2020年四川省成都七中中考数学一诊试卷

合集下载

2020年四川省成都七中高考数学一诊试卷(理科)

2020年四川省成都七中高考数学一诊试卷(理科)

2020年四川省成都七中高考数学一诊试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数(,)z a bi a b R =+∈的虚部记作()Im z b =,则3()(1iIm i+=+ )A .2-B .1-C .1D .2 2.执行如图所示的程序框图,输出的S 值为( )A .3B .6-C .10D .15-3.关于函数()|tan |f x x =的性质,下列叙述不正确的是( )A .()f x 的最小正周期为2πB .()f x 是偶函数C .()f x 的图象关于直线()2k x k Z π=∈对称D .()f x 在每一个区间(k π,)()2k k Z ππ+∈内单调递增4.已知0a >,0b >,则“1a 且1b ”是“2a b +且1ab ”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.如果21()n x x的展开式中含有常数项,则正整数n 的最小值是( )A .3B .4C .5D .66.在约束条件:1210x y x y ⎧⎪⎨⎪+-⎩下,目标函数(0,0)z ax by a b =+>>的最大值为1,则ab 的最大值等于( )A .12 B .38 C .14D .187.已知正项等比数列{}n a 中,n S 为其前n 项和,且241a a =,37S =,则5(S = )A .152B .314C .334D .1728.用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有( )个. A .324B .216C .180D .3849.已知函数()f x 对x R ∀∈都有()(4)f x f x =-,且其导函数()f x '满足当2x ≠时,(2)()0x f x -'>,则当24a <<时,有( )A .(2)a f f <(2)2(log )f a <B .f (2)2(2)(log )a f f a <<C .2(log )(2)a f a f f <<(2)D .f (2)2(log )(2)a f a f <<10.对圆22(1)(1)1x y -+-=上任意一点(,)P x y ,|349||34|x y x y a --+-+都与x ,y 无关,则a 的取值区间为( ) A .[6,)+∞ B .[4-,6] C .(4,6)- D .(-∞,4]- 11.若a ,b ,c 满足,||||2||2a b c ===,则()()a b c b --的最大值为( )A .10B .12C .53D .6212.点M 是棱长为3的正方体1111ABCD A B C D -中棱AB 的中点,12CN NC =,动点P 在正方形11AA DD (包括边界)内运动,且1//PB 面DMN ,则PC 的长度范围为( ) A .[13,19]B .335[,19]5C .335[,19]5D .339[,19]5二、填空题(本大题共4小题,每小题5分,共20分.把答案填在答题卡相应位置上) 13.命题“x N ∀∈,21x >”的否定为 .14.在样本的频率分布直方图中,共有9个小长方形,若第一个长方形的面积为0.02,前五个与后五个长方形的面积分别成等差数列且公差是互为相反数,若样本容量为1600,则中间一组(即第五组)的频数为 .15.设O 、F 分别是抛物线22y x =的顶点和焦点,M 是抛物线上的动点,则||||MO MF 的最大值为 .16.若实数a ,(0,1)b ∈且14ab =,则1211a b +--的最小值为 . 三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(12分)设ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,已知3c =,且1sin()cos 64C C π-=.(1)求角C 的大小;(2)若向量(1,sin )m A =与(2,sin )n B =共线,求a 、b 的值.18.(12分)学校为了了解高三学生每天自主学习中国古典文学的时间,随机抽取了高三男生和女生各50名进行问卷调查,其中每天自主学习中国古典文学的时间超过3小时的学生称为“古文迷”,否则为“非古文迷”,调查结果如表:古文迷 非古文迷 合计 男生 26 24 50 女生 30 20 50 合计5644100(Ⅰ)根据表中数据能否判断有60%的把握认为“古文迷”与性别有关?(Ⅱ)现从调查的女生中按分层抽样的方法抽出5人进行调查,求所抽取的5人中“古文迷”和“非古文迷”的人数;(Ⅲ)现从(Ⅱ)中所抽取的5人中再随机抽取3人进行调查,记这3人中“古文迷”的人数为ξ,求随机变量ξ的分布列与数学期望.参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:20()P K k0.50 0.40 0.25 0.05 0.025 0.010 0k0.4550.7081.3213.8415.0246.63519.(12分)如图,在三棱柱111ABC A B C -中,每个侧面均为正方形,D 为底边AB 的中点,E 为侧棱1CC 的中点.(Ⅰ)求证://CD 平面1A EB ; (Ⅱ)求证:1AB ⊥平面1A EB ;(Ⅲ)求直线1B E 与平面11AA C C 所成角的正弦值.20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的两个焦点分别为1(2F -0),2(2F 0),以椭圆短轴为直径的圆经过点(1,0)M .(1)求椭圆C 的方程;(2)过点M 的直线l 与椭圆C 相交于A 、B 两点,设点(3,2)N ,记直线AN ,BN 的斜率分别为1k ,2k ,问:12k k +是否为定值?并证明你的结论. 21.(12分)已知函数()()f x tx lnx t R =+∈.(1)当1t =-时,证明:()1f x -;(2)若对于定义域内任意x ,2()1x f x x e -恒成立,求t 的范围?请考生在第22、23两题中任选一题作答.注意:只能做选定的题目.如果多做,则按所做的第一个题目计分.(本小题满分10分). [选修4-4:坐标系与参数方程] 22.(10分)在极坐标系下,知圆:cos sin O ρθθ=+和直线:sin()0,02)4l πρθρθπ-=.(1)求圆O 与直线l 的直角坐标方程;(2)当(0,)θπ∈时,求圆O 和直线l 的公共点的极坐标. [选修4-5:不等式选讲](本小题满分0分) 23.