超声诊断仪基本原理及其结构

合集下载

超声诊断系统原理结构与故障维修

超声诊断系统原理结构与故障维修

超声诊断系统原理结构与故障维修概述B型超声诊断系统是声学、电子技术、计算机技术和医疗生物科学相结合的产物,超声诊断在现代医学中占有十分重要的地位。

超声诊断是一种无损伤、无辐射的影像诊断方法。

B型超声成像、放射性同位素、X-CT、以及核磁共振成像一起构成现代医学四大影像技术。

多普勒超声系统更是心脏病和心血管疾病诊断的必不可少的手段。

我院从1978年引进B超设备至今,曾购入、使用过多家厂商生产的,多种型号的B型超声诊断仪。

B超是医院的常用设备,使用频率高,故障较多。

由于其机器系统结构复杂,型号较杂,特别是有些设备没有维修说明书,给维修工作带来了很大的困难。

但是,尽管仪器型号各异,厂家不同,B型超声系统的基本工作原理却是相通的。

结构也是类拟的。

所以熟悉掌握B超诊断系统的基本原理,以机器自检系统提供的信息为线索,详细分析仪器的结构和功能,快速准确地找出故障点,在尽可能短的时间内修复机器是可以做到的。

1B超诊断系统的原理与仪器结构B型超声诊断系统按其结构分:主要由探头、发射、接收电路、模拟信号处理电路、键盘控制电路、数字扫描变换器、图像显示电路以及电源电路等几个部分组成。

探头按其扫描方式的不同,可分为线阵扫描探头和相控阵扫描(扇扫)探头两种。

线阵扫描的基本原理是:由若干个振子按线阵排列,组成线阵排列换能器,由电子开关控制,使之分时组合,轮流工作,从探头一侧向另一侧顺序激励,产生合成波束的发射与接收。

相控阵扫描的基本原理是:对线阵排列的各振元,不同时给予激励,加于各振元的激励脉冲有一个等值的时间差,从而使合成波束的方向与振元排列平面的法线方向有一相位差,均匀改变时间差,相位差也随之均匀改变,通过时间控制,实现超声波束的相控阵扫描,即扇形扫描。

B型超声诊断仪采用辉度调制方式显示深度方向所有界面的反射回波。

在水平方向上以快速扫描的方法,逐次发射和接收超声回波,便可得到垂直平面二维超声断层图像,即线扫断层图像。

如以改变超声波束的角度方式快速扫描,则得到垂直扇面二维超声断层图像,即扇扫断层图像。

超声仪器结构、原理,超声伪像分析及超声医学术语-陈吉东

超声仪器结构、原理,超声伪像分析及超声医学术语-陈吉东

超声仪器基本构成及使用、超声常见伪像四川省人民医院超声科陈吉东超声是超过正常人耳能听到的声波,频率在20 000赫兹(Hertz,Hz)以上。

超声检查是利用超声的物理特性和人体器官组织声学性质上的差异,以波形、曲线或图像的形式显示和记录,借以进行疾病诊断的检查方法。

40年代初就已探索利用超声检查人体,50年代已研究、使用超声使器官构成超声层面图像,70年代初又发展了实时超声技术,可观察心脏及胎儿活动。

超声诊断由于设备不似CT或MRI设备那样昂贵,可获得器官的任意断面图像,还可观察运动器官的活动情况,成像快,诊断及时,无痛苦与危险,属于非损伤性检查,因之,在临床上应用已普及,是医学影像学中的重要组成部分。

不足之处在于图像的对比分辨力和空间分辨力不如CT和MRI高。

第一章超声诊断仪的基本原理及新技术的应用1、超声医学诊断技术的发展过程纵观超声诊断技术的发展,经历了一个由“点”(A 型超声)、“线”(M 型超声) 、“面”(二维超声) 、“体”(三维超声) 的发展过程; 也是一个由一维阵向二维阵朝三维阵的发展过程; 静态成像向实时动态成像的发展过程; 由单参量诊断向多参量诊断技术的发展过程;从单一器官到全身的发展过程。

