,抛物线的方程为24y x =. (Ⅱ)设直线AP 的方程为1(0)x my m =+≠,与直线l 的方程1x =-联立,可得点2(1,)P m --,故2(1,)Q m-.将1x my =+与22413y x +=联立,消去x , 整理得22(34)60m y my ++=,解得0y =,或2634my m -=+.由点B 异于点A ,可得点222346(,)3434m mB m m -+-++. 由2(1,)Q m-,可得直线BQ 的方程为22262342()(1)(1)()03434m m x y m m m m --+-+-+-=++,令0y =,解得222332m x m -=+, 故2223(,0)32m D m -+.所以2222236||13232m m AD m m -=-=++. 又因为APD △22162232||2m m m ⨯⨯=+,整理得23|20m m -+=,解得||m =,所以m =. 所以,直线AP的方程为330x +-=,或330x -=. 28.【解析】(I)由题意知c e a ==,22c =,所以1a b ==,因此椭圆E 的方程为2212x y +=.(Ⅱ)设()()1122,,,A x y B x y ,联立方程2211,2x y y k x ⎧+=⎪⎪⎨⎪=-⎪⎩得()22114210k x x +--=, 由题意知0∆>,且()12122111221x x x x k +==-+,所以121=-=AB x .由题意可知圆M 的半径r为1233r AB ==由题设知124k k =,所以21k =因此直线OC的方程为1y =.联立方程2211,2,4x y y x k ⎧+=⎪⎪⎨⎪=⎪⎩得2221221181,1414k x y k k ==++,因此OC =.由题意可知1sin21SOT rOC r OCr∠==++,而1OC r=2=令2112t k =+, 则()11,0,1t t>∈,因此1OC r==≥,当且仅当112t =,即2t =时等号成立,此时1k =,所以1sin 22SOT ∠≤,因此26SOT π∠≤, 所以SOT ∠最大值为3π. 综上所述:SOT ∠的最大值为3π,取得最大值时直线l的斜率为12k =±.29.【解析】(Ⅰ)由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧+===,,121,23222c b a ab a c 解得1,2==b a . 所以椭圆C 的方程为1422=+y x . (Ⅱ)由(Ⅰ)知,)1,0(),0,2(B A ,设),(00y x P ,则442020=+y x .当00≠x 时,直线PA 的方程为)2(200--=x x y y . 令0=x ,得2200--=x y y M .从而221100-+=-=x y y BM M . 直线PB 的方程为110+-=x x y y . 令0=y ,得100--=y x x N .从而12200-+=-=y x x AN N . 所以221120000-+⋅-+=⋅x y y x BM AN 228844224844400000000000000002020+--+--=+--+--++=y x y x y x y x y x y x y x y x y x 4=.当00=x 时,10-=y ,,2,2==AN BM 所以4=⋅BM AN . 综上,BM AN ⋅为定值.30.【解析】(Ⅰ)设直线:l y kx b =+(0,0)k b ≠≠,11(,)A x y ,22(,)B x y ,(,)M M M x y .将y kx b =+代入2229x y m +=得2222(9)20k x kbx b m +++-=,故12229M x x kb x k +==-+,299M M by kx b k =+=+. 于是直线OM 的斜率9M OM M y k x k==-,即9OM k k ⋅=-.所以直线OM 的斜率与l 的斜率的乘积为定值. (Ⅱ)四边形OAPB 能为平行四边形. 因为直线l 过点(,)3mm , 所以l 不过原点且与C 有两个交点的充要条件是0k >,3k ≠. 由(Ⅰ)得OM 的方程为9y x k=-.设点P 的横坐标为P x . 由2229,9,y x k x y m ⎧=-⎪⎨⎪+=⎩得2222981P k m x k =+,即P x =. 将点(,)3m m 的坐标代入直线l 的方程得(3)3m k b -=,因此2(3)3(9)M mk k x k -=+. 四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即2P M x x =.=2(3)23(9)mk k k -⨯+.解得14k =24k =. 因为0,3i i k k >≠,1i =,2,所以当l的斜率为44+OAPB 为平行四边形.31.【解析】(Ⅰ)由题意得2221,,.b caa b c =⎧⎪⎪=⎨⎪⎪=+⎩解得2a =2.故椭圆C 的方程为2212x y +=. 设M (N x ,0).因为0m ≠,所以11n -<<.直线PA 的方程为11n y x m--=, 所以M x =1m n -,即(,0)1mM n-. (Ⅱ)因为点B 与点A 关于x 轴对称,所以(,)B m n -, 设(,0)N N x ,则N x =1mn+.“存在点(0,)Q Q y 使得OQM ∠=ONQ ∠等价”,“存在点(0,)Q Q y 使得OM OQ=OQ ON”即Q y 满足2Q M N y x x =.因为1M m x n =-,1N mx n=+,2212m n +=, 所以22221Q MN m y x x n ===-.所以Q y或Q y =.故在y 轴上存在点Q ,使得OQM ∠=ONQ ∠. 点Q的坐标为或(0,.32.【解析】(1)由题设条件知,点M 的坐标为21(,)33a b ,又OM k =2b a =,进而得,2a c b ===,故5c e a ==. (2)由题设条件和(I )的计算结果可得,直线AB1yb+=,点N 的坐标为1,)22b -,设点N 关于直线AB 的对称点S 的坐标为17(,)2x ,则线段NS 的中点T的坐标为117,)244x b +-+.又点T 在直线AB 上,且1NS AB k k ⋅=-,从而有1117441712x b b b +-++=⎨+⎪=⎪⎪⎪⎩,解得3b =,所以b = 故椭圆E 的方程为221459x y +=.33.【解析】(Ⅰ)由题意知42=a ,则2=a ,又2c a =,222a cb -=, 可得1=b ,所以椭圆C 的方程为1422=+y x . (Ⅱ)由(I )知椭圆E 的方程为141622=+y x . (i )设λ=||||),,(00OP OQ y x P ,由题意知),(00y x Q λλ--, 因为142020=+y x ,又14)(16)(2020=-+-y x λλ,即1)4(42020=+y x λ, 所以2=λ,即2||||=OP OQ . (ii )设),(),,(2211y x B y x A ,将m kx y +=代入椭圆E 的方程, 可得01648)41(222=-+++m kmx x k , 由0>∆,可得 22164k m +<,则有222122141164,418k m x x k km x x +-=+-=+, 所以22221414164||km k x x +-+=-. 因为直线m kx y +=与y 轴交点的坐标为),0(m ,所以OAB ∆的面积||||2121x x m S -=22241||4162k m m k +-+=222241)416(2km m k +-+=222241)414(2k m k m ++-= 令t km =+2241,将m kx y +=代入椭圆C 的方程, 可得 0448)41(222=-+++m kmx x k , 由0∆≥,可得 2241k m +≤,由①②可知 10≤<t ,因此t t t t S 42)4(22+-=-=,故 S ≤当且仅当1=t 时,即2241k m +=时取得最大值32,由(i )知,ABQ ∆面积为S 3, 所以ABQ ∆面积的最大值为36.34.【解析】2(c,0)=3F c c (I )设,由条件知,222=2, 1.2c a b a c a ==-=又所以 22 1.4x E y +=故的方程为 (Ⅱ)1122:=2,(,),(,).l x l y kx P x y Q x y ⊥-当轴时不合题意,故设22214x y kx y =-+=将代入得22(14)16120.k x kx +-+=221,23=16(43)0,4k k x ∆->>=当即时,12241PQ x k =-=+从而O PQ d OPQ =∆又点到直线的距离所以的面积1=2OPQ S d PQ ∆⋅=244,0,.44OPQ t t t S t t t∆=>==++则44,20.2t t k t +≥==±∆>因为当且仅当,即 OPQ ι∆所以,当的面积最大时,的方程为2222y x y x =-=--或.35.【解析】(Ⅰ)设直线l 的方程为()0y kx m k =+<,由22221x y a b⎪⎨+=⎪⎩,消去y 得,()22222222220b a k x a kmx a m a b +++-=,由于直线l 与椭圆C 只有一个公共点P ,故0∆=,即22220b m a k -+=,解得点P 的坐标为22222222,a km b m b a k b a k ⎛⎫- ⎪++⎝⎭,由点P 在第一象限, 故点P的坐标为22⎛⎫⎝; (Ⅱ)由于直线1l 过原点O ,且与l 垂直,故直线1l 的方程为0x ky +=,所以点P 到直线1l的距离d =,整理得22d =,因为22222b a k ab k +≥,2222a b ≤=-,当且仅当2bk a=时等号成立, 所以点P 到直线1l 的距离的最大值为b a -.36.【解析】(Ⅰ)根据c 22(,),23b M c b ac a=将222b a c =-代入223b ac =,解得1,22c ca a==-(舍去) 故C 的离心率为12. (Ⅱ)由题意,原点O 为12F F 的中点,2MF ∥y 轴,所以直线1MF 与y 轴的交点(0,2)D是线段1MF 的中点,故24b a=,即24b a = ① 由15MN F N =得112DF F N =。

