课程设计—列管式换热器

合集下载

列管式换热器课程设计报告书

列管式换热器课程设计报告书

一、设计题目:列管式换热器设计二、设计任务及操作条件1、设计任务处理能力:3000吨/日设备型式:固定管板式换热器2、操作条件(1)苯:入口温度80.1℃出口温度40℃(2)冷却介质:循环水入口温度25℃出口温度35℃(3)允许压降:管程不大于30kPa壳程不大于30kPa三、设计内容(一)、概述目前板式换热器产品达到了一个成熟阶段,凭借其高效、节能、环保的优势,在各行业领域中被频繁使用, 并被用以替换原有管壳式和翅片式换热器,取得了很好的效果。

板式换热器的优点(1) 换热效率高,热损失小在最好的工况条件下, 换热系数可以达到6000W/ m2K, 在一般的工况条件下, 换热系数也可以在3000~4000 W/ m2K左右,是管壳式换热器的3~5倍。

设备本身不存在旁路,所有通过设备的流体都能在板片波纹的作用下形成湍流,进行充分的换热。

完成同一项换热过程, 板式换热器的换热面积仅为管壳式的1/ 3~1/ 4。

(2) 占地面积小重量轻除设备本身体积外, 不需要预留额外的检修和安装空间。

换热所用板片的厚度仅为0. 6~0. 8mm。

同样的换热效果, 板式换热器比管壳式换热器的占地面积和重量要少五分之四。

(3) 污垢系数低流体在板片间剧烈翻腾形成湍流, 优秀的板片设计避免了死区的存在, 使得杂质不易在通道中沉积堵塞,保证了良好的换热效果。

(4) 检修、清洗方便换热板片通过夹紧螺柱的夹紧力组装在一起,当检修、清洗时, 仅需松开夹紧螺柱即可卸下板片进行冲刷清洗。

(5) 产品适用面广设备最高耐温可达180 ℃, 耐压2. 0MPa , 特别适应各种工艺过程中的加热、冷却、热回收、冷凝以及单元设备食品消毒等方面, 在低品位热能回收方面, 具有明显的经济效益。

各类材料的换热板片也可适应工况对腐蚀性的要求。

当然板式换热器也存在一定的缺点, 比如工作压力和工作温度不是很高, 限制了其在较为复杂工况中的使用。

同时由于板片通道较小,也不适宜用于杂质较多,颗粒较大的介质。

列管氏换热器课程设计图

列管氏换热器课程设计图

列管氏换热器课程设计图一、教学目标本节课的学习目标包括知识目标、技能目标和情感态度价值观目标。

知识目标要求学生掌握列管式换热器的结构、工作原理和分类;技能目标要求学生能够运用所学知识分析和解决实际问题;情感态度价值观目标要求学生培养对化工工艺的兴趣,提高环保意识和安全意识。

结合课程性质、学生特点和教学要求,我们将目标分解为具体的学习成果:了解列管式换热器的结构及其组成部分,掌握其工作原理和分类;能运用所学知识分析实际问题,如换热器的选用和设计;培养环保意识和安全意识,关注化工工艺在生产中的应用和可持续发展。