2、医用超声诊断仪的原理及种类1)超声诊断仪的组成超声诊断设备类型较多, 但其基本的组成相类似,他们主要有7 部分组成:控制电路、换能器(探头)、发射/ 接收电路、信号处理电路、图像处理、图像输出(显示、存储、打印、记录及图文传输)和电源。

2)换能器的结构和种类超声换能器(探头)的作用是将超声发射到人体后再接收人体中的超声回波信号。

换能器的结构是由主体、壳体和导线3部分组成,其中压电材料(晶片)是主体的核心。

从单晶片(例如A 型和M 型超声诊断探头) 、多晶片发展到数十个、数百个甚至千个以上的晶片, 同时由若干个晶片并联起来组成的探头阵元数也在不断扩展。

目前,换能器的主要发展趋势是多阵元(高密度) 、高频、宽带和专用。

超声诊断仪基本原理和结构

超声诊断仪基本原理和结构

江西中医学院计算机学院08生物医学工程2班黄月丹学号5047超声诊断仪原理及其基本结构超声成像检查技术是指运用超声波的物理特性,通过高科技电子工程技术对超声波发射、接收、转换及电子计算机的快速分析处理和显像,从而对人体软组织的物理特性、形态结构与功能状态作出判断的一种非创性检查技术。

超声诊断技术的发展历程20世纪50年代建立,70年代广泛发展应用的超声诊断技术,总的发展趋势是从静态向动态图像(快速成像)发展,从黑白向彩色图像过渡,从二维图像向三维图像迈进,从反射法向透射法探索,以求得到专一性、特异性的超声信号,达到定量化、特异性诊断的目的。

80年代介入性超声逐渐普及,体腔探头和术中探头的应用扩大了诊断范围,也提高了诊断水平,90年代的血管内超声、三维成像、新型声学造影剂的应用使超声诊断又上了一个新台阶。

二.超声诊断仪的种类(一) A型这是一种幅度调制超声诊断仪,把接收到的回声以波的振幅显示,振幅的高低代表回声的强弱,以波型形式出现,称为回声图,现已被B型超声取代,仅在眼科生物测量方面尚在应用,其优点是测量距离的精度高。

(二) B型这是辉度调制型超声诊断仪,把接收到的回声,以光点显示,光点的灰度等级代表回声的强弱。

通过扫描电路,最后显示为断层图像,称为声像图。

B型超声诊断仪由于探头和扫描电路的不同,显示的声像图有矩形、梯形和扇形。

矩形声像图和梯形声像图用线阵探头实现,适用于浅表器官的诊断;扇形声像图用的探头有多种,机械扇扫探头、相控阵探头和凸阵探头均显示扇形声像图。

前二种探头可由小的声窗窥见较宽的深部视野,适用于心脏诊断;后一种探头浅表与深部显示均宽广,适用于腹部诊断,有一种曲率半径小的凸阵探头,也可用小的声窗,窥见深部较宽的视野。

(三) M型 M型超声诊断仪是B型的一种变化,介于A型和B型之间,得到的是一维信息。

在辉度调制的基础上,加上一个慢扫描电路,使辉度调制的一维回声信号,得到时间上的展开,形成曲线。

超声诊断仪介绍

超声诊断仪介绍

超声诊断仪介绍超声波成像的工作方式非常类似于声纳的工作方式,用高频声波作为其成像声源,超声波就是被检查的人体组织结构的反射声波。

进行扫查的超声探头是一种电声换能器。

它将仪器中发射的高频电信号,通过探头器晶体的振动,转变为超声波,进入人体组织内;然后反射回来超声波,在超声探头的晶体上,再将超声波转变为高频电信号,由荧光屏上显示出来。