已知函数()|23||21|f x x x =++-. (Ⅰ)求不等式()5f x 的解集;(Ⅱ)若关于x 的不等式()|1|f x m <-的解集非空,求实数m 的取值范围.2020年四川省成都七中高考数学一诊试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数(,)z a bi a b R =+∈的虚部记作()Im z b =,则3()(1iIm i+=+ ) A .2- B .1- C .1 D .2【思路分析】直接由复数代数形式的乘除运算化简31ii++,再根据题目中定义的复数的虚部,可得答案.【解析】:3(3)(1)4221(1)(1)2i i i ii i i i ++--===-++-,又复数(,)z a bi a b R =+∈的虚部记作()Im z b =,3()11iIm i+∴=-+.故选:B .【总结与归纳】本题考查了复数代数形式的乘除运算、虚部的定义,属于基础题.2.执行如图所示的程序框图,输出的S 值为( )A .3B .6-C .10D .15-【思路分析】根据程序框图判断,程序的运行功能是求22221234S =-+-+,计算可得答案. 【解析】:由程序框图知,程序的运行功能是求22221234S =-+-+-⋯可得:当5i =时,不满足条件5i <,程序运行终止,输出2222123410S ==-+-+=. 故选:C .【总结与归纳】本题考查了循环结构的程序框图,解答此类问题的关键是判断程序框图的功能.3.关于函数()|tan |f x x =的性质,下列叙述不正确的是( )A .()f x 的最小正周期为2πB .()f x 是偶函数C .()f x 的图象关于直线()2k x k Z π=∈对称D .()f x 在每一个区间(k π,)()2k k Z ππ+∈内单调递增【思路分析】根据正切函数的性质与性质,结合绝对值的意义,对选项中的命题分析、判断即可.【解析】:对于函数()|tan |f x x =的性质,根据该函数的图象知,其最小正周期为π,A 错误;又()|tan()||tan |()f x x x f x -=-==,所以()f x 是定义域上的偶函数,B 正确;根据函数()f x 的图象知,()f x 的图象关于直线()2k x k Z π=∈对称,C 正确;根据()f x 的图象知,()f x 在每一个区间(k π,)()2k k Z ππ+∈内单调递增,D 正确.故选:A .【总结与归纳】本题考查了正切函数的图象与性质的意义问题,是基础题目. 4.已知0a >,0b >,则“1a 且1b ”是“2a b +且1ab ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【思路分析】0a >,0b >,“1a 且1b ”可得:“2a b +且1ab ”,反之不成立:取32a =,12b =,即可判断出结论. 【解析】:0a >,0b >,“1a 且1b ”可得:“2a b +且1ab ”,反之不成立:取32a =,12b =,满足2a b +且1ab ,而1a 且1b 不成立.故“1a 且1b ”是“2a b +且1ab ”的充分不必要条件. 故选:A .【总结与归纳】本题考查了不等式的性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.5.如果21)n x的展开式中含有常数项,则正整数n 的最小值是( )A .3B .4C .5D .6【思路分析】在二项展开式的通项公式中,令x 的幂指数等于0,求出n 与r 的关系,即可得到n 的最小值. 【解析】:21)n x的展开式的通项公式为521(1)n r rr r nT C x -+=-,令502n r-=,可得5n r =,0r =,1,2,3,⋯,n . 展开式中含有常数项,5n r ∴=能成立,则正整数n 的最小值为5, 故选:C .【总结与归纳】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.6.在约束条件:1210x y x y ⎧⎪⎨⎪+-⎩下,目标函数(0,0)z ax by a b =+>>的最大值为1,则ab 的最大值等于( )A .12B .38C .14D .18【思路分析】作出不等式组对应的平面区域,利用目标函数取得最大值,确定a ,b 的关系,利用基本不等式求ab 的最大值.【解析】:作出不等式组对应的平面区域如图:(阴影部分),由(0,0)z ax by a b =+>>,则a z y x b b =-+,平移直线a zy x b b=-+,由图象可知当直线a zy x b b=-+经过点(1,2)A 时直线的截距最大,此时z 最大为1.代入目标函数z ax by =+得21a b +=.则1222a b ab =+,则18ab 当且仅当122a b ==时取等号,ab ∴的最大值等于18,故选:D .【总结与归纳】本题主要考查线性规划的应用,利用数形结合以及基本不等式是解决此类问题的基本方法.7.已知正项等比数列{}n a 中,n S 为其前n 项和,且241a a =,37S =,则5(S = )A .152B .314C .334D .172【思路分析】由已知条件利用等比数列的通项公式和前n 项和公式得311311(1)710a q a q a q q q ⎧=⎪-⎪=⎨-⎪⎪>⎩,由此能求出5S .【解析】:由已知得:311311(1)710a q a q a q qq ⎧=⎪-⎪=⎨-⎪⎪>⎩,解得14a =,12q =, ∴551514(1)(1)31211412a q S q --===--.故选:B .【总结与归纳】本题考查等比数列的前5项和的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.8.用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有( )个. A .324B .216C .180D .384【思路分析】由题意知本题需要分类来解,当个位、十位和百位上的数字为3个偶数,当个位、十位和百位上的数字为1个偶数2个奇数,根据分类计数原理得到结果. 【解析】:由题意知本题需要分类来解:当个位、十位和百位上的数字为3个偶数的有:231313343390C A C A C +=种; 当个位、十位和百位上的数字为1个偶数2个奇数的有:23212323343333234C A C C C A C +=种,根据分类计数原理得到共有90234324+=个.故选:A .【总结与归纳】本小题考查排列实际问题基础题.数字问题是计数中的一大类问题,条件变换多样,把计数问题包含在数字问题中,解题的关键是看清题目的实质,很多题目要分类讨论,要做到不重不漏.9.