二、教学内容本节课的教学内容主要包括列管式换热器的结构、工作原理、分类和应用。

教学大纲安排如下:1.列管式换热器的结构:介绍换热器的基本结构,包括壳体、管束、管板、管盖等组成部分,以及各种类型换热器的结构特点。

2.列管式换热器的工作原理:讲解换热器的工作原理,包括热交换过程、流体流动状态、传热速率等。

3.列管式换热器的分类:介绍换热器的分类及各类换热器的适用范围和优缺点。

4.列管式换热器的应用:分析换热器在化工、石油、电力等领域的应用实例,探讨换热器在生产过程中的重要作用。

三、教学方法为激发学生的学习兴趣和主动性,本节课采用多种教学方法相结合:1.讲授法:讲解换热器的结构、工作原理、分类和应用,使学生掌握基本概念和理论知识。

2.案例分析法:分析实际生产中的换热器应用案例,帮助学生将理论知识与实际应用相结合。

3.实验法:安排实验室参观或动手实验,让学生直观地了解换热器的结构和操作原理。

4.讨论法:学生分组讨论,分享学习心得和观点,提高学生的合作能力和沟通能力。

四、教学资源为实现教学目标,本节课将采用以下教学资源:1.教材:选用权威、实用的教材,为学生提供系统的理论知识。

2.参考书:提供相关领域的参考书籍,丰富学生的知识储备。

3.多媒体资料:制作精美的PPT,直观地展示换热器的结构和操作原理。

4.实验设备:安排实验室参观或动手实验,让学生亲身体验换热器的运行过程。

列管换热器课程设计报告

列管换热器课程设计报告

列管换热器课程设计报告一、教学目标本课程的教学目标是让学生掌握列管换热器的基本原理、结构、类型、性能以及工程应用。

具体包括:1.知识目标:(1)了解列管换热器的定义、分类和性能;(2)掌握列管换热器的基本结构和工作原理;(3)熟悉列管换热器的设计和计算方法;(4)了解列管换热器在工程中的应用和维护。

2.技能目标:(1)能够分析列管换热器的结构和工作特点;(2)能够运用基本原理进行列管换热器的设计和计算;(3)能够根据工程需求选择合适的列管换热器类型;(4)能够对列管换热器进行正常的操作和维护。

3.情感态度价值观目标:(1)培养学生对列管换热器技术的兴趣和热情;(2)培养学生具备工程思维和创新能力;(3)培养学生具有良好的团队合作和沟通能力。

二、教学内容根据课程目标,教学内容主要包括以下几个方面:1.列管换热器的定义、分类和性能;2.列管换热器的基本结构和工作原理;3.列管换热器的设计和计算方法;4.列管换热器在工程中的应用和维护;5.列管换热器技术的最新发展动态。

教学大纲安排如下:第1周:列管换热器的定义、分类和性能;第2周:列管换热器的基本结构和工作原理;第3周:列管换热器的设计和计算方法;第4周:列管换热器在工程中的应用和维护;第5周:列管换热器技术的最新发展动态。

三、教学方法为了达到课程目标,我们将采用以下教学方法:1.讲授法:通过教师的讲解,使学生了解列管换热器的基本概念、原理和计算方法;2.案例分析法:通过分析实际工程案例,使学生掌握列管换热器在工程中的应用;3.实验法:通过实验操作,使学生了解列管换热器的工作原理和性能;4.讨论法:通过小组讨论,培养学生团队合作和沟通能力。

四、教学资源教学资源包括:1.教材:选用《列管换热器》一书作为主要教材;2.参考书:提供相关领域的参考书籍,供学生自主学习;3.多媒体资料:制作课件、视频等多媒体资料,丰富教学手段;4.实验设备:准备列管换热器实验装置,供学生进行实验操作。

化工原理课程设计 列管式换热器

化工原理课程设计 列管式换热器

化工原理课程设计列管式换热器设计要求:设计一个列管式换热器,实现两种不同温度的流体之间的热量传递。

设计要求如下:1. 列管式换热器采用直管式结构,热传导介质为水和油;2. 设计流量分别为水流量 Q1 = 500 L/h,油流量 Q2 = 300 L/h;3. 设计温度分别为水的进口温度 T1i = 80℃,油的进口温度T2i = 120℃;4. 确定水的出口温度 T1o 和油的出口温度 T2o;5. 选择合适的换热器材料,确保换热效果良好;6. 根据设计参数计算所需的换热面积 A 和换热效率η。