通过手握的扫查探头在被检查的区域移动而得到的反射成像的结果转化成为诊断信息。

由于检查的需要,超声探头又分为线阵式、扇形及腔内探头等形式;根据扫查的方位,又分为单平面、双平面及多平面探头等。

这种非放射性的医学技术特性使其成为妇产科检查中的检验设备。

事实上,它更多的应用和胎儿成像有联系。

超声波技术的进步和发展使它的应用范围扩展到了心脏、血管、乳腺以及囊肿的鉴别和各种外科手术和治疗过程的指导方法。

自超声诊断应用于临床,国内外的研究探索课题首先即集中于针对肿瘤诊断,然而50年来,经历了不断的改进、完善和提高,特别是探头的改进、微机的应用、实时灰阶成象和彩色多普勒技术的问世,但对肿瘤的诊断仍不理想,不能满足临床的需要。

相反,超声在心血管和产科方面的应用;已在临床诊断中具有特殊的作用和地位,成为不可缺少的影象学检查方法。

为了进一步改善、提高超声对肿瘤诊断的准确性,达到定量化、特异性诊断的目的。

目前正在研制和临床试用的超声仪器有:①超声三维图象诊断仪。

目前采用的有三维立体显示技术,能将每一部位或肿块的横切面、冠状切面、矢状切面及与此三切面相关的立体图象同时显示,并可随意连续调节观察;至于三维实时重建超声诊断装置,目前尚局限在对心脏的观察研究中。