已知函数()f x 对x R ∀∈都有()(4)f x f x =-,且其导函数()f x '满足当2x ≠时,(2)()0x f x -'>,则当24a <<时,有( )A .(2)a f f <(2)2(log )f a <B .f (2)2(2)(log )a f f a <<C .2(log )(2)a f a f f <<(2)D .f (2)2(log )(2)a f a f <<【思路分析】由()(4)f x f x =-,可知函数()f x 关于直线2x =对称,由(2)()0x f x -'>,可知()f x 在(,2)-∞与(2,)+∞上的单调性,从而可得答案. 【解析】:函数()f x 对定义域R 内的任意x 都有()(4)f x f x =-, ()f x ∴关于直线2x =对称;又当2x ≠时其导函数()f x '满足()2()()(2)0xf x f x f x x '>'⇔'->,∴当2x >时,()0f x '>,()f x 在(2,)+∞上的单调递增;同理可得,当2x <时,()f x 在(,2)-∞单调递减; ()f x 的最小值为f (2) 24a <<,21log 2a ∴<<,224log 3a ∴<-<,又4216a <<,22(log )(4log )f a f a =-,()f x 在(2,)+∞上的单调递增;2(log )(2)a f a f ∴<,f ∴(2)2(log )(2)a f a f <<,故选:D .【总结与归纳】本题综合考查了导数的运用,函数的对称性,单调性的运用,综合运用对数解决问题的能力,属于中档题.10.对圆22(1)(1)1x y -+-=上任意一点(,)P x y ,|349||34|x y x y a --+-+都与x ,y 无关,则a 的取值区间为( ) A .[6,)+∞B .[4-,6]C .(4,6)-D .(-∞,4]-【思路分析】由题意可得|34||349|x y a x y -++--可以看作点P 到直线:340m x y a -+=与直线:3490l x y --=距离之和的5倍,进一步分析说明圆位于两直线内部,再由点到直线的距离公式求解直线340x y a -+=与圆相切时的a 值,则答案可求.【解析】:因为|349||34||349||34|5()55x y x y a x y x y a ---+--+-+=+,所以|34||349|x y a x y -++--可以看作点P 到直线:340m x y a -+=与直线:3490l x y --=距离之和的5倍,|34||349|x y a x y -++--的取值与x ,y 无关,∴这个距离之和与点P 在圆上的位置无关,如图所示:可知直线m 平移时,P 点与直线m ,l 的距离之和均为m ,l 的距离, 即此时圆在两直线内部,当直线m 与圆相切时,|34|15a -+=,解得6a =或4a =-(舍去), 故6a , 故选:A .【总结与归纳】本题考查了直线和圆的位置关系,以及点到直线的距离公式,考查数学转化思想方法,属于难题.11.若a ,b ,c 满足,||||2||2a b c ===,则()()a b c b --的最大值为( ) A .10B .12C .53D .62【思路分析】利用向量的数量积公式化简表达式,转化求解最大值即可. 【解析】:a ,b ,c 满足,||||2||2a b c ===,则2()()2cos ,4cos ,2cos ,412a b c b a c a b b c b a c a b b c --=--+=<>-<>-<>+, 当且仅当,a c 同向,,a b ,反向,,b c 反向时,取得最大值. 故选:B .【总结与归纳】本题考查了向量的数量积的运算,数量积的模的最值的求法,属于基础题. 12.点M 是棱长为3的正方体1111ABCD A B C D -中棱AB 的中点,12CN NC =,动点P 在正方形11AA DD (包括边界)内运动,且1//PB 面DMN ,则PC 的长度范围为( ) A .[13,19] B .335[19] C .335[19] D .339[19]【思路分析】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,面DMN 截正方体1111ABCD A B C D -的截面为梯形DMEN ,其中//ME DN ,1BE =,取11C D 中点F ,在1DD 上取点H ,使2DH =,在1AA 取点G ,使1AG =,则平面//DMEN 平面1B FHG ,推导出P 点的轨迹是线段GH ,利用向量法能求出PC 的长度范围.【解析】:以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系, 面DMN 截正方体1111ABCD A B C D -的截面为梯形DMEN ,其中//ME DN ,1BE =, 取11C D 中点F ,在1DD 上取点H ,使2DH =,在1AA 取点G ,使1AG =, 则平面//DMEN 平面1B FHG ,动点P 在正方形11AA DD (包括边界)内运动,且1//PB 面DMN ,P ∴点的轨迹是线段GH ,(3G ,0,1),(0H ,0,2),(0C ,3,0), (3GH =-,0,1),1(0GB =,3,2),∴点C 到线段GH 的距离228335||1[cos ,]191()51910d GC GC GH =-<>=-=, PC ∴的长度的最小值为3353, 19GC =,13HC =,PC ∴长度的最大值为19.PC ∴的长度范围为335[,19]5.故选:B .【总结与归纳】本题考查线段长的范围的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在答题卡相应位置上)13.命题“x N ∀∈,21x >”的否定为 0x N ∃∈,21x . 【思路分析】直接利用全称命题的否定是特称命题,写出结果即可.【解析】:因为全称命题的否定是特称命题,所以,命题“x N ∀∈,21x >”的否定为0x N ∃∈,201x故答案为:0x N ∃∈,21x 【总结与归纳】本题考查命题的否定,全称命题与特称命题的否定关系,是基础题. 14.在样本的频率分布直方图中,共有9个小长方形,若第一个长方形的面积为0.02,前五个与后五个长方形的面积分别成等差数列且公差是互为相反数,若样本容量为1600,则中间一组(即第五组)的频数为 360 .【思路分析】设出公差,利用9个小长方形面积和为1,求出公差,然后求解中间一组的频数.