设计方案:1. 确定管径和管长:首先根据水和油的流量和温度差,计算所需的换热面积。

然后确定换热器的尺寸,其中包括管径和管长。

2. 选择换热器材料:根据换热介质的性质和工作条件,选择合适的换热器材料,例如不锈钢。

3. 计算出口温度:根据热平衡原理,计算水和油的出口温度。

假设换热器满足热平衡条件,即水的热量损失等于油的热量增加。

4. 计算换热面积:根据换热器的尺寸和热传导方程,计算所需的换热面积。

5. 计算换热效率:根据热平衡原理和换热器的热传导性能,计算换热效率。

实施步骤:1. 根据设计流量和温度差,计算所需的换热面积。

假设水和油的传热系数均为常数,可以使用换热传导方程进行计算。

2. 根据所需的换热面积和理论计算值,选择合适的换热器尺寸。

3. 根据所选换热器材料,计算换热器的尺寸和管径。

假设管壁温度近似等于流体温度。

4. 根据热平衡原理,计算出口温度。

假设热平衡条件满足,即水的热量损失等于油的热量增加。

5. 根据所选材料和尺寸,计算换热效率。

假设换热器的热传导系数为常数,使用换热效率计算公式进行计算。

总结:本课程设计主要针对列管式换热器的设计,通过选择合适的换热器材料和计算换热器的尺寸,实现了水和油之间的热量传递。

根据设计要求,通过计算出口温度和换热效率,验证了设计方案的合理性。

设计过程需要考虑多方面的因素,如流体性质、流量和温度差等。

列管式换热器课程设计

列管式换热器课程设计

列管式换热器课程设计第1章⼯艺流程1.1 ARGG装置ARGG装置包括反应-再⽣、分馏、吸收塔、⽓压机、能量回收及余热锅炉、产品精制⼏部分租成,ARGG⼯艺以常压渣油等重油质油为原料,采⽤重油转化和抗⾦属能⼒强,选择性好的ARG催化剂,以⽣产富含丙烯、异丁烯、异丁烷的液化⽓、并⽣产⾼⾟烷只汽油。

1.2⼯艺原理1.2.1催化裂化部分催化裂化是炼油⼯业中最重要的⼆次加⼯过程,是重油轻质化的重要⼿段。

它是使原料油在适宜的温度、压⼒和催化剂存在的条件下,进⾏分解、异构化、氢转移、芳构化、缩和等⼀系列化学反应,原料油转化为⽓体、汽油、柴油等主要产品及油浆、焦炭的⽣产过程。

催化裂化的原料油来源⼴泛,主要是常减压的馏分油、常压渣油、减压渣油及丙烷脱沥青油、蜡膏、蜡下油等。

随着⽯油资源的短缺和原油的⽇趋变重,重油催化裂化有了较快发展,处理的原料可以是全常渣甚⾄是全减渣。

在硫含量较⾼时,则需⽤加氢脱硫装置进⾏处理,提供催化原料。

催化裂化过程具有轻质油收率⾼、汽油⾟烷值较⾼、⽓体产品中烯烃含量⾼等特点。

催化裂化⽣产过程的主要产品是⽓体、汽油和柴油,其中⽓体产品包括⼲⽓和液化⽯油⽓,⼲⽓作为本装置燃料⽓烧掉,液化⽯油⽓是宝贵的⽯油化⼯原料和民⽤燃料。

催化裂化的⽣产过程包括以下⼏个部分:反应再⽣部分:其主要任务是完成原料油的转化。

原料油通过反应器与催化剂接粗并反应,不断输出反应物,催化剂则在反应器和再⽣器之间不断循环,在再⽣器中通⼊空⽓烧去催化剂上的积灰,恢复催化剂的活性,使催化剂能够循环使⽤。