理科数学2010-2019高考真题分类训练专题九解析几何第二十五讲直线与圆答案

理科数学2010-2019高考真题分类训练专题九解析几何第二十五讲直线与圆答案

专题九 解析几何 第二十五讲 直线与圆答案部分 2019年1.解析 由直线l 的参数方程消去t ,可得其普通方程为4320x y -+=. 则点(1,0)到直线l 的距离是d ==2. 解析 解法一:由4(0)y x x x =+>,得241y x'=-, 设斜率为1-的直线与曲线4(0)y x x x=+>切于0004(,)x x x +,由20411x -=-,解得000)x x =>. 所以曲线4(0)y x x x=+>上,点P 到直线0x y +=的距离最小,4=. 解法二:由题意可设点P 的坐标为4,x x x ⎛⎫+⎪⎝⎭()0x >,则点P 到直线0x y +=的距离222242x d ⎛⎫+ ⎪==⨯⨯=…,当且仅当x =所以点P 到直线0x y +=的距离的最小值为4. 3.解析 解法一:(1)过A 作AE BD ⊥,垂足为E .由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====.' 因为PB ⊥AB ,所以84cos sin 105PBD ABE ∠=∠==.所以12154cos 5BD PB PBD ===∠.因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求. ②若Q 在D 处,联结AD ,由(1)知2210AD AE ED =+=,从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角. 所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此,Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求; 当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15, 此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=; 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,2222156321CQ QA AC =-=-=此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当PB ⊥AB ,点Q 位于点C 右侧,且CQ =321时,d 最小,此时P ,Q 两点间的距离PQ =PD +CD +CQ =17+321.因此,d 最小时,P ,Q 两点间的距离为17+321(百米). 解法二:(1)如图,过O 作OH ⊥l ,垂足为H. 以O 为坐标原点,直线OH 为y 轴,建立平面直角坐标系.因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,−3. 因为AB 为圆O 的直径,AB =10,所以圆O 的方程为2+y 2=25. 从而A (4,3),B (−4,−3),直线AB 的斜率为34. 因为PB ⊥AB ,所以直线PB 的斜率为43-, 直线PB 的方程为42533y x =--. 所以P (−13,9),22(134)(93)15PB =-+++=. 因此道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E (−4,0),则EO =4<5,所以P 选在D 处不满足规划要求.②若Q 在D 处,联结AD ,由(1)知D (−4,9),又A (4,3), 所以线段AD :36(44)4y x x =-+-剟. 在线段AD 上取点M (3,154),因为22221533454OM ⎛⎫=++= ⎪⎝⎭,所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求; 当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15,此时1P (−13,9); 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q (a ,9),由22(4)(93)15(4)AQ a a =-+-=>,得a =4321+,所以Q (4321+,9),此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q (4321+,9)时,d 最小,此时P ,Q 两点间的距离4321(13)17321PQ =+--=+.因此,d 最小时,P ,Q 两点间的距离为17321+(百米). 4.解析:解法一:如图,由圆心与切点的连线与切线垂直,得1122m +=-,解得2m =-. 所以圆心为(0,-2),则半径22(20)(12)5r =--+-+=. 解法二:由22034(1)41m r m ⨯-+==+++,得2m =-,所以55r ==2010-2018年1.A 【解析】圆心(2,0)到直线的距离d == 所以点P到直线的距离1d ∈.根据直线的方程可知A ,B 两点的坐标分别为(2,0)A -,(0,2)B -,所以||AB = 所以ABP ∆的面积111||2S AB d ==.因为1d ∈,所以[2,6]S ∈,即ABP ∆面积的取值范围是[2,6].故选A . 2.12【解析】直线的普通方程为20x y +-=,圆的标准方程为22(1)1x y -+=, 圆心为(1,0)C ,半径为1,点C 到直线20x y +-=的距离2d ==以||AB ==11222ABC S ∆==. 3.C【解析】由题意可得d ====(其中cos ϕ=,sin ϕ=),∵1sin()1θϕ--≤≤,d1=+∴当0m =时,d 取得最大值3,故选C .4.A 【解析】以线段12A A 为直径的圆是222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离d a ==,整理为223a b =,即()22222323a a c a c =-⇒=,即2223c a =,c e a ==,故选A .5.A 【解析】如图建立直角坐标系,x则(0,1)A ,(0,0)B ,(2,1)D ,(,)P x y 所以圆的方程为224(2)5x y -+=, 所以(,1)AP x y =-u u u r ,(0,1)AB =-u u u r ,(2,0)AD =u u u r,由AP AB AD λμ=+u u u r u u u r u u u r ,得21x y μλ=⎧⎨-=-⎩,所以λμ+=12x y -+,设12x z y =-+,即102xy z -+-=, 点(,)P x y 在圆上,所以圆心到直线102xy z -+-=的距离小于半径,,解得13z ≤≤,所以z 的最大值为3, 即λμ+的最大值为3,选A .6.D 【解析】(2,3)--关于y 轴对称点的坐标为(2,3)-,设反射光线所在直线为3(2)y k x +=-,即230kx y k ---=,则1d==,|55|k +=43k =-或34-.7.A 【解析】 设所求直线的方程为20x y c ++=(1)≠c,则=,所以c =250x y ++=或250x y +-=.8.C 【解析】设过,,A B C 三点的圆的方程为220x y Dx Ey F ++++=,则3100422007500D E F D E F D E F +++=⎧⎪+++=⎨⎪-++=⎩,解得2,4,20D E F =-==-, 所求圆的方程为2224200x y x y +-+-=,令0x =,得24200y y +-=, 设1(0,)M y ,2(0,)N y ,则124y y +=-,1220y y ⋅=-,所以12||||MN y y =-==9.C 【解析】圆C 标准方程为22(2)(1)4x y -+-=,圆心为(2,1)C ,半径为2r =,因此2110a +⨯-=,1a =-,即(4,1)A --,6AB ===.选C .10.A 【解析】当点M 的坐标为(1,1)时,圆上存在点(1,0)N ,使得45OMN ∠=o,所以01x =符合题意,排除B 、D ;当点M的坐标为时,OM =,过点M 作圆O 的一条切线MN ',连接ON ',则在Rt OMN '∆中,sin 2OMN '∠=<,则45OMN '∠<o ,故此时在圆O 上不存在点N ,使得°45OMN ∠=,即0x =合题意,排除C ,故选A .11.D 【解析】直线l 过点(0,3),斜率为1,所以直线l 的方程为30x y -+=. 12.B 【解析】因为圆C 的圆心为(3,4),半径为1,||5OC =,所以以原点为圆心、以m为半径与圆C 有公共点的最大圆的半径为6,所以m 的最大值为6,故选B . 13.C 【解析】由题意得12(0,0),(3,4)C C,121,r r ==1212||15C C r r =+==,所以9m =.14.D 【解析】设直线l 的倾斜角为θ,由题意可知min max 0,263ππθθ==⨯=.15.B 【解析】圆的标准方程为22(1)(1)2x y a ++-=-,则圆心(1,1)C -,半径r 满足22r a =-,则圆心C 到直线20x y ++=的距离d == 所以2422r a =+=-,故4a =-16.B 【解析】易知直线0x my +=过定点(0,0)A ,直线30mx y m --+=过定点(1,3)B ,且两条直线相互垂直,故点P 在以AB 为直径的圆上运动,故||||||cos ||sin PA PB AB PAB AB PAB +=∠+∠)4PAB π=∠+∈.故选B .17.A 【解析】由题意可知以线段AB 为直径的圆C 过原点O ,要使圆C 的面积最小,只需圆C 的半径或直径最小.又圆C 与直线240x y +-=相切,所以由平面几何知识,知圆的直径的最小值为点O 到直线240x y +-=的距离,此时2r =得r =,圆C 的面积的最小值为245S r ππ==. 18.A 【解析】根据平面几何知识,直线AB 一定与点(3,1),(1,0)的连线垂直,这两点连线的斜率为12,故直线AB 的斜率一定是2-,只有选项A 中直线的斜率为2-. 19.A 【解析】圆C 1,C 2的圆心分别为C 1,C 2,由题意知|PM |≥|PC 1|-1,|PN |≥|PC 2|-3,∴|PM |+|PN |≥|PC 1|+|PC 2|-4,故所求值为|PC 1|+|PC 2|-4的最小值. 又C 1关于轴对称的点为C 3(2,-3),所以|PC 1|+|PC 2|-4的最小值为|C 3C 2|-444=, 故选A .20.C 【解析】圆心(1,2),圆心到直线的距离d =,半径r =,所以最后弦长为4=.21.B 【解析】(1)当y ax b =+过()1,0A -与BC 的中点D 时,符合要求,此13b =, (2)当y ax b =+位于②位置时1,0b A a ⎛⎫-⎪⎝⎭,11,11b a b D a a -+⎛⎫⎪++⎝⎭,令1112A BD S ∆=得212b a b =-,∵0a >,∴12b < (3) 当y ax b =+位于③位置时21,11b b a A a a --⎛⎫⎪--⎝⎭,21,11b a b D a a -+⎛⎫⎪++⎝⎭, 令2212A CD S ∆=,即()111112112b b b a a --⎛⎫--= ⎪+-⎝⎭,化简得22241a b b -=-+,∵0a >, ∴22410b b -+<,解得1122b -<<+综上:112b -<<,选B 22.B 【解析】点M(a ,b )在圆221x y +=外,∴221a b +>.圆(0,0)O 到直线1ax by +=距离1d =<=圆的半径,故直线与圆相交.所以选B .23.C【解析】设直线斜率为k ,则直线方程为2(2)y k x -=-,即220kx y k -+-=,圆心(1,0)==12k =-.因为直线与直线10ax y -+=垂直,所以112k a =-=-, 即2a =,选C . 24.A 【解析】∵圆心到直线的距离等于1r =,排除B 、C ;相切于第一象限排除D ,选A.直接法可设所求的直线方程为:()0y x k k =-+>,再利用圆心到直线的距离等于1r =,求得k =25.C 【解析】抛物线24y x =的焦点坐标为(1,0),准线方程为1x =-,设11(,)A x y ,22(,)B x y ,则因为|AF |=3|BF |,所以1213(1)x x +=+,所以1232x x =+,因为1||y =32||y ,1x =92x ,所以1x =3,2x =13,当1x =3时,2112y =,所以此时1y ==±1y =1(3,(,3A B ,此时AB k =此时直线方程为1)y x =-。

(完整)十年真题_解析几何_全国高考理科数学.doc

(完整)十年真题_解析几何_全国高考理科数学.doc

十年真题 _解析几何 _全国高考理科数学真题2008-21 .(12 分)双曲线的中心为原点O ,焦点在 x 轴上,两条渐近线分别为 l 1, l 2 ,经过右焦点 F 垂直于 l 1uuur uuur uuur uuur uuur的直线分别交 l 1, l 2 于 A , B 两点.已知 OA 、 、 成等差数列,且 BF 与 FA 同向.AB OB(Ⅰ)求双曲线的离心率;(Ⅱ)设 AB 被双曲线所截得的线段的长为4 ,求双曲线的方程.2009-21 .(12 分)如图,已知抛物线 E : y 2x 与圆 M : ( x 4)2y 2 r 2 (r > 0)相交于 A 、B 、C 、D 四个点。

(I )求 r 的取值范围:(II)当四边形 ABCD 的面积最大时,求对角线A 、B 、C 、D 的交点 p 的坐标。

2010-21 (12分 )已知抛物线 C : y 24x 的焦点为 F ,过点 K ( 1,0) 的直线 l 与 C 相交于 A 、 B 两点,点 A 关于 x 轴的对称点为 D .(Ⅰ)证明:点 F 在直线 BD 上;uuur uuur8(Ⅱ)设 FAgFBBDK 的内切圆 M 的方程 .,求91 / 132011-20 (12 分)在平面直角坐标系 xOy 中,已知点 A(0,-1) , B 点在直线 y = -3 上, M 点满足 MB//OA , MA?AB = MB?BA , M 点的轨迹为曲线 C 。

(Ⅰ)求 C 的方程;(Ⅱ) P 为 C 上的动点, l 为 C 在 P 点处得切线,求 O 点到 l 距离的最小值。

2012-20 (12 分)设抛物线 C : x 2 2 py( p 0) 的焦点为 F ,准 线为 l , AC , 已知以 F 为圆心,FA 为半径的圆 F 交 l 于 B, D 两点;(1)若BFD90 0 , ABD 的面积为 4 2 ;求 p 的值及圆 F 的方程;(2)若 A, B, F 三点在同一直线m 上,直线 n 与 m 平行,且 n 与 C 只有一个公共点,求坐标原点到 m, n 距离的比值。