【解析】:设公差为d ,那么9个小长方形的面积分别为0.02,0.02d +,0.022d +,0.023d +,0.024d +,0.023d +,0.022d +,0.02d +,0.02,而9个小长方形的面积和为 1,可得0.18161d += 解得0.8216d =, ∴中间一组的频数为:1600(0.024)360d ⨯+=. 故答案为:360.【总结与归纳】本题考查频率分布直方图的应用,考查计算能力.15.设O 、F 分别是抛物线22y x =的顶点和焦点,M 是抛物线上的动点,则||||MO MF 的最大值为23. . 【思路分析】设(,)M m n 到抛物线22y x =的准线12x =-的距离等于d ,由抛物线的定义可得2221||4111||24m MO m n MF m m m -+==++++14m t -=,利用基本不等式可求得最大值. 【解析】:焦点1(2F ,0),设(,)M m n ,则22n m =,0m >,设M 到准线12x =-的距离等于d ,则由抛物线的定义得2221||4111||24m MO m nMF m m m -+==++++令14m t -=,依题意知,0m >, 若0t >,则2211141399334216162m t m m t t t t -==++++++,13max t ∴=,此时||123()1||3max MO MF =+= 若104t -<<,93162y t t =++单调递减,故1y <-,1(1,0)y ∈-;综上所述,||()||max MO MF =【总结与归纳】本题考查抛物线的定义、简单性质,基本不等式的应用,体现了换元的思想,属于难题.16.若实数a ,(0,1)b ∈且14ab =,则1211a b +--的最小值为4+ . 【思路分析】由题意可得14b a=,代入121218*********a a b a a a a+=+=+------,124212()[(44)(41)]214144413a a a a a a =++=+-+-⨯+----,然后利用基本不等式即可求解【解析】:由题意可得14b a =,则121218*********a a b a a a a+=+=+------,124212()[(44)(41)]21414441a a a a a a =++=+-+-⨯+----, 14(41)2(44)1[6]22(64344413a a a a π--=+++++=--4+【总结与归纳】本题主要考查了利用基本不等式求解最值,解答的关键是应用 条件的配凑.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(12分)设ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,已知3c =,且1sin()cos 64C C π-=.(1)求角C 的大小;(2)若向量(1,sin )m A =与(2,sin )n B =共线,求a 、b 的值.【思路分析】(1)利用三角恒等变换化简1sin()cos 64C C π-=,即可求出C 的值;(2)根据向量m 、n 共线,得出sin 2sin B A =,即2b a =①; 由余弦定理得出229a b ab +-=②,①②联立解得a 、b 的值.【解析】:(1)sin()cos (sin cos cos sin )cos 666C C CC C πππ-=-21cos cos 2C C C =-1cos 224C C +=-111sin(2)2644C π=--=, sin(2)16C π∴-=;又0C π<<,112666C πππ∴-<-<,262C ππ∴-=,解得3C π=;(2)向量(1,sin )m A =与(2,sin )n B =共线,2sin sin 0A B ∴-=,sin 2sin B A ∴=,即2b a =①;又3c =,3C π=,222222cos 9c a b ab C a b ab ∴=+-=+-=②;由①②联立解得a b =【总结与归纳】本题考查了三角恒等变换以及向量共线定理和正弦、余弦定理的应用问题,是综合性题目.18.(12分)学校为了了解高三学生每天自主学习中国古典文学的时间,随机抽取了高三男生和女生各50名进行问卷调查,其中每天自主学习中国古典文学的时间超过3小时(Ⅱ)现从调查的女生中按分层抽样的方法抽出5人进行调查,求所抽取的5人中“古文迷”和“非古文迷”的人数;(Ⅲ)现从(Ⅱ)中所抽取的5人中再随机抽取3人进行调查,记这3人中“古文迷”的人数为ξ,求随机变量ξ的分布列与数学期望.参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.0)k【思路分析】(Ⅰ)求出2K ,与临界值比较,即可得出结论;(Ⅱ)调查的50名女生中“古文迷”有30人,“非古文迷”有20人,按分层抽样的方法抽出5人,即可得出结论;(Ⅲ)ξ的所有取值为1,2,3.求出相应的概率,即可求随机变量ξ的分布列与数学期望.【解析】:(Ⅰ)由列联表得22100(26203034)0.64940.70856445050K ⨯-⨯=≈<⨯⨯⨯,所以没有60%的把握认为“古文迷”与性别有关.⋯(3分)(Ⅱ)调查的50名女生中“古文迷”有30人,“非古文迷”有20人,按分层抽样的方法抽出5人,则“古文迷”的人数为305350⨯=人,“非古文迷”有205250⨯=人. 即抽取的5人中“古文迷”和“非古文迷”的人数分别为3人和2人⋯(6分) (Ⅲ)因为ξ为所抽取的3人中“古文迷”的人数,所以ξ的所有取值为1,2,3.1232353(1)10C C P C ξ===,2132353(2)5CC P C ξ===,33351(3)10C P C ξ===.⋯(9分) 于是123105105E ξ=⨯+⨯+⨯=.⋯(12分) 【总结与归纳】本题考查独立性检验知识的运用,考查随机变量ξ的分布列与数学期望,考查学生的计算能力,属于中档题.19.(12分)如图,在三棱柱111ABC A B C -中,每个侧面均为正方形,D 为底边AB 的中点,E 为侧棱1CC 的中点.(Ⅰ)求证://CD 平面1A EB ; (Ⅱ)求证:1AB ⊥平面1A EB ;(Ⅲ)求直线1B E 与平面11AA C C 所成角的正弦值.【思路分析】(Ⅰ)设1AB 和1A B 的交点为O ,连接EO ,连接OD ,根据三角形中位线定理可以证明四边形ECOD 为平行四边形,再利用直线与平面平行的判定定理进行证明,即可解决问题;(Ⅱ)因为三棱柱各侧面都是正方形,所以1BB AB ⊥,1BB BC ⊥.所以1BB ⊥平面ABC .因为CD ⊂平面ABC ,所以1BB CD ⊥,可证CD ⊥平面11A ABB ,再利用直线与平面垂直的判定定理进行证明;(Ⅲ)取11A C 中点F ,连接1B F ,EF ,易知侧面11ACC A ⊥底面111A B C ,1FEB ∠是1B E 与平面11AA C C 所成角,然后构造直角三角形,在直角三角形中求其正弦值,从而求解. 