烧焦放出的热量⼜以催化剂为载体,不断带回反应器,供给反应所需的热量,过剩的热量由专门的取热设施取出并加以利⽤。

分馏部分:主要任务根据反应油⽓中各组分沸点的不同,将他们分离成富⽓、粗油⽓、轻柴油、回炼油、油浆,并保证油⽓⼲点、轻柴油的凝固点和闪点合格。

吸收稳定部分:利⽤各组分之间在液体中溶解度的不同把富⽓和粗油⽓分离成⼲⽓、液化⽓、稳定汽油。

化工原理课程设计---列管式换热器的设计

化工原理课程设计---列管式换热器的设计

化工原理课程设计---列管式换热器的设计列管式换热器是一种常用的换热器类型,其结构简单、传热效率高、维修方便等优点使其在工业生产中得到广泛应用。

该换热器由多个平行排列的管子组成,热流体和冷流体分别流过管内外,通过管壁传递热量,实现热量交换。

根据不同的流体流动方式,列管式换热器又可分为纵向流式和横向流式两种形式。

其中,横向流式换热器传热效率更高,但结构较为复杂,维修难度较大,因此在实际应用中需要根据具体情况进行选择。

浮头式换热器的特点是管板和壳体之间没有固定连接,只有一个浮头,管束和浮头相连。

浮头可以在壳体内自由移动,以适应管子和壳体的热膨胀。

这种结构适用于温差较大或壳程压力较高的情况。

但是,由于管束和浮头的连接是松散的,因此需要注意防止泄漏。

U型管式换热器:U型管式换热器的管子呈U形,两端分别焊接在管板上,形成一个U型管束。

壳体内的流体从一端进入,从另一端流出,管内的流体也是如此。

这种结构适用于流体腐蚀性较强的情况,因为管子可以很容易地更换。

多管程换热器:多管程换热器是将管束分成多个组,每组管子单独连接到管板上,形成多个管程。

这种结构可以提高传热效率,但也会增加流体阻力。

因此,需要根据具体情况来选择多管程的数量。

总之,列管式换热器是一种广泛应用于化工及酒精生产的换热器。

不同的结构适用于不同的工艺条件,需要根据具体情况来选择合适的换热器。

在使用过程中,需要注意保养和维护,及时清洗和更换损坏的部件,以保证换热器的正常运行。

换热器的一块管板与外壳用法兰连接,另一块管板不与外壳连接,这种结构称为浮头式换热器。

浮头式换热器的优点是管束可以拉出以便清洗,管束的膨胀不受壳体约束,因此在两种介质温差大的情况下,不会因管束与壳体的热膨胀量不同而产生温差应力。

但其缺点是结构复杂,造价高。

填料式换热器的管束一端可以自由膨胀,结构比浮头式简单,造价也较低。

但壳程内介质有外漏的可能,因此不应处理易挥发、易燃、易爆和有毒的介质。

列管式换热器课程设计

列管式换热器课程设计

列管式换热器课程设计一、课程目标知识目标:1. 学生能理解并掌握列管式换热器的工作原理及其在工业中的应用。

2. 学生能够描述列管式换热器的结构特点,并解释其设计参数对换热效率的影响。

3. 学生能够运用基本的物理和数学原理分析换热器内的热量传递过程。

技能目标:1. 学生能够运用所学知识,设计简单的列管式换热器,并进行基本的性能分析。

2. 学生能够通过计算软件或手动计算,完成换热器换热面积的计算。

3. 学生能够运用图表和数据分析方法,评价不同设计参数对换热性能的影响。

情感态度价值观目标:1. 培养学生对能源转换和利用中换热技术的兴趣,激发其探索热能工程领域的热情。

2. 通过团队合作完成换热器的设计,增强学生的团队合作意识和解决问题的能力。

3. 增进学生对工业节能和环境保护意识,培养其负责任的工程伦理观。

本课程针对高年级工程技术类专业的学生,结合学科特点,课程性质偏重于应用实践。

学生应具备一定的物理、数学基础及工程制图能力。

教学要求注重理论联系实际,通过课程学习,使学生不仅掌握换热器的基础知识,还能通过实际操作提高解决实际工程问题的能力,为未来从事相关领域工作打下坚实基础。

二、教学内容1. 列管式换热器基础理论- 换热器概述:定义、分类及在工业中的应用。

- 工作原理:热量传递的基本方式,流体流动与传热的关系。

2. 列管式换热器结构及设计参数- 结构特点:管壳式换热器的构造,管程与壳程的设计。

- 设计参数:影响换热性能的主要参数,包括换热面积、流体流速、温差等。

3. 换热器内的热量传递计算- 热量传递方程:导热、对流和辐射的基本方程。

- 换热系数:不同流体和工况下的换热系数计算。

4. 列管式换热器的设计与性能分析- 设计步骤:换热器设计的基本流程,包括换热面积、管径、管长等计算。

- 性能分析:运用图表和数据分析方法,评价设计参数对换热性能的影响。