理科数学2010-2019高考真题分类训练专题九解析几何第二十六讲椭圆

理科数学2010-2019高考真题分类训练专题九解析几何第二十六讲椭圆

专题九 解析几何第二十六讲 椭圆2019年1.(2019全国I 理10)已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y += B .22132x y += C .22143x y += D .22154x y += 2.(2019全国II 理21(1))已知点A (−2,0),B (2,0),动点M (,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;3.(2019北京理4)已知椭圆()222210x y a b a b +=>>的离心率为12,则(A )22.2a b =(B )22.34a b=(C )2a b=(D )34a b=4.(2019全国III 理15)设12F F ,为椭圆C 22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.2010-2018年一、选择题1.(2018全国卷Ⅱ)已知1F ,2F 是椭圆22221(0)+=>>:x y C a b a b的左,右焦点,A 是C 的左顶点,点P 在过A 12△PF F 为等腰三角形,12120∠=︒F F P ,则C 的离心率为A .23B .12C .13D .142.(2018上海)设P 是椭圆22153x y +=上的动点,则P 到该椭圆的两个焦点的距离之和为( )A .B .C .D .3.(2017浙江)椭圆22194x y +=的离心率是A .3 B .3 C .23D .59 4.(2017新课标Ⅲ)已知椭圆C :22221(0)x y a b a b+=>>的左、右顶点分别为1A ,2A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .3 B .3 C .3 D .135.(2016年全国III)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 A .13B .12C .23D .346.(2016年浙江)已知椭圆1C :2221x y m +=(1m >)与双曲线2C :2221x y n-=(0n >)的焦点重合,1e ,2e 分别为1C ,2C 的离心率,则A .m n >且121e e >B .m n >且121e e <C .m n <且121e e >D .m n <且121e e <7.(2014福建)设Q P ,分别为()2622=-+y x 和椭圆11022=+y x 上的点,则Q P ,两点间的最大距离是A .25B .246+C .27+D .268.(2013新课标1)已知椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交椭圆于A 、B 两点.若AB 的中点坐标为(1,-1),则E 的方程为A .x 245+y 236=1B .x 236+y 227=1C .x 227+y 218=1D .x 218+y 29=19.(2012新课标)设1F 、2F 是椭圆E :)0(12222>>=+b a by a x 的左、右焦点,P 为直线23a x =上一点,12PF F ∆ 是底角为o30的等腰三角形,则E 的离心率为 A 、21 B 、32 C 、43 D 、54二、填空题10.(2018浙江)已知点(0,1)P ,椭圆224x y m +=(1m >)上两点A ,B 满足2AP PB =u u u r u u u r ,则当m =___时,点B 横坐标的绝对值最大.11.(2018北京)已知椭圆22221(0)x y M a b a b +=>>:,双曲线22221x y N m n-=:.若双曲线N的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为__________;双曲线N 的离心率为__________.12.(2016江苏省)如图,在平面直角坐标系xOy 中,F 是椭圆()222210x y a b a b+=>>的右焦点,直线2by =与椭圆交于,B C 两点,且90BFC ∠=︒,则该椭圆的离心率是 .13.(2015新课标1)一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 的正半轴上,则该圆的标准方程为_________.14.(2014江西)过点(1,1)M 作斜率为12-的直线与椭圆C :22221(0)x y a b a b +=>>相交于,A B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于 .15.(2014辽宁)已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += .16.(2014江西)设椭圆()01:2222>>=+b a by a x C 的左右焦点为21F F ,,作2F 作x 轴的垂线与C 交于B A ,两点,B F 1与y 轴相交于点D ,若B F AD 1⊥,则椭圆C 的离心率等于________.17.(2014安徽)设21,F F 分别是椭圆)10(1:222<<=+b by x E 的左、右焦点,过点1F 的直线交椭圆E 于B A ,两点,若x AF BF AF ⊥=211,3轴,则椭圆E 的方程为_____.18.(2013福建)椭圆)0(1:2222>>=+Γb a by a x 的左、右焦点分别为21,F F ,焦距为c 2.若直线)y x c =+与椭圆Γ的一个交点M 满足12212F MF F MF ∠=∠,则该椭圆的离心率等于19.(2012江西)椭圆22221(0)x y a b a b+=>>的左、右顶点分别是,A B ,左、右焦点分别是12,F F .若1121||,||,||AF F F F B 成等比数列,则此椭圆的离心率为_________.20.(2011浙江)设12,F F 分别为椭圆2213x y +=的左、右焦点,点,A B 在椭圆上,若125F A F B =u u u r u u u u r;则点A 的坐标是 .三、解答题21.(2018全国卷Ⅰ)设椭圆:C 2212+=x y 的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.22.(2018全国卷Ⅲ)已知斜率为k 的直线l 与椭圆C :22143x y +=交于A ,B 两点,线段AB 的中点为(1,)M m (0)m >. (1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0u u u r u u u r u u u r .证明:||FA u u u r ,||FP u u u r,||FB u u u r成等差数列,并求该数列的公差.23.(2018天津)设椭圆22221x x a b+=(0a b >>)的左焦点为F ,上顶点为B .已知椭圆的离A 的坐标为(,0)b ,且FB AB ⋅= (1)求椭圆的方程;(2)设直线l :(0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若4AQ AOQ PQ=∠(O 为原点) ,求的值. 24.(2017新课标Ⅰ)已知椭圆C :22221(0)x y a b a b+=>>,四点1(1,1)P ,2(0,1)P ,3(2P =-,4(1,2P =中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过2P 点且与C 相交于A ,B 两点.若直线2P A 与直线2P B 的斜率的和为1-,证明:l 过定点.25.(2017新课标Ⅱ)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足NP =u u u r u u u r.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=u u u r u u u r.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .26.(2017江苏)如图,在平面直角坐标系xOy 中,椭圆E :22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点1F 作直线1PF 的垂线1l ,过点2F 作直线2PF 的垂线2l . (1)求椭圆E 的标准方程;(2)若直线1l ,2l 的交点Q 在椭圆E 上,求点P 的坐标.27.(2017天津)设椭圆22221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12. (Ⅰ)求椭圆的方程和抛物线的方程;(Ⅱ)设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若APD △6AP 的方程. 28.(2017山东)在平面直角坐标系xOy 中,椭圆E :22221x y a b+=()0a b >>2,焦距为2.(Ⅰ)求椭圆E 的方程;(Ⅱ)如图,动直线l:1y k x =-E 于,A B 两点,C 是椭圆E 上一点,直线OC 的斜率为2k,且12k k ,M 是线段OC 延长线上一点,且:2:3MC AB =,M e 的半径为MC ,,OS OT 是M e 的两条切线,切点分别为,S T .求SOT ∠的最大值,并求取得最大值时直线l 的斜率.x29.(2016年北京)已知椭圆C :22221(0)x y a ba b+=>>(,0)A a ,(0,)B b ,(0,0)O ,ΔOAB 的面积为1.(Ⅰ)求椭圆C 的方程;(Ⅱ)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:||||AN BM ⋅为定值.30.(2015新课标2)已知椭圆C :2229x y m +=(0m >),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M . (Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边行?若能,求此时l 的斜率;若不能,说明理由.31.(2015北京)已知椭圆C :()222210x y a b ab+=>>的离心率为,点()01P ,和点()A m n ,()0m ≠都在椭圆C 上,直线PA 交轴于点M . (Ⅰ)求椭圆C 的方程,并求点M 的坐标(用,表示);(Ⅱ)设O 为原点,点B 与点A 关于轴对称,直线PB 交轴于点N .问:y 轴上是否存在点Q ,使得OQM ONQ ∠=∠?若存在,求点Q 的坐标;若不存在,说明理由.32.(2015安徽)设椭圆E 的方程为()222210x y a b a b+=>>,点O 为坐标原点,点A 的坐标为()0a ,,点B 的坐标为()0b ,,点M 在线段AB 上,满足2BM MA =,直线OM(Ⅰ)求E 的离心率e ;(Ⅱ)设点C 的坐标为()0b -,,N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为72,求E 的方程. 33.(2015山东)平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b+=>>的离心率为2,左、右焦点分别是1F 、2F .以1F 为圆心以3为半径的圆与以2F 为圆心以1为半径的圆相交,且交点在椭圆C 上. (Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆E :2222144x y a b+=,P 为椭圆C 上任意一点,过点P 的直线=+y kx m交椭圆E 于,A B 两点,射线PO 交椭圆E 于点Q .( i )求||||OQ OP 的值; (ii )求△ABQ 面积的最大值.34. (2014新课标1) 已知点A (0,2)-,椭圆E :22221(0)x y a b a b+=>>F 是椭圆E 的右焦点,直线AF ,O 为坐标原点.(Ⅰ)求E 的方程;(Ⅱ)设过点A 的动直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.35.(2014浙江)如图,设椭圆(),01:2222>>=+b a by a x C 动直线l 与椭圆C 只有一个公共点P ,且点P 在第一象限.(Ⅰ)已知直线l 的斜率为k ,用k b a ,,表示点P 的坐标;(Ⅱ)若过原点O 的直线1l 与l 垂直,证明:点P 到直线1l 的距离的最大值为b a -.36.(2014新课标2)设1F ,2F 分别是椭圆C :()222210y x a b a b+=>>的左,右焦点,M是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求,a b .37.(2014安徽)设1F ,2F 分别是椭圆E :22221(0)x y a b a b+=>>的左、右焦点,过点1F的直线交椭圆E 于,A B 两点,11||3||AF BF = (Ⅰ)若2||4,AB ABF =∆的周长为16,求2||AF ;(Ⅱ)若23cos 5AF B ∠=,求椭圆E 的离心率. 38.(2014山东)在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的离心率为32,直线y x =被椭圆C 截得的线段长为4105. (I)求椭圆C 的方程;(Ⅱ)过原点的直线与椭圆C 交于A ,B 两点(A ,B 不是椭圆C 的顶点).点D 在椭圆C 上,且AD AB ⊥,直线BD 与x 轴、y 轴分别交于M ,N 两点. (ⅰ)设直线BD ,AM 的斜率分别为12,k k ,证明存在常数λ使得12k k λ=,并求出λ的值;(ⅱ)求OMN ∆面积的最大值.39.(2014湖南)如图5,O 为坐标原点,双曲线221112211:1(0,0)x y C a b a b -=>>和椭圆222222222:1(0)x y C a b a b +=>>均过点23(,1)3P ,且以1C 的两个顶点和2C 的两个焦点为顶点的四边形是面积为2的正方形. (I)求12,C C 的方程;(Ⅱ)是否存在直线l ,使得l 与1C 交于,A B 两点,与2C 只有一个公共点,且||||OA OB AB +=u u u r u u u r u u u r?证明你的结论.40.(2014四川)已知椭圆C :22221x y a b+=(0a b >>)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)设F 为椭圆C 的左焦点,T 为直线3x =-上任意一点,过F 作TF 的垂线交椭圆C 于点P ,Q .(i )证明:OT 平分线段PQ (其中O 为坐标原点); (ii )当||||TF PQ 最小时,求点T 的坐标. 41.(2013安徽)已知椭圆2222:1(0)x y C a b a b+=>>的焦距为4,且过点P .(Ⅰ)求椭圆C 的方程;(Ⅱ)设0000(,)(0)Q x y x y ≠为椭圆C 上一点,过点Q 作x 轴的垂线,垂足为E .取y 轴的对称点,作直线QG ,问这样作出的直线QG 是否与椭圆C 一定有唯一的公共点?并说明理由.42.(2013湖北)如图,已知椭圆1C 与2C 的中心在坐标原点O ,长轴均为MN 且在x 轴上,短轴长分别为2m ,2()n m n >,过原点且不与x 轴重合的直线l 与1C ,2C 的四个交点按纵坐标从大到小依次为A ,B ,C ,D .记mnλ=,△BDM 和△ABN 的面积分别为1S 和2S .(Ⅰ)当直线l 与y 轴重合时,若12S S λ=,求λ的值;(Ⅱ)当λ变化时,是否存在与坐标轴不重合的直线l ,使得12S S λ=?并说明理由.43. (2013天津)设椭圆22221(0)x y a b a b+=>>的左焦点为F ,, 过点F 且与 轴(Ⅰ) 求椭圆的方程;(Ⅱ) 设A , B 分别为椭圆的左、右顶点, 过点F 且斜率为的直线与椭圆交于C ,D 两点. 若··8AC DB AD CB +=u u u r u u u r u u u r u u u r, 求的值.第20题图44.(2013山东)椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是12,F F ,离心率为2,过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为l . (Ⅰ)求椭圆C 的方程;(Ⅱ)点P 是椭圆C 上除长轴端点外的任一点,连接12,PF PF .设12F PF ∠的角平分线PM 交C 的长轴于点(),0M m ,求m 的取值范围;(Ⅲ)在(Ⅱ)的条件下,过点P 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点.设直线12,PF PF 的斜率分别为12,k k ,若0k ≠,试证明1211kk kk +为定值,并求出这个定值.45.(2012北京)已知椭圆C 22221(0)x y a b a b+=>>的一个顶点为(2,0)A,离心率为2.直线(1y k x =-)与椭圆C 交于不同的两点M ,N . (Ⅰ)求椭圆C 的方程; (Ⅱ)当△AMN时,求k 的值. 46.(2013安徽)如图,21,F F 分别是椭圆C :22a x +22by =1(0>>b a )的左、右焦点,A是椭圆C 的顶点,B 是直线2AF 与椭圆C 的另一个交点,1F ∠A 2F =60°.(Ⅰ)求椭圆C 的离心率;(Ⅱ)已知△A B F 1的面积为403,求a , b 的值.47.(2012广东)在平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b+=>>的离心率e =C 上的点到(0,2)Q 的距离的最大值为3. (Ⅰ)求椭圆C 的方程;(Ⅱ)在椭圆C 上,是否存在点(,)M m n 使得直线l :1mx ny +=与圆O :221x y +=相交于不同的两点,A B ,且OAB ∆的面积最大?若存在,求出点M 的坐标及相对应的OAB ∆的面积;若不存在,请说明理由.48.(2011陕西)设椭圆C ()222210x y a b a b +=>>过点(0,4),离心率为35(Ⅰ)求C 的方程;(Ⅱ)求过点(3,0)且斜率为45的直线被C 所截线段的中点坐标. 49.(2011山东)在平面直角坐标系xOy 中,已知椭圆22:13x C y +=.如图所示,斜率为(0)k k >且不过原点的直线l 交椭圆C 于A ,B 两点,线段AB 的中点为E ,射线OE交椭圆C 于点G ,交直线3x =-于点(3,)D m -. (Ⅰ)求22m k +的最小值; (Ⅱ)若2OG OD =∙OE ,(i )求证:直线l 过定点;(ii )试问点B ,G 能否关于x 轴对称?若能,求出此时ABG V 的外接圆方程;若不能,请说明理由.50.(2010新课标)设1F ,2F 分别是椭圆E :2x +22y b=1(01b <<)的左、右焦点,过1F的直线l 与E 相交于A 、B 两点,且2AF ,AB ,2BF 成等差数列. (Ⅰ)求AB ;(Ⅱ)若直线l 的斜率为1,求b 的值.51.(2010辽宁)设椭圆C :22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线与椭圆C相交于A ,B 两点,直线l 的倾斜角为60o ,2AF FB =u u u r u u u r.(Ⅰ)求椭圆C 的离心率; (Ⅱ)如果|AB |=154,求椭圆C 的方程.。