②超声CT和超声全息装置。

已研制成的有以超声衰减系数和超声速度为参数的超声CT,已于1977年起在临床探索研究。

超声全息装置在70年代起在国内、外均曾进行过临床探索。

③C型和F型超声扫描仪也在探索研究中。

④肿瘤局部切面图象声衰减现象的观察和研究,能成功地区别组织结构的声学特征改变,对肿瘤的囊性和实质性鉴别有一定价值,但不能计测出超声对肿瘤的衰减定量值。

超声诊断仪基本原理及其结构

超声诊断仪基本原理及其结构

超声诊断仪基本原理及其结构超声诊断仪是一种利用超声波通过人体组织的原理来进行诊断的医疗设备。

它能够实时获取人体各个部位的图像,从而帮助医生诊断病情。

超声诊断仪的基本原理是利用超声波在不同组织中传播的速度差异来成像,其结构主要由传感器、信号处理器和显示器等部分组成。

超声诊断仪的基本原理是利用超声波在人体组织中的传播和反射特性来成像。

超声波是一种频率高于人耳可听频率的声波,它的频率通常在1-20MHz之间。

超声波在人体组织中传播的速度与组织的密度有关,不同组织的声阻抗差异会导致超声波的反射、折射和散射等现象,从而形成各个组织的超声图像。

超声诊断仪的主要结构包括传感器、信号处理器和显示器等部分。

传感器是超声波发射和接收的装置,它通常由多个谐振器组成。

当传感器通过声窗与人体接触时,谐振器会发射超声波,然后接收反射回来的超声波。

传感器将接收到的超声波信号转化为电信号后,传送给信号处理器。

信号处理器是超声诊断仪的核心部分,它对传感器接收到的超声波信号进行放大、滤波和数字化处理,然后将处理后的信号发送给显示器。

信号处理器能够根据信号的幅度、频率和相位等信息,计算出超声波在不同组织中传播的速度和方向等参数,从而生成超声图像。

显示器是超声诊断仪的输出设备,它能够实时显示出超声波在不同组织中传播的图像。

显示器通常是高分辨率的液晶显示屏,能够清晰显示出人体各个部位的超声图像。

医生可以通过观察超声图像来判断病情,并进行相应的诊断和治疗。

除了传感器、信号处理器和显示器,超声诊断仪还包括其他一些辅助设备,如超声波发生器、图像存储器和报告输出器等。

超声波发生器负责产生超声波,并将其送入传感器。

图像存储器用于存储超声图像,以便医生随时查看和比对。

报告输出器能够将超声图像和相关报告打印出来,方便医生记录和交流。

总结起来,超声诊断仪是一种利用超声波在人体组织中传播和反射的原理来成像的医疗设备。

其基本原理是利用超声波在不同组织中传播的速度差异来成像,其结构主要包括传感器、信号处理器和显示器等组成部分。

超声诊断仪的原理及故障分析

超声诊断仪的原理及故障分析

收稿日期:2000-1-17超声诊断仪的原理及故障分析王斌章(湘潭市中心医院,湖南湘潭411100)〔文章编号〕1002-2376(2000)08-0042-02〔中国分类号〕T H776+・1〔文献标识码〕B1、原理超声诊断仪是利用超声波的回波特性,显示人体内脏器二维或三维图形的一种成像技术,它的特点是无损伤、无痛苦,对患者无电磁辐射,可以反复检查,具有较高的敏感度和分辨力。

按其工作原理分类,可分为A型、B型和M型超声诊断仪。

A L O K A S S D-720是一机械扇扫B型超声诊断仪,它主要由摆动式扫查器、接收与发射部分、检波电路、视放电路、C R T、同步发生器、扫描控制、驱动器、位置检出电路、X、Y放大器等部件组成,了解其原理后不难做维护工作。

2、故障分析实例本文均以A L O K A S S D-720B超为例。

故障现象一:在二维图像上出现白色竖线,亮度很亮、图像无法看清,进一步观察,白色竖线在每次开机时随机性变化,出现的多少,位置不定。

白色竖线间隙间可看到正常的图像。

分析与检修:开机后出现上述情况,转换到M超时,则无此现象,在则有正常图像说明显示部分、发射、扫描、接收部分无问题,问题应出在P C处理部分,经分析查板最后确定为“线缓冲”板问题,换板后一切正常。

故障现象二:在二维图像上出现三条黑色暗线区,并按一定的频率抖动,而且探头内部有异常振动和噪声,有正常的扫描图像,但不清晰。

分析与检修:由于探头内部振动噪音,将探头取下,去另一台B超机上试用,探头工作正常,排除了由探头引起的故障。

分析故障出现在扫描发射、接收部分的可能性较大,拆开主机箱,测量传导与接收板(E P-1711板)激励电压350V正常,+15V正常,改变探针A0、A1、A2线的位置。

屏幕墨线区振动频率改变,证明负尖脉冲产生电路正常,用示波器测量输入信号(P R E A M P S C T)正常,但检波输出信号(D E T E C T E D O U T)不正常,可判断故障出现在此电路的通道上;观察电路板上元件,没发现明显故障现象,后进行电路的+6V 电压测量时,故障突然消失,检测+6V电压稳压电路元件损坏,用铬铁将其电路焊点重新焊接后,接通电路,开机故障消失。