5. 案例分析与实操练习- 案例分析:实际工程中的换热器设计案例,分析其设计原理和优化方法。

化工原理课程设计列管式换热器

化工原理课程设计列管式换热器

化工原理课程设计列管式换热器一、前言列管式换热器是化工生产中常用的设备之一,其主要作用是将两种介质之间的热量传递给另一种介质。

在化工原理课程设计中,学生需要深入了解列管式换热器的原理和设计方法,以便能够正确地选择和操作该设备。

二、列管式换热器的基本结构列管式换热器由壳体、管束和管板等部分组成。

其中,壳体是一个密封的容器,通常由钢板制成。

管束则是由多根平行排列的管子组成,这些管子被固定在两个端板上。

而管板则是连接壳体和管束的部分。

三、工作原理列管式换热器的工作原理基于传热学原理。

当两种介质(例如水和空气)流经壳体内外侧时,它们之间会发生热量交换。

具体来说,高温介质通过内部的管道流动,并将其余部分中的热量传递给外部环境中流动的低温介质。

四、传热机制在列管式换热器中,传热机制可以分为三种类型:对流传热、导热传热和辐射传热。

4.1 对流传热对流传热是指通过流体的运动来传递热量的过程。

在列管式换热器中,高温介质通过管子内部流动,低温介质则通过壳体外侧流动。

这种流动会产生一定的对流传热效应。

4.2 导热传热导热传热是指通过物质内部分子之间的碰撞来传递热量的过程。

在列管式换热器中,管子和壳体之间的接触面积很大,因此可以通过导热来进行传递。

4.3 辐射传热辐射传热是指通过电场或者电磁波来进行能量转移的过程。

在列管式换热器中,高温介质会发出一定数量的辐射能量,并将其转移到低温介质中。

五、设计方法在设计列管式换热器时,需要考虑多个因素,包括介质类型、工作压力和温度、换算面积等等。

以下是一些基本设计步骤:5.1 确定工作参数首先需要确定两种介质(即高温介质和低温介质)的工作压力和温度。

这些参数将会影响到换热器的材料选择和尺寸设计。

5.2 计算传热系数传热系数是指在单位时间内,单位面积上的热量传递量与温度差之比。

在列管式换热器中,需要计算出不同介质之间的传热系数。

5.3 确定换算面积换算面积是指在一定时间内,单位时间内通过设备的总热量与温度差之比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计设计题目:列管式换热器专业班级:应化1301班*名:**学号: U*********指导老师:***时间: 2016年8月目录1.课程设计任务书 (5)1.1 设计题目 (5)1.2 设计任务及操作条件 (5)1.3 技术参数 (5)2.设计方案简介 (5)3.课程设计说明书 (6)3.1确定设计方案 (6)3.1.1确定自来水进出口温度 (6)3.1.2确定换热器类型 (6)3.1.3流程安排 (7)3.2确定物性数据 (7)3.3计算传热系数 (8)3.3.1热流量 (8)3.3.2 平均传热温度差 (8)3.3.3 传热面积 (8)3.3.4 冷却水用量 (8)4.工艺结构尺寸 (9)4.1 管径和管内流速 (9)4.2 管程数和传热管数 (9)4.3 传热管排列和分程方法 (9)4.4 壳体内径 (10)4.5 折流板 (10)4.6 接管 (11)4.6.1 壳程流体进出管时接管 (11)4.6.2 管程流体进出管时接管 (11)4.7 壁厚的确定和封头 (12)4.7.1 壁厚 (12)4.7.2 椭圆形封头 (12)4.8 管板 (12)4.8.1 管板的结构尺寸 (13)4.8.2 管板尺寸 (13)5.换热器核算 (13)5.1热流量衡算 (13)5.1.1壳程表面传热系数 (13)5.1.2 管程对流传热系数 (14)5.1.3 传热系数K (15)5.1.4 传热面积裕度 (16)5.2 壁温衡算 (16)5.3 流动阻力衡算 (17)5.3.1 管程流动阻力衡算 (17)5.3.2 壳程流动阻力衡算 (17)6.设计结果汇总 (19)7.设计评述 (20)8.致谢 (21)9.工艺流程图 (22)10.符号说明 (22)11.参考资料 (24)§ 1.《化工原理课程设计》任务书1.1设计题目煤油冷却器设计1.2设计任务及操作条件设备型式:列管式换热器处理能力:15+0.1*1*89=23.9 万吨/年煤油操作条件:(1)煤油:入口温度140℃,出口40℃;(2)冷却介质:自来水,入口和出口温度由条件衡算;(3)允许压降:不大于105Pa(4)每年按360天算,每天运行24小时。