理科数学2010-2019高考真题分类训练专题九解析几何第二十七讲双曲线答案

理科数学2010-2019高考真题分类训练专题九解析几何第二十七讲双曲线答案

专题九 解析几何第二十七讲 双曲线答案部分2019年1. 解析 双曲线22:142x y C -=的右焦点为(6,0)F ,渐近线方程为:2y x =±,不妨设点P 在第一象限,可得2tan POF ∠=,63(,)P ,所以PFO △的面积为: 13326224⨯⨯=.故选A . 2. 解析 因为双曲线2221(0)y x b b-=>经过点(3,4),所以221631b-=,解得22b =,即2b =. 又1a =,所以该双曲线的渐近线方程是2y x =±.3.解析 如图所示,因为1F A AB=uuu r uu u r,所以A 为1F B 的中点. 又O 为12F F 的中点,所以212AO BF P,212AO BF =. 因为120F B F B ⋅=uuu r uuu r,所以1290F BF ∠=︒, 且O 为12F F 的中点,所以12212OB F F OF c ===. 由212AO BF P得2121BOF AOF BF F ∠=∠=∠,所以2OB BF =, 因此2OPF △为等边三角形,260BOF ∠=︒,即渐近线的斜率为3,也即3ba=, 所以2212b e a=+=.4.A 解析:解法一:由题意,把2c x =代入222x y a +=,得2224c PQ a =-,再由PQ OF =,得2224ca c -=,即222a c =,所以222c a=,解得2c e a ==.故选A .解法二:如图所示,由PQ OF =可知PQ 为以OF 为直径圆的另一条直径,所以,22c c P ⎛⎫± ⎪⎝⎭,代入222x y a +=得222a c =, 所以222c a=,解得2c e a ==.故选A .解法三:由PQ OF =可知PQ 为以OF 为直径圆的另一条直径,则12222OP a OF c ===,2c e a ==故选A .5.解析 根据渐进线方程为0x y ±=的双曲线,可得a b =,所以2c a =,则该双曲线的离心率为2ce a==C . 6.解析 因为抛物线24y x =的焦点为F ,准线为l ,所以()1,0F ,准线l 的方程为1x =-.因为l 与双曲线()222210,0x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且4AB OF =(为原点),所以2b AB a =,1OF =,所以24b a=,即2b a =, 所以225c a b a =+=,所以双曲线的离心率为5ca==.故选D .2010-2018年1.B 【解析】由题可知双曲线的焦点在x 轴上,因为222314c a b =+=+=,所以2c =,故焦点坐标为(2,0)-,(2,0).故选B .2.B 【解析】因为双曲线2213-=x y的渐近线方程为=y x ,所以60∠=o MON .不妨设过点F的直线与直线=y x 交于点M ,由∆OMN 为直角三角形,不妨设90∠=o OMN ,则60∠=o MFO ,又直线MN 过点(2,0)F ,所以直线MN的方程为2)=-y x ,由2)3⎧=-⎪⎨=⎪⎩y x y x,得32⎧=⎪⎪⎨⎪=⎪⎩x y3(2M ,所以||==OM所以|||3==MN OM .故选B . 3.A 【解析】解法一由题意知,==ce a,所以=c,所以==b ,所以=b a=±=by x a,故选A .解法二由===c e a,得=ba,所以该双曲线的渐近线方程为=±=by x a.故选A . 4.C 【解析】不妨设一条渐近线的方程为by x a=, 则2F 到by x a =的距离d b ==, 在2Rt F PO ∆中,2||F O c =,所以||PO a =,所以1||PF =,又1||F O c =,所以在1F PO ∆与2Rt F PO ∆中,根据余弦定理得12cos cos aPOF POF c∠==-∠=-,即2223)0a c +-=,得223a c =.所以ce a==.故选C . 5.C 【解析】通解 因为直线AB 经过双曲线的右焦点,所以不妨取2(,)b A c a,2(,)b B c a -,取双曲线的一条渐近线为直线0bx ay -=,由点到直线的距离公式可得221bc b d c -==,222bc b d c +==, 因为126d d +=,所以226bc b bc b c c-++=,所以26b =,得3b =. 因为双曲线22221(0,0)x y a b a b -=>>的离心率为2,所以2ca=,所以2224a b a+=,所以2294a a +=,解得23a =, 所以双曲线的方程为22139x y -=,故选C . 优解 由126d d +=,得双曲线的右焦点到渐近线的距离为3,所以3b =.因为双曲线22221(0,0)x y a b a b -=>>的离心率为2,所以2ca=,所以2224a b a+=,所以2294a a +=,解得23a =, 所以双曲线的方程为22139x y -=,故选C . 6.A 【解析】双曲线C 的渐近线方程为0bx ay ±=,圆心(2,0)到渐近线的距离为2bd c==,圆心(2,0)到弦的距离也为d ==所以2b c =222c a b =+,所以得2c a =,所以离心率2ce a==,选A .7.B 【解析】由题意可得:b a =3c =,又222a b c +=,解得24a =,25b =,则C 的方程为2145x y 2-=.选B .8.B 【解析】设(,0)F c -,双曲线的渐近线方程为b y x a =±,由44PF k c c-==-,由题意有4bc a=,又c a =222c a b =+,得b =,a =.选B .9.D 【解析】不妨设A 在第一象限,(,)A x y ,所以2242x y by x ⎧+=⎪⎨=⎪⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩, 故四边形ABCD的面积为2324424bxy b b===+, 解得212b =.故所求的双曲线方程为2224=11x y -,选D . 10.A 【解析】由题意得22()(3)0m n m n +->,解得223m n m -<<,又由该双曲线两焦点间的距离为4,得M 2234m n m n ++-=,即21m =,所以13n -<<.11.A 【解析】设1(,0)F c -,将x c =-代入双曲线方程,得22221c y a b -=,化简得2by a=±,因为211sin 3MF F ∠=,所以222212112||tan ||222b MF b c a a MF F F F c ac ac -∠=====,12222c a e a c e -=-=210e --=,所以e =A . 12.D 【解析】由双曲线的标准方程2213y x -=得,右焦点(2,0)F ,两条渐近线方程为y =,直线AB :2x =,所以不妨设取(2,A,(2,B -,则||AB =,选D .13.B 【解析】由双曲线定义得1226PF PF a -==,即236PF -=,解得29PF =,故选B .14.D【解析】由题意1e ==2e ==∵()()b b m m b a a a m a a m +--=++,由于0m >,0a >,0b >, 所以当a b >时,01b a <<,01b m a m +<<+,b b m a a m +<+,22()()b b m a a m+<+,所以12e e <;当a b <时,1ba>,1b m a m +>+,而b b m a a m +>+,22()()b b m a a m +>+, 所以12e e >.所以当a b >时,12e e <;当a b <时,12e e >.15.C 【解析】由题意,选项,A B 的焦点在x 轴,故排除,A B ,C 项的渐近线方程为2204y x -=,即2y x =±,故选C . 16.A 【解析】由题意知22a =,21b =,所以23c =,不妨设1(F,2F ,所以100(,)=-u u u u r MF x y,200,)=-u u u u rMF x y ,又∵00(,)M x y 在双曲线上,所以220012x y -=,即220022x y =+,222120003310MF MF x y y u u u r u u u r ⋅=-+=-<,所以0<<y ,故选A . 17.A 【解析】 由题意22(,0),(,),(,)b b A a B c C c a a-,由双曲线的对称性知D 在x 轴上,设(,0)D x ,由BD AC ⊥得2201b b a a c x a c-⋅=---,解得42()bc x a c a -=-,所以42()b c x a a c a c a -=<=+-,所以42222b c a b a <-=221b a⇒<01b a ⇒<<,而双曲线的渐近性斜率为ba±,所以双曲线的渐近线的斜率取值范围是(1,0)(0,1)-U ,选A .18.A 【解析】双曲线方程为22133x y m -=,焦点F到一条渐近线的距离为b =A .19.A 【解析】∵09k <<,∴90,250k k ->->,本题两条曲线都是双曲线,又25(9)(25)9k k +-=-+,∴两双曲线的焦距相等,选A .20.A 【解析】 依题意得22225b ac c a bìï=ïïï=íïïï=+ïî,所以25a =,220b =,双曲线的方程为 221520x y -=.21.B 【解析】由双曲线的定义得12||||||2PF PF a -=,又12||||3PF PF b +=,所以22221212(||||)(||||)94PF PF PF PF b a +--=-,即124||||9PF PF ab =,因此22949b a ab -=,即299()40b b aa --=,则(31b a +)(34ba-)=0,解得41(33b b a a ==-舍去),则双曲线的离心率53e ==. 22.C【解析】由题知,c a =54=22c a =222a b a +,∴22b a =14,∴b a =12±,∴C 的渐近线方程为12y x =±,故选C . 23.D 【解析】双曲线1C 的离心率是11cos e θ=,双曲线2C 的离心率是21cos e θ==,故选D . 24.A 【解析】设双曲线的焦点在x 轴上,则由作图易知双曲线的渐近线的离心率ba必须满b a <,所以21()33b a <≤,241()43b a<+≤,2<,又双曲线的离心率为c e a==23e <≤. 25.C 【解析】∵双曲线22215x y a -=的右焦点为(3,0),∴2a +5=9,∴2a =4,∴a =2∵c =3,∴32c e a ==,故选C . 26.A 【解析】设双曲线C :22x a -22y b=1的半焦距为c ,则210,5c c ==.又C 的渐近线为b y x a =±,点P(2,1)在C 的渐近线上,12ba∴=g ,即2a b =. 又222c a b =+,a ∴==C 的方程为220x -25y =1.27.C 【解析】x y 222-=8可变形为22148x y -=,则24a =,2a =,24a =.故选C . 28.A 【解析】圆22:(3)4C x y -+=,3,c =而32bc =,则22,5b a ==,应选A . 29.C 【解析】由双曲线方程可知渐近线方程为3y x a=±,故可知2a =.30.B 【解析】双曲线22221(0,0)x y a b a b -=>>的渐近线为by x a=±,由双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1)得22p-=-,即4p =, 又∵42p a +=,∴2a =,将(-2,-1)代入by x a=得1b =,∴c =2c =31.B 【解析】由双曲线E 的中心为原点,(3,0)P 是E 的焦点可设双曲线的方程为2222221(9)x y a b a b -=+=,设1122(,),(,)A x y B x y ,即 2222112222221,1x y x y a b a b -=-= 则22121222121212015115312y y x x b b x x a y y a -+-+=⋅=⋅==-+-+,则22225,5,44b b a a ===,故E 的方程式为22145x y -=.应选B . 32.D 【解析】设双曲线的方程为22221(0,0)x y a b a b -=>>,其渐近线为x aby ±=,∵点(4,2)-在渐近线上,所以12b a =,由2e ==. 33.C 【解析】由题意,F (-1,0),设点P 00(,)x y ,则有2200143x y +=, 解得22003(1)4x y =-,因为00(1,)FP x y =+u u u r ,00(,)OP x y =u u u r,所以2000(1)OP FP x x y ⋅=++u u u r u u u r =00(1)OP FP x x ⋅=++u u u r u u u r 203(1)4x -=20034x x ++, 此二次函数对应的抛物线的对称轴为02x =-,因为022x -≤≤,所以当02x =时,OP FP ⋅u u u r u u u r 取得最大值222364++=,选C . 34.12y x =±【解析】由题意2a =,1b =,∴12b y x x a =±=±. 35.2【解析】不妨设双曲线的一条渐近线方程为b y x a =b ==,所以222234b c a c =-=,得2c a =,所以双曲线的离心率2ce a==. 36.232a x c ==,渐近线的方程为y x =,设3(,22P,则3(,22Q -,1(2,0)F -,2(2,0)F , 所以四边形12F PF Q的面积为1211||||422F F PQ =⨯=. 37.3【解析】如图所示,AH MN ⊥,AM AN b ==,MAN ∠=60°, x所以30HAN ∠=o,又MN 所在直线的方程为by x a=, (,0)A a 到MN的距离AH =,在Rt HAN ∆中,有cos HA HAN NA ==,即2=因为222c a b =+,得2a c =,所以3c e a ==. 38.2y x =±【解析】设11(,)A x y ,22(,)B x y ,由抛物线的定义有1212||||22p p AF BF y y y y p +=+++=++,而||2p OF =, 所以1242py y p ++=⨯,即12y y p +=,由2222212x y a b x py⎧-=⎪⎨⎪=⎩得2222220a y pb y a b -+=,所以21222pb y y a +=, 所以222pb p a=,即a =,所以渐近性方程为2y x =±. 39.2【解析】221,a b m ==,所以1c a ==,解得2m =. 40.2【解析】不妨令B 为双曲线的右焦点,A 在第一象限,则双曲线图象如图 ∵OABC 为正方形,2=OA∴==c OB ,π4∠=AOB ∵直线OA 是渐近线,方程为=b y x a ,∴tan 1=∠=bAOB a又∵2228+==a b c ∴2=a41.2【解析】由题意||2BC c =,所以||3AB c =,于是点3(,)2cc 在双曲线E 上,代入方程,得2222914c c a b -=,在由222a b c +=得E 的离心率为2ce a==,应填2. 42.3【解析】因为双曲线()22210x y a a -=>的一条渐近线为y =,所以1a=故3a =. 432(,),(1)P x y x ≥,因为直线10x y -+=平行于渐近线0x y -=,所以c 的最大值为直线10x y -+=与渐近线0x y -== 44.32【解析】22122:1(0,0)x y C a b a b -=>>的渐近线为b y x a =±,则2222(,)pb pb A a a ,2222(,)pb pb B a a -,22:2(0)C x py p =>的焦点(0,)2p F , 则22222AFpb pa a k pb b a-==,即2254b a =,2222294c a b a a +==,32c e a ==. 45.y x =±【解析】抛物线的准线2p y =-,与双曲线的方程联立得2222(1)4p x a b =+,根据已知得2222(1)4p a c b+= ①,由||AF c =得2224p a c += ②,由①②得22a b =,即a b =,所以所求双曲线的渐近线方程为y x =±.46by x a=±可解得交点为(,)33am bm A b a b a --,(,)33am bm B b a b a -++,而13AB k =,由||||PA PB =,可得AB 的中点3333(,)22am am bm bmb a b a b a b a -+-+-+与点)0,(m P 连线的斜率为-3,可得224b a =,所以2e =. 47.221312x y -= 2y x =±【解析】设与2214y x -=具有相同渐近线的双曲线C 的方程为224y x k -=,将点()2,2代入C 的方程中,得3k =-.∴双曲线的方程为221312x y -=,渐近线方程为2y x =±.48.45【解析】。