【解答】证明:(Ⅰ)设1AB 和1A B 的交点为O ,连接EO ,连接OD . 因为O 为1AB 的中点,D 为AB 的中点,所以1//OD BB 且112OD BB =.又E 是1CC 中点,所以1//EC BB 且112EC BB =,所以//EC OD 且EC OD =.所以,四边形ECOD 为平行四边形.所以//EO CD . 又CD ⊂/平面1A BE ,EO ⊂平面1A BE ,则//CD 平面1A BE .(Ⅱ)因为三棱柱各侧面都是正方形,所以1BB AB ⊥,1BB BC ⊥.所以1BB ⊥平面ABC . 因为CD ⊂平面ABC ,所以1BB CD ⊥. 由已知得AB BC AC ==,所以CD AB ⊥, 所以CD ⊥平面11A ABB .由(Ⅰ)可知//EO CD ,所以EO ⊥平面11A ABB . 所以1EO AB ⊥.因为侧面是正方形,所以11AB A B ⊥. 又1EOA B O =,EO ⊂平面1A EB ,1A B ⊂平面1A EB ,所以1AB ⊥平面1A BE .(10分)(Ⅲ)解:取11A C 中点F ,连接1B F ,EF .在三棱柱111ABC A B C -中,因为1BB ⊥平面ABC ,所以侧面11ACC A ⊥底面111A B C .因为底面111A B C 是正三角形,且F 是11A C 中点,所以111B F AC ⊥,所以1B F ⊥侧面11ACC A . 所以EF 是1B E 在平面11ACC A 上的射影.所以1FEB ∠是1B E 与平面11AA C C 所成角11115.sin 5B F BE F B E ∠==.(14分) 解法二:如图所示,建立空间直角坐标系.设边长为2,可求得(0A ,0,0),(0C ,2,0),1(0C ,2,2),1(0A ,0,2),(3,1,0)B ,1(3,1,2)B ,(0E ,2,1),31(,,0)22D ,31(,,1)22O . (Ⅰ)易得,33(,,0)22CD =-,33(,,0)22EO =-.所以CD EO =,所以//EO CD .又CD ⊂/平面1A BE ,EO ⊂平面1A BE ,则//CD 平面1A BE .(Ⅱ)易得,1(3,1,2)AB =,1(3,1,2)A B =-,1(0,2,1)A E =- 所以11110,0AB A B AB A E ==. 所以11AB A B ⊥,11AB A E ⊥. 又因为111A BA E A =,1AB ,1A E ⊂平面1A BE ,所以1AB ⊥平面1A BE .(10分)(Ⅲ)设侧面11AA C C 的法向量为(n x =,y ,)z ,因为(0A ,0,0),(0C ,2,0),1(0C ,2,2),1(0A ,0,2), 所以1(0,2,0),(0,2,2)AC AC ==,1(3,1,1)B E =--. 由100n AC n AC ⎧=⎪⎨=⎪⎩得00y y z =⎧⎨+=⎩解得00.y z =⎧⎨=⎩不妨令(1n =,0,0),设直线1B E 与平面11AA C C 所成角为α. 所以111||315sin |cos ,|5||||5n B E n B E n B E α=<>===. 所以直线1B E 与平面11AA C C 所成角的正弦值为155.(14分)【总结与归纳】此题考查直线与平面平行的判断及直线与平面垂直的判断,第一问此类问题一般先证明两个面平行,再证直线和面平行,这种做题思想要记住,此类立体几何题是每年高考必考的一道大题,难度比较大,计算要仔细.20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的两个焦点分别为1(2F -0),2(2F 0),以椭圆短轴为直径的圆经过点(1,0)M .(1)求椭圆C 的方程;(2)过点M 的直线l 与椭圆C 相交于A 、B 两点,设点(3,2)N ,记直线AN ,BN 的斜率分别为1k ,2k ,问:12k k +是否为定值?并证明你的结论.【思路分析】(1)由椭圆的两个焦点分别为1(2F -0),2(2F ,0),以椭圆短轴为直径的圆经过点(1,0)M ,列出方程组,能求出椭圆C 的方程.(2)设过M 的直线:(1)y k x kx k =-=-或者1x =,1x =时,代入椭圆,能求出122k k +=;把y kx k =-代入椭圆,得2222(31)6(33)0k x k x k +-+-=,由此利用韦达定理能求出122k k +=.【解析】:(1)椭圆2222:1(0)x y C a b a b+=>>的两个焦点分别为1(2F 0),2(2F 0),以椭圆短轴为直径的圆经过点(1,0)M ,∴22221c b a b c ⎧=⎪=⎨⎪=+⎩,解得3a =1b =,∴椭圆C 的方程为2213x y +=.(2)12k k +是定值.证明如下:设过M 的直线:(1)y k x kx k =-=-或者1x = ①1x =时,代入椭圆,6y =∴令6)A ,6(1,)B , 162331k -=-,262331k =-,122k k ∴+=.②y kx k =-代入椭圆,2222(31)6(33)0k x k x k +-+-=设1(A x ,1)y ,2(B x ,2)y .则2122631k x x k +=+,21223331k x x k -=+,312336223131k k y y k k k -+=-=++,222212121222()31k y y k x x k x x k k =-++=-+, 11123y k x -=-,22223y k x -=-,1221211212126326322(3)(3)y x x y y x x y k k x x --++--+∴+==--. 【总结与归纳】本题考查椭圆方程的求法,考查两直线斜率之和是否为定值的判断与证明,是中档题,解题时要认真审题,注意椭圆性质的合理运用. 21.(12分)已知函数()()f x tx lnx t R =+∈. (1)当1t =-时,证明:()1f x -;(2)若对于定义域内任意x ,2()1x f x x e -恒成立,求t 的范围?【思路分析】(1)当1t =-时,证明:()1f x -,即是证明1lnx x --,设()1g x lnx x =-+,只要证明()g x 的最大值0即可得证.(2)原式子恒成立即21x lnx t e x +-在(0,)+∞恒成立;只要求出函数21x lnx y e x+=-,(0,)x ∈+∞的最小值即可.【解答】(1)证明:即是证明1lnx x --,设()1g x lnx x =-+,1()xg x x-'=;当01x <<,()0g x '>,()g x 单调递增;当1x >,()0g x '<,()g x 单调递减;所以()g x 在1x =处取到最大值,即()g x g (1)0=,所以1lnx x --得证.