描述超声设备结构原理与分类

描述超声设备结构原理与分类

描述超声设备结构原理与分类
超声设备是一种利用超声波进行成像或治疗的医疗设备。

它由控制系统和图像显示系统组成。

超声设备的工作原理是通过产生高频声波,这些声波经过人体组织后被接收器接收。

将接收到的信号转换为电信号,并通过控制系统进行处理和分析。

最后,处理后的信号通过图像显示系统显示出来,供医生进行观察和诊断。

根据其应用领域和功能,超声设备可以分为以下几类:
1. 超声诊断设备:用于医学影像学,用于诊断和评估人体内部的器官和组织结构。

它包括超声探头、显像器和控制系统等部分。

2. 超声治疗设备:用于治疗肌肉骨骼系统的损伤和疾病,如超声物理治疗仪。

它通过超声波的热效应或机械效应来促进组织修复和康复。

3. 超声手术设备:用于进行微创手术或介入治疗,如超声刀。

它通过聚焦的超声波能量来切割或凝固组织,达到手术治疗的目的。

4. 超声清洗设备:用于工业领域,通过超声波的机械效应来清洗物体表面或孔隙中的污垢和杂质。

总之,超声设备通过利用超声波的特性,在医疗、工业和科学研究等领域起着重要作用。

不同类型的超声设备具有不同的结构和功能,可以根据需求选择合适的设备。

超声仪器结构、原理-超声伪像分析及超声医学术语-陈吉东

超声仪器结构、原理-超声伪像分析及超声医学术语-陈吉东

超声仪器基本构成及使用、超声常见伪像四川省人民医院超声科陈吉东超声是超过正常人耳能听到的声波,频率在20 000赫兹(Hertz,Hz)以上。

超声检查是利用超声的物理特性和人体器官组织声学性质上的差异,以波形、曲线或图像的形式显示和记录,借以进行疾病诊断的检查方法。

40年代初就已探索利用超声检查人体,50年代已研究、使用超声使器官构成超声层面图像,70年代初又发展了实时超声技术,可观察心脏及胎儿活动。

超声诊断由于设备不似CT或MRI设备那样昂贵,可获得器官的任意断面图像,还可观察运动器官的活动情况,成像快,诊断及时,无痛苦与危险,属于非损伤性检查,因之,在临床上应用已普及,是医学影像学中的重要组成部分。

不足之处在于图像的对比分辨力和空间分辨力不如CT和MRI高。

第一章超声诊断仪的基本原理及新技术的应用1、超声医学诊断技术的发展过程纵观超声诊断技术的发展,经历了一个由“点”(A 型超声)、“线”(M 型超声) 、“面”(二维超声) 、“体”(三维超声) 的发展过程; 也是一个由一维阵向二维阵朝三维阵的发展过程; 静态成像向实时动态成像的发展过程; 由单参量诊断向多参量诊断技术的发展过程;从单一器官到全身的发展过程。

2、医用超声诊断仪的原理及种类1)超声诊断仪的组成超声诊断设备类型较多, 但其基本的组成相类似,他们主要有7 部分组成:控制电路、换能器(探头)、发射/ 接收电路、信号处理电路、图像处理、图像输出(显示、存储、打印、记录及图文传输)和电源。

2)换能器的结构和种类超声换能器(探头)的作用是将超声发射到人体后再接收人体中的超声回波信号。

换能器的结构是由主体、壳体和导线3部分组成,其中压电材料(晶片)是主体的核心。

从单晶片(例如A 型和M 型超声诊断探头) 、多晶片发展到数十个、数百个甚至千个以上的晶片, 同时由若干个晶片并联起来组成的探头阵元数也在不断扩展。

目前,换能器的主要发展趋势是多阵元(高密度) 、高频、宽带和专用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江西中医学院计算机学院08生物医学工程2班黄月丹学号2超声诊断仪原理及其基本结构超声成像检查技术是指运用超声波的物理特性,通过高科技电子工程技术对超声波发射、接收、转换及电子计算机的快速分析处理和显像,从而对人体软组织的物理特性、形态结构与功能状态作出判断的一种非创性检查技术。

超声诊断技术的发展历程20世纪50年代建立,70年代广泛发展应用的超声诊断技术,总的发展趋势是从静态向动态图像(快速成像)发展,从黑白向彩色图像过渡,从二维图像向三维图像迈进,从反射法向透射法探索,以求得到专一性、特异性的超声信号,达到定量化、特异性诊断的目的。

80年代介入性超声逐渐普及,体腔探头和术中探头的应用扩大了诊断范围,也提高了诊断水平,90年代的血管内超声、三维成像、新型声学造影剂的应用使超声诊断又上了一个新台阶。

二.超声诊断仪的种类(一) A型这是一种幅度调制超声诊断仪,把接收到的回声以波的振幅显示,振幅的高低代表回声的强弱,以波型形式出现,称为回声图,现已被B型超声取代,仅在眼科生物测量方面尚在应用,其优点是测量距离的精度高。