理科数学2010-2019高考真题分类训练导数的几何意义、定积分与微积分基本定理

理科数学2010-2019高考真题分类训练导数的几何意义、定积分与微积分基本定理

专题三 导数及其应用第七讲 导数的几何意义、定积分与微积分基本定理2019年1.(2019全国Ⅰ理13)曲线23()e xy x x =+在点(0)0,处的切线方程为____________. 2.(2019全国Ⅲ理6)已知曲线e ln x y a x x =+在点1e a (,)处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1C .1e 1a b -==,D .1e a -= ,1b =-2010-2018年一、选择题1.(2018全国卷Ⅰ)设函数32()(1)f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =-B .y x =-C .2y x =D .y x =2.(2016年四川)设直线1l ,2l 分别是函数()f x = ln ,01,ln ,1,x x x x -<<⎧⎨>⎩图象上点1P ,2P 处的切线,1l 与2l 垂直相交于点P ,且1l ,2l 分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是A .(0,1)B .(0,2)C .(0,+∞)D .(1,+∞)3.(2016年山东)若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是 A .sin y x =B .ln y x =C .x y e=D .3y x =4.(2015福建)若定义在R 上的函数()f x 满足()01f =-,其导函数()f x '满足()1f x k '>> ,则下列结论中一定错误的是A .11()f kk <B .11()1f k k >-C .11()11f k k <--D .1()11kf k k >-- 5.(2014新课标Ⅰ)设曲线ln(1)y ax x =-+在点(0,0)处的切线方程为2y x =,则a = A .0 B .1 C .2 D .36.(2014山东)直线x y 4=与曲线3y x =在第一象限内围成的封闭图形的面积为A .22B .24C .2D .4 7.(2013江西)若22221231111,,,x S x dx S dx S e dx x===⎰⎰⎰则123,,S S S 的大小关系为A .123S S S <<B .213S S S <<C .231S S S <<D .321S S S <<8.(2012福建)如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为A .14 B .15 C .16 D .179.(2011新课标)由曲线y x =2y x =-及y 轴所围成的图形的面积为A .103 B .4 C .163D .6 10.(2011福建)1(2)x e x dx +⎰等于A .1B .1e -C .eD .1e + 11.(2010湖南)421dx x⎰等于 A .2ln2- B .2ln 2 C .ln 2- D .ln 2 12.(2010新课标)曲线3y 21x x =-+在点(1,0)处的切线方程为A .1y x =-B .1y x =-+C .22y x =-D .22y x =-+ 13.(2010辽宁)已知点P 在曲线y=41xe +上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是A .[0,4π) B .[,)42ππ C .3(,]24ππ D .3[,)4ππ二、填空题14.(2018全国卷Ⅱ)曲线2ln(1)=+y x 在点(0,0)处的切线方程为__________. 15.(2018全国卷Ⅲ)曲线(1)xy ax e =+在点(0,1)处的切线的斜率为2-,则a =____. 16.(2016年全国Ⅱ)若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线ln(1)y x =+的切线,则b = .17.(2016年全国Ⅲ) 已知()f x 为偶函数,当0x <时,()ln()3f x x x =-+,则曲线()y f x =,在点(1,3)-处的切线方程是_________.18.(2015湖南)2(1)x dx -⎰= .19.(2015陕西)设曲线xy e =在点(0,1)处的切线与曲线1(0)y x x=>上点P 处的切线垂直,则P 的坐标为 .20.(2015福建)如图,点A 的坐标为()1,0,点C 的坐标为()2,4,函数()2f x x =,若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于 .(第15题) (第17题)21.(2014广东)曲线25+=-xey 在点)3,0(处的切线方程为 .22.(2014福建)如图,在边长为e (e 为自然对数的底数)的正方形中随机撒一粒黄豆,则他落到阴影部分的概率为______.23.(2014江苏)在平面直角坐标系xOy 中,若曲线xbax y +=2(a ,b 为常数)过点)5,2(-P ,且该曲线在点P 处的切线与直线0327=++y x 平行,则b a +的值是 . 24.(2014安徽)若直线l 与曲线C 满足下列两个条件:)(i 直线l 在点()00,y x P 处与曲线C 相切;)(ii 曲线C 在P 附近位于直线l 的两侧,则称直线l 在点P 处“切过”曲线C .下列命题正确的是_________(写出所有正确命题的编号)①直线0:=y l 在点()0,0P 处“切过”曲线C :3y x =②直线1:-=x l 在点()0,1-P 处“切过”曲线C :2)1(+=x y③直线x y l =:在点()0,0P 处“切过”曲线C :x y sin = ④直线x y l =:在点()0,0P 处“切过”曲线C :x y tan = ⑤直线1:-=x y l 在点()0,1P 处“切过”曲线C :x y ln =.25.(2013江西)若曲线1y x α=+(R α∈)在点(1,2)处的切线经过坐标原点,则α= . 26.(2013湖南)若209,Tx dx T =⎰则常数的值为 .27.(2013福建)当,1x R x ∈<时,有如下表达式:211.......1n x x x x+++++=- 两边同时积分得:1111122222200011.......1ndx xdx x dx x dx dx x+++++=-⎰⎰⎰⎰⎰从而得到如下等式:23111111111()()...()...ln 2.2223212n n +⨯+⨯+⨯++⨯+=+ 请根据以下材料所蕴含的数学思想方法,计算:0122311111111()()()2223212nn n n n n C C C C n +⨯+⨯+⨯+⋅⋅⋅+⨯+= .28.(2012江西)计算定积分121(sin )x x dx -+=⎰___________.29.(2012山东)设0>a ,若曲线x y =与直线0,==y a x 所围成封闭图形的面积为2a ,则=a .30.(2012新课标)曲线(3ln 1)y x x =+在点(1,1)处的切线方程为________.31.(2011陕西)设2lg 0()30ax x f x x t dt x >⎧⎪=⎨+⎪⎩⎰…,若((1))1f f =,则a = .32.(2010新课标)设()y f x =为区间[0,1]上的连续函数,且恒有0()1f x ≤≤,可以用随机模拟方法近似计算积分1()f x dx ⎰,先产生两组(每组N 个)区间[0,1]上的均匀随机数12,,N x x x …和12,,N y y y …,由此得到N 个点(,)(1,2,)i i x y i N =…,,再数出其中满足()(1,2,)i i y f x i N ≤=…,的点数1N ,那么由随机模拟方案可得积分10()f x dx ⎰的近似值为 .33.(2010江苏)函数2y x =(0x >)的图像在点2(,)k k a a 处的切线与x 轴交点的横坐标为1k a +,其中*k N ∈,若116a =,则135a a a ++= .三、解答题34.(2017北京)已知函数()cos xf x e x x =-.(Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)求函数()f x 在区间[0,]2π上的最大值和最小值.35.(2016年北京)设函数()a xf x xebx -=+,曲线()y f x =在点(2,(2))f 处的切线方程为(1)4y e x =-+,(I )求a ,b 的值; (II )求()f x 的单调区间.36.(2015重庆)设函数23()()e xx axf x a R +=∈. (Ⅰ)若()f x 在0x =处取得极值,确定a 的值,并求此时曲线()y f x =在点(1,(1))f处的切线方程;(Ⅱ)若()f x 在[3,)+∞上为减函数,求a 的取值范围. 37.(2015新课标Ⅰ)已知函数31()4f x x ax =++,()ln g x x =-. (Ⅰ)当a 为何值时,x 轴为曲线()y f x =的切线;(Ⅱ)用min {},m n 表示m ,n 中的最小值,设函数{}()min (),()h x f x g x =(0)x >,讨论()h x 零点的个数.38.(2014新课标Ⅰ)设函数1()ln x xbe f x ae x x-=+,曲线()y f x =在点(1,(1))f 处的切线为(1)2y e x =-+. (Ⅰ)求,a b ;(Ⅱ)证明:()1f x >.39.(2013新课标Ⅱ)已知函数()()ln x f x e x m =-+(Ι)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; (Ⅱ)当2m ≤时,证明()0f x >.40.(2012辽宁)设()()()=ln +1+,,,f x x ax b a b R a b ∈为常数,曲线()=y f x 与直线3=2y x 在()0,0点相切. (1)求,a b 的值;(2)证明:当0<<2x 时,()9<+6xf x x . 41.(2010福建)(1)已知函数3()=f x x x -,其图象记为曲线C .(i )求函数()f x 的单调区间;(ii )证明:若对于任意非零实数1x ,曲线C 与其在点111(,())P x f x 处的切线交于另一点222(,())P x f x ,曲线C 与其在点222(,())P x f x 处的切线交于另一点333(,())P x f x ,线段1223,PP P P 与曲线C 所围成封闭图形的面积分别记为1,2S S ,则12S S 为定值; (2)对于一般的三次函数32()g x ax bx cx d =+++(0)a ≠,请给出类似于(1)(ii )的正确命题,并予以证明.。