(2)解法一:原式子恒成立即21x lnx t e x+-在(0,)+∞恒成立;由(1)可以得到1x lnx +,所以22()121x x x e ln x e lnx x +=++;所以22112x lnx x lnx e x x +++=+所以212x lnx e x+-,当且仅当21x x e =时取=,于是t 的取值范围是(-∞,2].解法二:设2()(0)x h x xe tx lnx x =-->,原题即()1h x 恒成立;因为21()(21)x h x x e t x '=+--,而221()4(1)0x h x x e x''=++>.所以()h x '单调递增,又因为0x →时,()h x '→-∞,当x →+∞时,()h x '→+∞,所以()h x '在(0,)+∞存在唯一零点,设为0x .所以020001()(21)0x h x x e t x '=+--=.所以02001(21)x t x e x =+-,且()h x 在0(0,)x 上单调递减,在0(x ,)+∞上单调递增, 于是()h x 的最小值为00222000000()21x x h x x e tx lnx x e lnx =--=--+, 原题即0220211x x e lnx --+. 即0220020x x e lnx +,由此式子必001x <<,022002x x e lnx -,把后面的不等式两边同时取对数整理后得00002(2)()()x ln x ln lnx lnx +-+-.易证明函数y x lnx =+是增函数,所以得002x lnx -,所以0201x e x . 故由02001(21)x t x e x =+-,得到00011(21)2t x x x +-=.于是t 的取值范围是(-∞,2].解法三:原式子恒成立即21x lnx t e x+-在(0,)+∞恒成立; 设21()xlnx x e xϕ+=-,2222()x x e lnx x x ϕ+'=,设22()2x Q x x e lnx =+,221()4()0x Q x x x e x '=++>,所以()Q x 单调递增,且1()04Q <,Q (1)0>;所以()Q x 有唯一零点0x ,而且0220020x x e lnx +=,所以022002x x e lnx =-. 两边同时取对数得00002(2)()()x ln x ln lnx lnx +=-+-.易证明函数y x lnx =+是增函数,所以得002x lnx =-,所以0201x e x =. 所以由()x ϕ在0(0,)x 上单调递减,在0(x ,)+∞上单调递增,所以020000001211()()2x lnx x x x e x x x ϕϕ+-+=-=-=,于是t 的取值范围是(-∞,2].【总结与归纳】本题考查了函数的单调性和最值问题,利用导数求函数的最值,属于难题. 请考生在第22、23两题中任选一题作答.注意:只能做选定的题目.如果多做,则按所做的第一个题目计分.(本小题满分10分).[选修4-4:坐标系与参数方程] 22.(10分)在极坐标系下,知圆:cos sin O ρθθ=+和直线:sin()0,02)4l πρθρθπ-=.(1)求圆O 与直线l 的直角坐标方程;(2)当(0,)θπ∈时,求圆O 和直线l 的公共点的极坐标.【思路分析】(1)圆O 的极坐标方程化为2cos sin ρρθρθ=+,由此能求出圆O 的直角坐标方程;直线l 的极坐标方程化为sin cos 1ρθρθ-=,由此能求出直线l 的直角坐标方程. (2)圆O 与直线l 的直角坐标方程联立,求出圆O 与直线l 的在直角坐标系下的公共点,由此能求出圆O 和直线l 的公共点的极坐标.【解析】:(1)圆:cos sin O ρθθ=+,即2cos sin ρρθρθ=+, 故圆O 的直角坐标方程为:220x y x y +--=,直线:sin()42l πρθ-=sin cos 1ρθρθ-=,则直线的直角坐标方程为:10x y -+=.(2)由(1)知圆O 与直线l 的直角坐标方程, 将两方程联立得22010x y x y x y ⎧+--=⎨-+=⎩,解得01x y =⎧⎨=⎩.即圆O 与直线l 的在直角坐标系下的公共点为(0,1),转化为极坐标为(1,)2π.【总结与归纳】本题考查直线与圆的直角坐标方程的求法,考查圆与直线的公共点的极坐标的求法,涉及到参数方程、普通方程、极坐标方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题. [选修4-5:不等式选讲](本小题满分0分)23.已知函数()|23||21|f x x x =++-. (Ⅰ)求不等式()5f x 的解集;(Ⅱ)若关于x 的不等式()|1|f x m <-的解集非空,求实数m 的取值范围. 【思路分析】(Ⅰ)零点分段求解不等式即可;(Ⅱ)由题意得到关于实数m 的不等式,求解不等式即可求得最终结果. 【解析】:(Ⅰ)原不等式为:|23||21|5x x ++-,能正确分成以下三类:当32x -时,原不等式可转化为425x --,即7342x --;当3122x -<<时,原不等式可转化为45恒成立,所以3122x -<<;当12x 时,原不等式可转化为425x +,即1324x. 所以原不等式的解集为73{|}44x x -.(Ⅱ)由已知函数342,231()4,22142,2x x f x x x x ⎧---⎪⎪⎪=-<<⎨⎪⎪+⎪⎩,可得函数()y f x =的最小值为4,由()|1|f x m <-的解集非空得:|1|4m ->.解得5m >或3m <-.【总结与归纳】本题考查了绝对值不等式的解法,分类讨论的数学思想等,重点考查学生对基础概念的理解和计算能力,属于中等题.。

2019-2020成都七中初中学校中考数学一模试卷含答案

2019-2020成都七中初中学校中考数学一模试卷含答案