(二) B型这是辉度调制型超声诊断仪,把接收到的回声,以光点显示,光点的灰度等级代表回声的强弱。

通过扫描电路,最后显示为断层图像,称为声像图。

B型超声诊断仪由于探头和扫描电路的不同,显示的声像图有矩形、梯形和扇形。

矩形声像图和梯形声像图用线阵探头实现,适用于浅表器官的诊断;扇形声像图用的探头有多种,机械扇扫探头、相控阵探头和凸阵探头均显示扇形声像图。

前二种探头可由小的声窗窥见较宽的深部视野,适用于心脏诊断;后一种探头浅表与深部显示均宽广,适用于腹部诊断,有一种曲率半径小的凸阵探头,也可用小的声窗,窥见深部较宽的视野。

(三) M型 M型超声诊断仪是B型的一种变化,介于A型和B型之间,得到的是一维信息。

在辉度调制的基础上,加上一个慢扫描电路,使辉度调制的一维回声信号,得到时间上的展开,形成曲线。

用以观察心脏瓣膜活动等,现在M型超声已成为B型超声诊断仪中的一个功能部分不作为单独的仪器出售。

(四) D型在二维图像上某点取样,获得多普勒频谱加以分析,获得血流动力学的信息,对心血管的诊断极为有用,所用探头与B型合用,只有连续波多普勒,需要用专用的探头。

超声诊断仪兼有B型功能和D型功能者称双功超声诊断仪。

(五) 彩色多普勒超声诊断仪具有彩色血流图功能,并覆盖在二维声像图上,可显示脏器和器官内血管的分布、走向,并借此能方便地采样,获得多普勒频谱,测得血流的多项重要的血流动力学参数,供诊断之用。

彩色多普勒超声诊断仪一般均兼有B型、M型、D型和彩色血流图功能。

(六) 三维超声诊断仪三维超声是建立在二维基础上,在彩色多普勒超声诊断仪的基础上,配上数据采集装置,再加上三维重建软件,该仪器即有三维显示功能。

(七) C型C型超声仪也是辉度调制型的一种,与B型不同的是其显示层面与探测面呈同等深度。

超声诊断仪基本原理声波能够在听觉器官引起声音感觉的波动称为声波。

人类能够感觉的声波频率范围约在20-20000HZ。

频率超过20000HZ,人的感觉器官感觉不到的声波,叫做超声波。

声波的基本物理性质如下:(一)声波的频率、周期和速度声源振动产生声波,声波有纵波、横波和表面波三种形式。

而纵波是一种疏密波,就像一根弹簧上产生的波。

用于人体诊断的超声波是声源振动在弹性介质中产生的纵波。

声波在介质中传播,介质中质点在平衡位置来回振动一次,就完成一次全振动,一次全振动所需要的时间称振动周期(T)。

在单位时间内全振动的次数称为频率(f),频率的单位是赫兹(HZ)。

f=1/T,声波在介质中以一定速度传播,质点振动一周,波动就前进一个波长(λ)。

波速(C)=λ/T或C=f?λ。

(二)声阻抗声波在媒介中传播,其传播速度与媒质密度有关。

在密度较大介质中的声速比密度较小介质中的声速要快。

在弹性较大的介质中声速比弹性较小的介质中要快。

这就引出了声阻抗的定义,声阻抗为介质密度(ρ)和声速(C)的乘积。

超声波超声波就是频率大于20KHZ,人耳感觉不到的声波,它也是纵波,可以在固体、液体和气体中传播,并且具有与声波相同的物理性质。

但是由于超声波频率高,波长短,还具有一些自身的特性。

(一)束射性超声波具有束射性即可集中向一个方向传播,有较强的方向性,由换能器发出的超声波呈窄束的圆柱形分布,故称超声束。

(二)反射和折射当一束超声波入射到比自身波长大很多倍的两种介质的交界面上时,就会发生反射和折射。

反射遵循反射定律,折射遵循折射定律。

由于入射角等于反射角,因此超声波探查疾病时要求声束尽量与组织界面垂直。

超声波的反射还与界面两边的声阻抗有关,两介质声阻抗差越大,入射超声束反射越强。

声阻抗差越小反射越弱。

穿过大界面的透射声,可能沿入射声束的方向继续进行,亦可能偏离入射声束的方向而传播,后一种现象称超声折射,是由于两种介质内声速的不同所致。

(三)散射与衍射超声波在介质内传播过程中,如果所遇到的物体界面直径大于超声波的波长则发生反射,如果直径小于波长,超声波的传播方向将发生偏离,在绕过物体以后又以原来的方向传播,此时反射回波很少,这种现象叫衍射。