理科数学2010-2019高考真题分类训练专题九解析几何第二十六讲椭圆

理科数学2010-2019高考真题分类训练专题九解析几何第二十六讲椭圆

专题九 解析几何第二十六讲 椭圆2019年1.(2019全国I 理10)已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y += B .22132x y += C .22143x y += D .22154x y += 2.(2019全国II 理21(1))已知点A (−2,0),B (2,0),动点M (,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;3.(2019北京理4)已知椭圆()222210x y a b a b +=>>的离心率为12,则(A )22.2a b =(B )22.34a b=(C )2a b=(D )34a b=4.(2019全国III 理15)设12F F ,为椭圆C 22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.2010-2018年一、选择题1.(2018全国卷Ⅱ)已知1F ,2F 是椭圆22221(0)+=>>:x y C a b a b的左,右焦点,A 是C 的左顶点,点P 在过A 12△PF F 为等腰三角形,12120∠=︒F F P ,则C 的离心率为A .23B .12C .13D .142.(2018上海)设P 是椭圆22153x y +=上的动点,则P 到该椭圆的两个焦点的距离之和为( )A .B .C .D .3.(2017浙江)椭圆22194x y +=的离心率是A .3 B .3 C .23D .59 4.(2017新课标Ⅲ)已知椭圆C :22221(0)x y a b a b+=>>的左、右顶点分别为1A ,2A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .3 B .3 C .3 D .135.(2016年全国III)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 A .13B .12C .23D .346.(2016年浙江)已知椭圆1C :2221x y m +=(1m >)与双曲线2C :2221x y n-=(0n >)的焦点重合,1e ,2e 分别为1C ,2C 的离心率,则A .m n >且121e e >B .m n >且121e e <C .m n <且121e e >D .m n <且121e e <7.(2014福建)设Q P ,分别为()2622=-+y x 和椭圆11022=+y x 上的点,则Q P ,两点间的最大距离是A .25B .246+C .27+D .268.(2013新课标1)已知椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交椭圆于A 、B 两点.若AB 的中点坐标为(1,-1),则E 的方程为A .x 245+y 236=1B .x 236+y 227=1C .x 227+y 218=1D .x 218+y 29=19.(2012新课标)设1F 、2F 是椭圆E :)0(12222>>=+b a by a x 的左、右焦点,P 为直线23a x =上一点,12PF F ∆ 是底角为o30的等腰三角形,则E 的离心率为 A 、21 B 、32 C 、43 D 、54二、填空题10.(2018浙江)已知点(0,1)P ,椭圆224x y m +=(1m >)上两点A ,B 满足2AP PB =u u u r u u u r ,则当m =___时,点B 横坐标的绝对值最大.11.(2018北京)已知椭圆22221(0)x y M a b a b +=>>:,双曲线22221x y N m n-=:.若双曲线N的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为__________;双曲线N 的离心率为__________.12.(2016江苏省)如图,在平面直角坐标系xOy 中,F 是椭圆()222210x y a b a b+=>>的右焦点,直线2by =与椭圆交于,B C 两点,且90BFC ∠=︒,则该椭圆的离心率是 .13.(2015新课标1)一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 的正半轴上,则该圆的标准方程为_________.14.(2014江西)过点(1,1)M 作斜率为12-的直线与椭圆C :22221(0)x y a b a b +=>>相交于,A B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于 .15.(2014辽宁)已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += .16.(2014江西)设椭圆()01:2222>>=+b a by a x C 的左右焦点为21F F ,,作2F 作x 轴的垂线与C 交于B A ,两点,B F 1与y 轴相交于点D ,若B F AD 1⊥,则椭圆C 的离心率等于________.17.(2014安徽)设21,F F 分别是椭圆)10(1:222<<=+b by x E 的左、右焦点,过点1F 的直线交椭圆E 于B A ,两点,若x AF BF AF ⊥=211,3轴,则椭圆E 的方程为_____.18.(2013福建)椭圆)0(1:2222>>=+Γb a by a x 的左、右焦点分别为21,F F ,焦距为c 2.若直线)y x c =+与椭圆Γ的一个交点M 满足12212F MF F MF ∠=∠,则该椭圆的离心率等于19.(2012江西)椭圆22221(0)x y a b a b+=>>的左、右顶点分别是,A B ,左、右焦点分别是12,F F .若1121||,||,||AF F F F B 成等比数列,则此椭圆的离心率为_________.20.(2011浙江)设12,F F 分别为椭圆2213x y +=的左、右焦点,点,A B 在椭圆上,若125F A F B =u u u r u u u u r;则点A 的坐标是 .三、解答题21.(2018全国卷Ⅰ)设椭圆:C 2212+=x y 的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.22.(2018全国卷Ⅲ)已知斜率为k 的直线l 与椭圆C :22143x y +=交于A ,B 两点,线段AB 的中点为(1,)M m (0)m >. (1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0u u u r u u u r u u u r .证明:||FA u u u r ,||FP u u u r,||FB u u u r成等差数列,并求该数列的公差.23.(2018天津)设椭圆22221x x a b+=(0a b >>)的左焦点为F ,上顶点为B .已知椭圆的离A 的坐标为(,0)b ,且FB AB ⋅= (1)求椭圆的方程;(2)设直线l :(0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若4AQ AOQ PQ=∠(O 为原点) ,求的值. 24.(2017新课标Ⅰ)已知椭圆C :22221(0)x y a b a b+=>>,四点1(1,1)P ,2(0,1)P ,3(2P =-,4(1,2P =中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过2P 点且与C 相交于A ,B 两点.若直线2P A 与直线2P B 的斜率的和为1-,证明:l 过定点.25.(2017新课标Ⅱ)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足NP =u u u r u u u r.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=u u u r u u u r.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .26.(2017江苏)如图,在平面直角坐标系xOy 中,椭圆E :22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点1F 作直线1PF 的垂线1l ,过点2F 作直线2PF 的垂线2l . (1)求椭圆E 的标准方程;(2)若直线1l ,2l 的交点Q 在椭圆E 上,求点P 的坐标.27.(2017天津)设椭圆22221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12. (Ⅰ)求椭圆的方程和抛物线的方程;(Ⅱ)设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若APD △6AP 的方程. 28.(2017山东)在平面直角坐标系xOy 中,椭圆E :22221x y a b+=()0a b >>2,焦距为2.(Ⅰ)求椭圆E 的方程;(Ⅱ)如图,动直线l:1y k x =交椭圆E 于,A B 两点,C 是椭圆E 上一点,直线OC 的斜率为2k,且12k k ,M 是线段OC 延长线上一点,且:2:3MC AB =,M e 的半径为MC ,,OS OT 是M e 的两条切线,切点分别为,S T .求SOT ∠的最大值,并求取得最大值时直线l 的斜率.x29.(2016年北京)已知椭圆C :22221(0)x y a ba b+=>>,(,0)A a ,(0,)B b ,(0,0)O ,ΔOAB 的面积为1.(Ⅰ)求椭圆C 的方程;(Ⅱ)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:||||AN BM ⋅为定值.30.(2015新课标2)已知椭圆C :2229x y m +=(0m >),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M . (Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边行?若能,求此时l 的斜率;若不能,说明理由.31.(2015北京)已知椭圆C :()222210x y a b ab+=>>的离心率为,点()01P ,和点()A m n ,()0m ≠都在椭圆C 上,直线PA 交轴于点M . (Ⅰ)求椭圆C 的方程,并求点M 的坐标(用,表示);(Ⅱ)设O 为原点,点B 与点A 关于轴对称,直线PB 交轴于点N .问:y 轴上是否存在点Q ,使得OQM ONQ ∠=∠?若存在,求点Q 的坐标;若不存在,说明理由.32.(2015安徽)设椭圆E 的方程为()222210x y a b a b+=>>,点O 为坐标原点,点A 的坐标为()0a ,,点B 的坐标为()0b ,,点M 在线段AB 上,满足2BM MA =,直线OM(Ⅰ)求E 的离心率e ;(Ⅱ)设点C 的坐标为()0b -,,N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为72,求E 的方程. 33.(2015山东)平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b+=>>的离心率为2,左、右焦点分别是1F 、2F .以1F 为圆心以3为半径的圆与以2F 为圆心以1为半径的圆相交,且交点在椭圆C 上. (Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆E :2222144x y a b+=,P 为椭圆C 上任意一点,过点P 的直线=+y kx m交椭圆E 于,A B 两点,射线PO 交椭圆E 于点Q .( i )求||||OQ OP 的值; (ii )求△ABQ 面积的最大值.34. (2014新课标1) 已知点A (0,2)-,椭圆E :22221(0)x y a b a b+=>>F 是椭圆E 的右焦点,直线AF ,O 为坐标原点.(Ⅰ)求E 的方程;(Ⅱ)设过点A 的动直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.35.(2014浙江)如图,设椭圆(),01:2222>>=+b a by a x C 动直线l 与椭圆C 只有一个公共点P ,且点P 在第一象限.(Ⅰ)已知直线l 的斜率为k ,用k b a ,,表示点P 的坐标;(Ⅱ)若过原点O 的直线1l 与l 垂直,证明:点P 到直线1l 的距离的最大值为b a -.36.(2014新课标2)设1F ,2F 分别是椭圆C :()222210y x a b a b+=>>的左,右焦点,M是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求,a b .37.