2019-2020成都七中初中学校中考数学一模试卷含答案一、选择题1.通过如下尺规作图,能确定点D 是BC 边中点的是( )A .B .C .D .2.下列命题正确的是( ) A .有一个角是直角的平行四边形是矩形 B .四条边相等的四边形是矩形 C .有一组邻边相等的平行四边形是矩形 D .对角线相等的四边形是矩形3.已知11(1)11A x x ÷+=-+,则A =( ) A .21x x x -+ B .21x x - C .211x - D .x 2﹣14.如图,AB 是一垂直于水平面的建筑物,某同学从建筑物底端B 出发,先沿水平方向向右行走20米到达点C ,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD 到达点D ,然后再沿水平方向向右行走40米到达点E (A ,B ,C ,D ,E 均在同一平面内).在E 处测得建筑物顶端A 的仰角为24°,则建筑物AB 的高度约为(参考数据:s in24°≈0.41,cos24°≈0.91,tan24°=0.45)( )A .21.7米B .22.4米C .27.4米D .28.8米5.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,所列方程组正确的是( ) A .783230x y x y +=⎧⎨+=⎩B .782330x y x y +=⎧⎨+=⎩C .302378x y x y +=⎧⎨+=⎩D .303278x y x y +=⎧⎨+=⎩6.观察下列图形中点的个数,若按其规律再画下去,可以得到第9个图形中所有点的个数为( )A .61B .72C .73D .867.现定义一种变换:对于一个由有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,例如序列S0:(4,2,3,4,2),通过变换可生成新序列S1:(2,2,1,2,2),若S0可以为任意序列,则下面的序列可作为S1的是()A.(1,2,1,2,2)B.(2,2,2,3,3)C.(1,1,2,2,3)D.(1,2,1,1,2)8.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.606030(125%)x x-=+B.606030(125%)x x-=+C.60(125%)6030x x⨯+-=D.6060(125%)30x x⨯+-=9.如图,AB为⊙O直径,已知为∠DCB=20°,则∠DBA为()A.50°B.20°C.60°D.70°10.在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有()A.1 个B.2 个C.3 个D.4个11.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连结BF交AC于点M,连结DE、BO.若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中正确结论的个数是()A .4个B .3个C .2个D .1个12.下列分解因式正确的是( ) A .24(4)x x x x -+=-+ B .2()x xy x x x y ++=+ C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-二、填空题13.如图,直线l x ⊥轴于点P ,且与反比例函数11k y x=(0x >)及22ky x =(0x >)的图象分别交于A 、B 两点,连接OA 、OB ,已知OAB ∆的面积为4,则12k k =﹣________.14.如图,矩形ABCD 中,AB=3,对角线AC ,BD 相交于点O ,AE 垂直平分OB 于点E ,则AD 的长为____________.15.已知62x =+,那么222x x -的值是_____.16.如图,点A 在双曲线y=4x上,点B 在双曲线y=kx (k≠0)上,AB ∥x 轴,过点A 作AD⊥x 轴 于D .连接OB ,与AD 相交于点C ,若AC=2CD ,则k 的值为____.17.分式方程32x x 2--+22x-=1的解为________. 18.已知10a b b -+-=,则1a +=__.19.如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角EAB ∠的角平分线相交于点P ,且60ABP ∠=︒,则APB ∠=_____度.20.在一个不透明的口袋中,装有A ,B ,C ,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是___.三、解答题21.如图,在Rt△ACB 中,∠C=90°,AC=3cm ,BC=4cm ,以BC 为直径作⊙O 交AB 于点D . (1)求线段AD 的长度;(2)点E 是线段AC 上的一点,试问:当点E 在什么位置时,直线ED 与⊙O 相切?请说明理由.22.如图,AB 是⊙O 的直径,点C 是的中点,连接AC 并延长至点D ,使CD =AC ,点E 是OB 上一点,且,CE 的延长线交DB 的延长线于点F ,AF 交⊙O 于点H ,连接BH .(1)求证:BD 是⊙O 的切线;(2)当OB =2时,求BH 的长.23.如图,在平面直角坐标系中,直线10y kx =-经过点(12,0)A 和(,5)B a -,双曲线(0)my x x=>经过点B . (1)求直线10y kx =-和双曲线my x=的函数表达式; (2)点C 从点A 出发,沿过点A 与y 轴平行的直线向下运动,速度为每秒1个单位长度,点C的运动时间为t(0<t<12),连接BC,作BD⊥BC交x轴于点D,连接CD,①当点C在双曲线上时,求t的值;②在0<t<6范围内,∠BCD的大小如果发生变化,求tan∠BCD的变化范围;如果不发生变化,求tan∠BCD的值;③当136112DC 时,请直接写出t的值.24.数学活动课上,张老师引导同学进行如下探究:如图1,将长为的铅笔斜靠在垂直于水平桌面的直尺的边沿上,一端固定在桌面上,图2是示意图.活动一如图3,将铅笔绕端点顺时针旋转,与交于点,当旋转至水平位置时,铅笔的中点与点重合.数学思考(1)设,点到的距离.①用含的代数式表示:的长是_________,的长是________;②与的函数关系式是_____________,自变量的取值范围是____________.活动二(2)①列表:根据(1)中所求函数关系式计算并补全..表格.654 3.53 2.5210.5000.55 1.2 1.58 1.0 2.473 4.29 5.08②描点:根据表中数值,描出①中剩余的两个点.③连线:在平面直角坐标系中,请用平滑的曲线画出该函数的图象.数学思考(3)请你结合函数的图象,写出该函数的两条性质或结论.25.小慧和小聪沿图①中的景区公路游览.小慧乘坐车速为30 km/h的电动汽车,早上7:00从宾馆出发,游玩后中午12:00回到宾馆.小聪骑车从飞瀑出发前往宾馆,速度为20 km/h,途中遇见小慧时,小慧恰好游完一景点后乘车前往下一景点.上午10:00小聪到达宾馆.图②中的图象分别表示两人离宾馆的路程s(km)与时间t(h)的函数关系.试结合图中信息回答:(1)小聪上午几点钟从飞瀑出发?(2)试求线段AB,GH的交点B的坐标,并说明它的实际意义;(3)如果小聪到达宾馆后,立即以30 km/h的速度按原路返回,那么返回途中他几点钟遇见小慧?