1.3技术参数煤油定性下的物性数据:密度:825Kg/m3;粘度: 7.15*10-4Pa.s;比热容:2.22KJ/(Kg.℃);导热系数:0.14W/(m.℃)。

§2.设计方案简介本设计任务是利用自来水给煤油降温。

利用热传递过程中对流传热原则,制成换热器,以供生产需要。

下图(图1)是工业生产中用到的列管式换热器。

选择换热器时,要遵循经济,传热效果优,方便清洗,复合实际需要等原则。

换热器分为几大类:夹套式换热器,沉浸式蛇管换热器,喷淋式换热器,套管式换热器,螺旋板式换热器,板翅式换热器,热管式换热器,列管式换热器等。

不同的换热器适用于不同的场合。

而列管式换热器在生产中被广泛利用。

它的结构简单、坚固、制造较容易、处理能力大、适应性大、操作弹性较大。

尤其在高压、高温和大型装置中使用更为普遍。

所以首选列管式换热器作为设计基础。

§3.课程设计说明书3. 1 确定设计方案(1)确定自来水进出口温度自来水的进口温度一般为室温,设计进口温度为25℃。

在设计出口温度是参考一下标准:冷却水出口温度不超过60℃,以避免换热器严重结垢,冷却水的出口温度不应高于工作物流的出口温度。

因此设计冷却剂出口温度为35℃。

(2)确定换热器类型两流体温度变化情况如下:煤油:入口温度140℃,出口温度40℃;自来水:入口温度25℃,出口温度35℃。

该换热器用自来水进行冷却,由于T m-t m=(140+40)/2-(35+25)/2=60℃>50℃,所需换热器的管壁温度与壳体温度相差较大,故从安全、经济、方便的角度考虑采用带有补偿圈的管板式换热器。

(3)流程安排由于循环冷却水较易结垢,为便于水垢清洗,应使循环水走管程,煤油走壳程。

另外,这样的选择可以使煤油通过壳体壁面向空气中散热,提高冷却效果。

3.2 确定物性数据定性温度:对于一般的气体及低粘度流体,其定性温度可取其进出口温度平均值。

煤油定性温度:(140+40)/2=90℃,自来水定性温度:(35+25)/2=30℃在定性温度下,分别查取煤油和自来水的物性参数如下:煤油在90℃下的有关物性数据如下:密度ρo=825 kg/m3定压比热容 c p,o=2.22kJ/(kg·℃)导热系数λo=0.14 W/(m·℃)粘度μo=0.000715Pa·s冷却水在30℃下的物性数据:密度 ρi =995.7kg/m 3定压比热容 c p,i =4.174kJ/(kg ·℃)导热系数 λi =0.6176 W/(m ·℃)粘度 μi =0.000801 Pa ·s3.3 计算传热系数1.热流量:以煤油为计算标准算他所需要被提走的热量:Q=qc Δt=2.39×108330×24x2.22x (140-35)=7.034x106KJ/h=1953.8KW2.平均传热温差:计算两流体的平均传热温差,暂按单壳程、多管程计算。

逆流时:煤 油:140℃→40℃,自来水:35℃←25℃,从而,Δt m ‘=105−15ln⁡(10515)=46.25℃, 此时,P=40−25140−25=0.13, R=140−,3540−25=7.00,由公式易算得ψ=0.84>0.8,符合要求。

3.传热面积:取传热系数为450 W/(m 2·℃),则由公式可得传热面积为 A p =1953.8×103450×46.25=93.88m 24.冷却水用量:忽略热损失,由公式易得,冷却水用量为:Q=1953.84.174×(35−25)=46.81Kg/s=168516Kg/h 。

§4.工艺结构尺寸已知两流体允许压降均不大于35KPa ,与煤油相比,水的对流传热系数一般较大。

由于循环冷却水易结垢,会加快污垢增长速度,使换热器的热流量下降,考虑到散热降温方面的因素,应该让循环自来水走管程,煤油走壳程。

4.1 管径和管内流速列管式换热器内的适宜流速范围则初步选择φ25×2.5mm 的碳钢管,管内径d i =25-2.5x2=20mm ,管内流速取u i =1.2m/s 。