(2014安徽)设1F ,2F 分别是椭圆E :22221(0)x y a b a b+=>>的左、右焦点,过点1F的直线交椭圆E 于,A B 两点,11||3||AF BF = (Ⅰ)若2||4,AB ABF =∆的周长为16,求2||AF ;(Ⅱ)若23cos 5AF B ∠=,求椭圆E 的离心率. 38.(2014山东)在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的离心率为32,直线y x =被椭圆C 截得的线段长为4105. (I)求椭圆C 的方程;(Ⅱ)过原点的直线与椭圆C 交于A ,B 两点(A ,B 不是椭圆C 的顶点).点D 在椭圆C 上,且AD AB ⊥,直线BD 与x 轴、y 轴分别交于M ,N 两点. (ⅰ)设直线BD ,AM 的斜率分别为12,k k ,证明存在常数λ使得12k k λ=,并求出λ的值;(ⅱ)求OMN ∆面积的最大值.39.(2014湖南)如图5,O 为坐标原点,双曲线221112211:1(0,0)x y C a b a b -=>>和椭圆222222222:1(0)x y C a b a b +=>>均过点23(,1)3P ,且以1C 的两个顶点和2C 的两个焦点为顶点的四边形是面积为2的正方形. (I)求12,C C 的方程;(Ⅱ)是否存在直线l ,使得l 与1C 交于,A B 两点,与2C 只有一个公共点,且||||OA OB AB +=u u u r u u u r u u u r?证明你的结论.40.(2014四川)已知椭圆C :22221x y a b+=(0a b >>)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)设F 为椭圆C 的左焦点,T 为直线3x =-上任意一点,过F 作TF 的垂线交椭圆C 于点P ,Q .(i )证明:OT 平分线段PQ (其中O 为坐标原点); (ii )当||||TF PQ 最小时,求点T 的坐标. 41.(2013安徽)已知椭圆2222:1(0)x y C a b a b+=>>的焦距为4,且过点P .(Ⅰ)求椭圆C 的方程;(Ⅱ)设0000(,)(0)Q x y x y ≠为椭圆C 上一点,过点Q 作x 轴的垂线,垂足为E .取y 轴的对称点,作直线QG ,问这样作出的直线QG 是否与椭圆C 一定有唯一的公共点?并说明理由.42.(2013湖北)如图,已知椭圆1C 与2C 的中心在坐标原点O ,长轴均为MN 且在x 轴上,短轴长分别为2m ,2()n m n >,过原点且不与x 轴重合的直线l 与1C ,2C 的四个交点按纵坐标从大到小依次为A ,B ,C ,D .记mnλ=,△BDM 和△ABN 的面积分别为1S 和2S .(Ⅰ)当直线l 与y 轴重合时,若12S S λ=,求λ的值;(Ⅱ)当λ变化时,是否存在与坐标轴不重合的直线l ,使得12S S λ=?并说明理由.43. (2013天津)设椭圆22221(0)x y a b a b+=>>的左焦点为F ,, 过点F 且与 轴(Ⅰ) 求椭圆的方程;(Ⅱ) 设A , B 分别为椭圆的左、右顶点, 过点F 且斜率为的直线与椭圆交于C ,D 两点. 若··8AC DB AD CB +=u u u r u u u r u u u r u u u r, 求的值.第20题图44.(2013山东)椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是12,F F ,离心率为2,过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为l . (Ⅰ)求椭圆C 的方程;(Ⅱ)点P 是椭圆C 上除长轴端点外的任一点,连接12,PF PF .设12F PF ∠的角平分线PM 交C 的长轴于点(),0M m ,求m 的取值范围;(Ⅲ)在(Ⅱ)的条件下,过点P 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点.设直线12,PF PF 的斜率分别为12,k k ,若0k ≠,试证明1211kk kk +为定值,并求出这个定值.45.(2012北京)已知椭圆C 22221(0)x y a b a b+=>>的一个顶点为(2,0)A ,离心率为2.直线(1y k x =-)与椭圆C 交于不同的两点M ,N . (Ⅰ)求椭圆C 的方程; (Ⅱ)当△AMN得面积为3时,求k 的值. 46.(2013安徽)如图,21,F F 分别是椭圆C :22a x +22by =1(0>>b a )的左、右焦点,A是椭圆C 的顶点,B 是直线2AF 与椭圆C 的另一个交点,1F ∠A 2F =60°.(Ⅰ)求椭圆C 的离心率;(Ⅱ)已知△A B F 1的面积为403,求a , b 的值.47.(2012广东)在平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b+=>>的离心率e =C 上的点到(0,2)Q 的距离的最大值为3. (Ⅰ)求椭圆C 的方程;(Ⅱ)在椭圆C 上,是否存在点(,)M m n 使得直线l :1mx ny +=与圆O :221x y +=相交于不同的两点,A B ,且OAB ∆的面积最大?若存在,求出点M 的坐标及相对应的OAB ∆的面积;若不存在,请说明理由.48.(2011陕西)设椭圆C ()222210x y a b a b +=>>过点(0,4),离心率为35(Ⅰ)求C 的方程;(Ⅱ)求过点(3,0)且斜率为45的直线被C 所截线段的中点坐标. 49.(2011山东)在平面直角坐标系xOy 中,已知椭圆22:13x C y +=.如图所示,斜率为(0)k k >且不过原点的直线l 交椭圆C 于A ,B 两点,线段AB 的中点为E ,射线OE交椭圆C 于点G ,交直线3x =-于点(3,)D m -. (Ⅰ)求22m k +的最小值; (Ⅱ)若2OG OD =∙OE ,(i )求证:直线l 过定点;(ii )试问点B ,G 能否关于x 轴对称?若能,求出此时ABG V 的外接圆方程;若不能,请说明理由.50.(2010新课标)设1F ,2F 分别是椭圆E :2x +22y b=1(01b <<)的左、右焦点,过1F的直线l 与E 相交于A 、B 两点,且2AF ,AB ,2BF 成等差数列. (Ⅰ)求AB ;(Ⅱ)若直线l 的斜率为1,求b 的值.51.(2010辽宁)设椭圆C :22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线与椭圆C相交于A ,B 两点,直线l 的倾斜角为60o ,2AF FB =u u u r u u u r.(Ⅰ)求椭圆C 的离心率; (Ⅱ)如果|AB |=154,求椭圆C 的方程.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3, 2
抛物线 E: x2 = 2 y 的焦点 F 是 C 的一个顶点.
(Ⅰ)求椭圆 C 的方程;
(Ⅱ)设 P 是 E 上的动点,且位于第一象限,E 在点 P 处的切线 l 与 C 交与不同的两点
A,B,线段 AB 的中点为 D,直线 OD 与过 P 且垂直于 x 轴的直线交于点 M. (i)求证:点 M 在定直线上;
江苏 17)如图,在平面直角坐标系
xOy 中,椭圆 C:
x2 a2
+
y2 b2
= 1(a
b
0) 的焦
点为 F(1 –1、0),F(2 1,0).过 F2 作 x 轴的垂线 l,在 x 轴的上方,l 与圆 F2: (x −1)2 + y2 = 4a2
交于点 A,与椭圆 C 交于点 D.连结 AF1 并延长交圆 F2 于点 B,连结 BF2 交椭圆 C 于点 E,
其中,所有正确结论的序号是
(A)① (B)② (C)①② (D)①②③
2.(2019 浙江 15)已知椭圆 x2 + y2 = 1的左焦点为 F ,点 P 在椭圆上且在 x 轴的上方, 95
若线段 PF 的中点在以原点 O 为圆心, OF 为半径的圆上,则直线 PF 的斜率是_______.
3.(2019
y
P x
O
13.(2013
四川)已知椭圆
C:x a
2 2
+
y2 b2
= 1(a b 0) 的两个焦点分别为 F1(−1,0) ,F(2 1,0),
且椭圆 C 经过点 P( 4,1). 33
(Ⅰ)求椭圆 C 的离心率
(Ⅱ)设过点 A(0,2)的直线 l 与椭圆 C 交于 M,N 两点,点 Q 是 MN 上的点,且
否存在点 Q ,使得 OQM = ONQ ?若存在,求点 Q 的坐标;若不存在,说明 理由.
10.(2015 浙江)已知椭圆 x2 + y2 = 1上两个不同的点 A, B 关于直线 y = mx + 1 对称.
2
2
(Ⅰ)求实数 m 的取值范围;
(Ⅱ)求 AOB 面积的最大值( O 为坐标原点).
江苏)如图,在平面直角坐标系
xoy
中,已知椭圆
x2 a2
+
y2 b2
= 1( a
b
0) 的离心
率为 2 ,且右焦点 F 到左准线 l 的距离为 3. 2
(1)求椭圆的标准方程;
(2)过 F 的直线与椭圆交于 A, B 两点,线段 AB 的垂直平分线分别交直线 l 和 AB 于
点 P, C ,若 PC = 2 AB ,求直线 AB 的方程.
(Ⅱ)设 P(x0 , y0 ) ( y 3 )为圆 C2 外一点,过 P 作圆 C2 的两条切线,分别与曲线
C1 相交于点 A,B 和 C,D.证明:当 P 在直线 x = −4 上运动时,四点 A,B,C,
D 的纵坐标之积为定值.
15.(2011 天津)在平面直角坐标系 xOy 中,点 P(a,b) (a b 0) 为动点, F1, F2 分别为
k(k 0) 的直线交 E 于 A, M 两点,点 N 在 E 上, MA ⊥ NA .
(Ⅰ)当 t = 4,| AM |=| AN | 时,求 AMN 的面积;
(Ⅱ)当 2 AM = AN 时,求 k 的取值范围.
6.(2015 湖北)一种作图工具如图 1 所示. O 是滑槽 AB 的中点,短杆 ON 可绕 O 转动, 长杆 MN 通过 N 处铰链与 ON 连接,MN 上的栓子 D 可沿滑槽 AB 滑动,且 DN = ON = 1 , MN = 3 .当栓子 D 在滑槽 AB 内作往复运动时,带.动.N 绕 O 转动一周(D 不动时,N 也不动),M 处的笔尖画出的曲线记为 C.以 O 为原点, AB 所在的直线为 x 轴建立如 图 2 所示的平面直角坐标系.
2 (1)求 C 的方程,并说明 C 是什么曲线;
(2)过坐标原点的直线交 C 于 P,Q 两点,点 P 在第一象限,PE⊥x 轴,垂足为 E,连结
QE 并延长交 C 于点 G.
(i)证明:△PQG 是直角三角形;
(ii)求△PQG 面积的最大值.
7. (2019 浙江 21)如图,已知点 F (1,0) 为抛物线 y2 = 2 px( p 0) 的焦点,过点 F 的直线 交抛物线于 A、B 两点,点 C 在抛物线上,使得△ABC 的重心 G 在 x 轴上,直线 AC 交 x 轴于点 Q,且 Q 在点 F 右侧.记△AFG,△CQG 的面积为
11.(2014 广东)已知椭圆 C :
x2 a2
+
y2 b2
= 1(a
b
0) 的一个焦点为 (
5, 0) ,离心率为
5, 3
(Ⅰ)求椭圆 C 的标准方程;
(Ⅱ)若动点 P(x0 , y0 ) 为椭圆外一点,且点 P 到椭圆 C 的两条切线相互垂直,求点 P
的轨迹方程.
12.(2014 辽宁)圆 x2 + y2 = 4 的切线与 x 轴正半轴, y 轴正半轴围成一个三角形,当该
2 AQ 2
=
1 AM
2
+
1 AN
2
,求点
Q
的轨迹方程.
14.(2012 湖南)在直角坐标系 xoy 中,曲线 C1 的点均在 C2 :(x − 5)2 + y2 = 9 外,且对 C1
上任意一点 M , M 到直线 x = −2 的距离等于该点与圆 C2 上点的距离的最小值.
(Ⅰ)求曲线 C1 的方程;
椭圆
x2 a2
+
y2 b2
= 1的左右焦点.已知△ F1PF2 为等腰三角形.
(Ⅰ)求椭圆的离心率 e ;
(Ⅱ)设直线 PF2 与椭圆相交于 A, B 两点,M 是直线 PF2 上的点,满足 AM BM = −2 , 求点 M 的轨迹方程.
16 .( 2009 广 东 ) 已 知 曲 线 C : y = x2 与 直 线 l : x − y + 2 = 0 交 于 两 点 A(xA, yA ) 和 B(xB , yB ) ,且 xA xB .记曲线 C 在点 A 和点 B 之间那一段 L 与线段 AB 所围成的平 面区域(含边界)为 D .设点 P(s, t) 是 L 上的任一点,且点 P 与点 A 和点 B 均不重合. (1)若点 Q 是线段 AB 的中点,试求线段 PQ 的中点 M 的轨迹方程; (2)若曲线 G : x2 − 2ax + y2 − 4 y + a2 + 51 = 0 与 D 有公共点,试求 a 的最小值. 25
8.(2015
四川)如图,椭圆
E