因此波长越短超声波的分辨力越好。

如果物体直径大大小于超声波长的微粒,在通过这种微粒时大部分超声波继续向前传播,小部分超声波能量被微粒向四面八方辐射,这种现象称为散射。

(四)超声波的衰减超声波在介质中传播时,入射超声能量会随着传播距离的增加而逐渐减小,这种现象称作超声波的衰减。

衰减有以下两个原因:(1)超声波在介质中传播时,声能转变成热能,这叫吸收;(2)介质对超声波的反射、散射使得入射超声波的能量向其他方向转移,而返回的超声波能量越来越小。

多普勒超声基本原理多普勒效应多普勒效应是奥地利物理学家克里斯汀?约翰?多普勒于1842年首次提出来的。

描述了光源与接收器之间相对运动时,光波频率升高或降低的现象。

这种相对运动引起的接收频率与发射频率之间的差别称为多普勒频移或多普勒效应。

声波同样具有多普勒效应的特点,多普勒超声最适合对运动流体做检测,所以多普勒超声对心脏及大血管血流的检测尤为重要。

多普勒超声心动图的基本方式1 脉冲式多普勒2 连续式多普勒3 彩色多普勒血流显像。

基本结构由于b超是超声成像仪器中最重要的,所以下面简述b超的基本结构。

B型线性超声诊断仪主要由探头、发射/接收单元、数字扫描转换器、显示照像记录系统、面板控制系统、键盘和电源装置等组成。

一、探头是由多晶片(阵元)排列构成的长条状探头。

探头一般宽度为1cm、长度为10~15cm,探头中的晶片个数一般在64—128只范围内;晶片的尺寸随使用的超声频率不同而不同;晶片之间不但有良好的电绝缘,同时尽可能作到完全的声隔离。

为此在制造工艺上一般采用光刻的方法,在一个大晶片上刻制成相互分离的多个晶片。

晶片后面附以吸声材料,用以吸收反向辐射的能量;晶片的前面(接触人体部分)用透声材料做成声透镜,在长条状探头的短轴方向形成声聚焦。

每个阵元都是独立的,在长条状探头的长轴方向,用电子延迟线技术形成电子聚焦和多点聚焦,从而提高B型线性超声诊断仪的空间分辨率。

二、发射/接收单元通过探头发送和接收超声波信号,并对发射和接收的超声波信号实施电子聚焦和多点聚焦的控制;同时对探头中的多个晶体实施电子开关控制,从而实现超声束的扫描。

从探头接收的超声回波信号在该单元中进行放大、检波和各种预处理,然后送到数字扫描转换器。

三、数字扫描转换器把从发射/接收单元进入的超声回波信号首先进行A/D转换(即模拟/数字转换)变成数字信号,并予以存贮和完成各项后处理的功能,所有将要显示的信号,都在转换器中完成D/A转换,最后混合变为合成的视频信号送入监视、照像、记录系统。

四、监视、照相、记录系统是操作人员用来观察超声断层图像和各种相关信息,并对有价值的图像进行拍照和记录的系统。

监视和照像分别使用两个略有不同的TV监视器,照像部分一般配备通用135相机或一次性的波拉相机,记录部分使用特殊功能的纸记录装置或彩色视频打印机。

五、面板控制单元对仪器面板上的各种旋钮、开关、操作杆等的状态实施编码,并将编码信号送至发射/接收单元和数字扫描转换器,其中包括进出深度增益控制信号(或称距离时间控制)到发射/接收单元以控制放大器的放大倍数,从而补偿超声能量在传播过程中随距离的衰减。