4.2管程数和传热管数⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡n s =q v π4d i 2u i = 46.81/995.70.785×0.022×1.2 =124.8≈125 根按单管程计算,所需的传热管长度为L= A p πd o n s = 93.883.14×0.025×125=9.58m 。

若按照单管程设计,则管长过长,不宜使用,故采用多管程设计。

取传热管长为5m ,则换热器管程数应为N p =2,传热管总数为N t =125x2=250根。

4.3传热管排列和分程方法管子在管板上的排列方式最常用的如下图(a)(b)(c)(d)所示,包括正三角形排列(排列角为300)、同心圆排列、正方形排列(排列角为900)、转角正方形排列(排列角为450)。

当管程为多程时,则需采取组合排列,如下右图。

采用组合排列法,即每程均按正三角形排列,隔板两侧采用正方形排列。

换热管中心距查表如下(mm):则横过管束中心线的管束为n=1.1√N T=1.1√250=17.39≈18。

4.4 壳体内径采用多管程设计,取管板利用率为η=0.7,则壳体内径为D=1.05t√N Tη=1.05×32×√2500.7=634.9mm按卷制壳体的进级档可取D=700mm。

4.5折流板折流板间距多为100mm,150mm,200 mm,300mm,450 mm,600 mm,800 mm,1000 mm。

折流板厚度与壳体直径和折流板间距有关,如下表(mm):支承板厚度一般不应小于上表数据,支承板不允许的最大间距参考下表:经选择,采用弓形折流板,取弓形折流圆缺高度为壳体内径的25%,则切去的圆缺高度为h=25%×700mm=175mm。

取折流板间距B=0.3D,则B=0.3×700mm=210mm,可取B=200mm,因而查表可得,折流板厚度为5mm,支承板厚度为8mm,支承板允许不支承最大间距为1800mm。

折流板数为N b=5000200-1=24块。

折流板圆缺面水平装配。

4.6 接管4.6.1壳程流体进出管时接管:取接管内煤油流速为u=1m/s,则接管内径为D1=√4Vπu1 = √4×30176.8/(3600×825)3.14×1= 0.1138m=113.8mm。

4.6.2管程流体进出口时接管:取接管内冷却水流速 u2=1.5m/s,则接管内径为= 。

D2 = √4Vπu24.7壁厚的确定和封头4.7.1壁厚查资料易知,圆筒厚度为8mm,椭圆形封头与圆筒厚度相等,亦为8mm。

4.7.2 椭圆形封头示意图如下:查表易得其尺寸数据如下表:4.8 管板管板除了和管子和壳体等连接外,还是换热器重一个重要的受压器件。

4.8.1管板的结构尺寸查相关资料得,固定管板式换热器的管板主要尺寸如下表:4.8.2管板厚度考虑到腐蚀裕量,以及有足够的厚度能防止接头的松脱、泄露和引起振动等原因,建议最小厚度应大于20mm 。

管板最小厚度如下表:换热管外径为25mm ,因而管板厚度取为3d 0/4=18.75mm ,则综上取为20mm 。

§5.换热器核算5.1热流量核算(1)壳程表面传热系数:对圆缺形的折流板,可采用克恩公式:000.36e e d u a d μρλμμλμ=0.14p wc ()()()计算壳程当量直径,由正三角形排列可得:42e d ππ=200(-d )4d =025.014.3)025.0785.0032.023(422⨯⨯-=0.020m壳程流通截面积: S o =⎪⎪⎭⎫ ⎝⎛-⨯=032.0025.010.70.2)t d -BD(1o =0.03062m 壳程流体最小流速为:00000140010000.53/243600624.890.0489v m q q u m s A A ρ⨯====⨯⨯⨯=0306.0)8253600/(8.30176⨯=0.33m/s 。

雷诺准数为: Re o =7384000715.082532.002.0=⨯⨯=o o o o u d μρ 普兰特准数为: Pr o =34.1114.0000718.02220=⨯=o o c λμ Nu=0.360.551/3Re Pr μμ0.14w ()。

相关文档
最新文档