x2 a2
+
y2 b2
= 1(a b 0) 的离心率是
2 ,过点 P(0,1) 的动 2
直线 l 与椭圆相交于 A, B 两点,当直线 l 平行与 x 轴时,直线 l 被椭圆 E 截得的线段长
为2 2 . (1)求椭圆 E 的方程; (2)在平面直角坐标系 xOy 中,是否存在与点 P 不同的定点 Q ,使得 QA = PA 恒
专题九 解析几何
第二十九讲 曲线与方程 2019 年
1.(2019 北京理 8)数学中有许多形状优美、寓意美好的曲线,曲线 C : x2 + y2 = 1+ x y 就
是其中之一(如图)。给出下列三个结论:
① 曲线 C 恰好经过 6 个整点(即横、纵坐标均为整数的点); ② 曲线 C 上任意一点到原点的距离都不超过 2 ; ③ 曲线 C 所围城的“心形”区域的面积小于 3.
的面积. 5.(2019 北京理 18)已知抛物线 C : x2 = −2 py 经过点(2,-1). (I) 求抛物线 C 的方程及其准线方程; (II) 设 O 为原点,过抛物线 C 的焦点作斜率不为 0 的直线 l 交抛物线 C 于两点 M,N, 直线 y=-1 分别交直线 OM,ON 于点 A 和点 B,求证:以 AB 为直径的圆经过 y 轴上的两上 定点. 6.(2019 全国 II 理 21)已知点 A(−2,0),B(2,0),动点 M(x,y)满足直线 AM 与 BM 的斜率之积 为− 1 .记 M 的轨迹为曲线 C.
(ii)直线 l 与 y 轴交于点 G,记△PFG 的面积为 S1 ,△PDM 的面积为 S2 , 求 S1 的最大值及取得最大值时点 P 的坐标. S2
4.(2016
年天津)设椭圆
x2 a2
+
y2 3
=1
(a

3) 的右焦点为 F ,右顶点为 A ,已知
1 + 1 = 3e ,其中 O 为原点, e 为椭圆的离心率. | OF | | OA | | FA |
在 y 轴的负半轴上.若| ON |=| OF | ( O 为原点),且 OP ⊥ MN ,求直线 PB 的斜率.
2010-2018 年
解答题
1.(2018 江苏)如图,在平面直角坐标系 xOy 中,椭圆 C 过点 ( 3, 1) ,焦点 2
F1(− 3, 0), F2 ( 3, 0) ,圆 O 的直径为 F1F2 .
三角形面积最小时,切点为 P(如图),双曲线 C1 :
x2 a2

y2 b2
= 1过点 P
且离心率为
3.
(1ห้องสมุดไป่ตู้求 C1 的方程;
(2)椭圆 C2 过点 P 且与 C1 有相同的焦点,直线 l 过 C2 的右焦点且与 C2 交于 A ,B 两 点,若以线段 AB 为直径的圆心过点 P ,求 l 的方程.
S1, S2 .
(1)求 p 的值及抛物线的准线方程;
(2)求 S1 的最小值及此时点 G 的坐标. S2
相关文档
最新文档