六、电源部分提供直流电压供各单元使用。

发展方向随着计算机技术的发展,灰阶成像的基本功能和多普勒将会发挥更大的作用。

通过对组织间复杂声波的探测,使超声检查具有其他技术无法代替的发展潜力。

未来超声有望在以下方面获得发展:①提高检测信号:超声对比剂能增加体内的声波强度,改善超声成像。

手术中或内镜中的应用术中超声为制定手术决策提供一种精确的工具。

而内镜超声是一种正在兴起的技术,可以用于发现各期胃肠道肿瘤、指导活检和介入治疗。

小型灵巧化的设计使超声仪器更易操作而作为常规诊治手段。

未来设计将借助这些微型探针获取更好的成像效果。

②改进图像显示:三维超声是一项新技术,可观察解剖和病理情况,增加医生对病人解剖学的理解。

计算机技术的发展使容积数据的获取、分析和显示在数秒钟内完成,为快速诊断和治疗提供机会。

③新方法:双折射成像双折射成像反向散射波幅的双折射是超声的一种特性。

用这种特性能识别的组织有肾脏皮质、心肌、脑室周围区域以及大部分肌肉和肌腱。

灌注成像灌注成像血管成像的最终目标是血流灌注。

气泡超声对比剂的特殊优点是总在血管内,能利用谐波成像排除组织活动的伪影。

复合记录序列复合记录成像从不同时间检查获取的复合记录超声数据,能更连续和敏感地发现组织改变,提高检查和成像质量。

这能为治疗开辟新的扫描和评价可疑区域或肿块生长的能力。

和弹性摄影;④设备:缩微成像、电声摄影;⑤治疗和介入:高强聚焦(集束)超声治疗、导引和基因治疗;⑥应用:腔内手术和内镜检查。

Editor's note: Find the latest COVID-19 news and guidance in Medscape's Coronavirus Resource Center.Most residents who were asked whether their training prepared them for COVID-19 in a Medscape survey said it had not or they weren't sure.Whereas 40% said they felt prepared, 30% said they did not feel prepared and 31% answered they were unsure. (Numbers were rounded, so some answers pushed above 100%.)One Quarter Have $300,000 or More in Student DebtThe Medscape Residents Salary & Debt Report 2020, with data collected April 3 to June 1, found that nearly one in four residents (24%) had medical school debt of more than $300,000. Half (49%) had more than $200,000.The data include answers from 1659 US medical residents.For the sixth straight year, female residents were more satisfied with their pay than their male colleagues. This year the satisfaction gap was 45% female compared with 42% male. That imbalance came despite making nearly the same pay overall ($63,700 for men and $63,000 for women).Among practicing physicians, the pay gap is much wider: men make 25% more in primary care and 31% more in specialties.More than a third of residents (34%) said they felt residents should make 26% to 50% more than they do. Ten percent thought they should earn 76% to 100% more.For those not satisfied with pay, the top reasons were feeling the pay was too low for the hours worked (81%) or too low compared with other medical staff, such as physician assistants (PAs) or nurses (77% chose that answer).As for hours worked, 31% of residents reported they spend more than 60 hours/week seeing patients.The top-paying specialties, averaging $69,500, were allergy and immunology; hematology; plastic surgery; aesthetic medicine; rheumatology; and specialized surgery. The lowest paid were family medicine residents at $58,500.In primary care, overall, most residents said they planned to specialize. Only 47% planned to continue to work in primary care. Male residents were much more likely to say they will subspecialize than their female colleagues (52% vs 35%).More than 90% of residents say future pay has influenced their choice of specialty, though more men than women felt that way (93% vs 86%).Good Relationships With OthersOverall, residents reported good relationships with attending physicians and nurses.Most (88%) said they had good or very good relationships with attending physicians, 10% said the relationships were fair, and 2% said they were poor.Additionally, 89% of residents said the amount of supervision was appropriate, 4% said there was too much, and 7% said there was too little.。

相关文档
最新文档