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】作线段BC的垂直平分线可得线段BC的中点.【详解】作线段BC的垂直平分线可得线段BC的中点.由此可知:选项A符合条件,故选A.【点睛】本题考查作图﹣复杂作图,解题的关键是熟练掌握五种基本作图.2.A解析:A【解析】【分析】运用矩形的判定定理,即可快速确定答案.【详解】解:A.有一个角为直角的平行四边形是矩形满足判定条件;B四条边都相等的四边形是菱形,故B错误;C有一组邻边相等的平行四边形是菱形,故C错误;对角线相等且相互平分的四边形是矩形,则D错误;因此答案为A.【点睛】本题考查了矩形的判定,矩形的判定方法有:1.有三个角是直角的四边形是矩形;2.对角线互相平分且相等的四边形是矩形;3.有一个角为直角的平行四边形是矩形;4.对角线相等的平行四边形是矩形.3.B解析:B【解析】【分析】由题意可知A=111)11x x++-(,再将括号中两项通分并利用同分母分式的减法法则计算,再用分式的乘法法则计算即可得到结果.【详解】解:A=11111x x++-=111xx x+-=21xx-故选B.【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.4.A解析:A【解析】【分析】作BM⊥ED交ED的延长线于M,CN⊥DM于N.首先解直角三角形Rt△CDN,求出CN,DN,再根据tan24°=AMEM,构建方程即可解决问题.【详解】作BM⊥ED交ED的延长线于M,CN⊥DM于N.在Rt△CDN中,∵140.753CNDN==,设CN=4k,DN=3k,∴CD=10,∴(3k)2+(4k)2=100,∴k=2,∴CN=8,DN=6,∵四边形BMNC是矩形,∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,在Rt△AEM中,tan24°=AM EM,∴0.45=866AB +,∴AB=21.7(米),故选A.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.5.A解析:A【解析】【分析】【详解】该班男生有x人,女生有y人.根据题意得:30 3278 x yx y+=⎧⎨+=⎩,故选D.考点:由实际问题抽象出二元一次方程组.6.C解析:C【解析】【分析】设第n个图形中有a n个点(n为正整数),观察图形,根据各图形中点的个数的变化可得出变化规律“a n=n2+n+1(n为正整数)”,再代入n=9即可求出结论.【详解】设第n个图形中有a n个点(n为正整数),观察图形,可知:a1=5=1×2+1+2,a2=10=2×2+1+2+3,a3=16=3×2+1+2+3+4,…,∴a n=2n+1+2+3+…+(n+1)=n2+n+1(n为正整数),∴a9=×92+×9+1=73.故选C.【点睛】本题考查了规律型:图形的变化类,根据各图形中点的个数的变化找出变化规律“a n=n2+n+1(n为正整数)”是解题的关键.7.D解析:D【解析】【分析】根据已知中有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,可得S1中2的个数应为偶数个,由此可排除A,B答案,而3的个数应为3个,由此可排除C,进而得到答案.【详解】解:由已知中序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,A、2有三个,即序列S0:该位置的三个数相等,按照变换规则,应为三个3,故A不满足条件;B、2有三个,即序列S0:该位置的三个数相等,按照变换规则,应为三个3,故B不满足条件;C、3有一个,即序列S0:该位置的数出现了三次,按照变换规则,应为三个3,故C不满足条件;D、2有两个,即序列S0:该位置的两个数相等,1有三个,即这三个位置的数互不相等,满足条件,故选D.【点睛】本题考查规律型:数字的变化类.8.C解析:C【解析】分析:设实际工作时每天绿化的面积为x万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x的分式方程.详解:设实际工作时每天绿化的面积为x 万平方米,则原来每天绿化的面积为125%x+万平方米,依题意得:606030125%x x-=+,即()60125%6030x x⨯+-=. 故选C .点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.9.D解析:D 【解析】题解析:∵AB 为⊙O 直径,∴∠ACB =90°,∴∠ACD =90°-∠DCB =90°-20°=70°,∴∠DBA =∠ACD =70°.故选D .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.10.C解析:C 【解析】 【分析】 【详解】解:①由纵坐标看出,起跑后1小时内,甲在乙的前面,故①正确; ②由横纵坐标看出,第一小时两人都跑了10千米,故②正确; ③由横纵坐标看出,乙比甲先到达终点,故③错误; ④由纵坐标看出,甲乙二人都跑了20千米,故④正确; 故选C .11.A解析:A 【解析】 【分析】①利用线段垂直平分线的性质的逆定理可得结论;②证△OMB ≌△OEB 得△EOB ≌△CMB ;③先证△BEF 是等边三角形得出BF=EF ,再证▱DEBF 得出DE=BF ,所以得DE=EF ;④由②可知△BCM ≌△BEO ,则面积相等,△AOE 和△BEO 属于等高的两个三角形,其面积比就等于两底的比,即S △AOE :S △BOE =AE :BE ,由直角三角形30°角所对的直角边是斜边的一半得出BE=2OE=2AE ,得出结论S △AOE :S △BOE =AE :BE=1:2. 【详解】 试题分析:①∵矩形ABCD 中,O 为AC 中点, ∴OB=OC , ∵∠COB=60°, ∴△OBC 是等边三角形, ∴OB=BC ,∵FO=FC , ∴FB 垂直平分OC , 故①正确;②∵FB 垂直平分OC , ∴△CMB ≌△OMB , ∵OA=OC ,∠FOC=∠EOA ,∠DCO=∠BAO , ∴△FOC ≌△EOA ,∴FO=EO , 易得OB ⊥EF , ∴△OMB ≌△OEB , ∴△EOB ≌△CMB , 故②正确; ③由△OMB ≌△OEB ≌△CMB 得∠1=∠2=∠3=30°,BF=BE , ∴△BEF 是等边三角形, ∴BF=EF ,∵DF ∥BE 且DF=BE , ∴四边形DEBF 是平行四边形, ∴DE=BF , ∴DE=EF , 故③正确;④在直角△BOE 中∵∠3=30°, ∴BE=2OE , ∵∠OAE=∠AOE=30°, ∴AE=OE , ∴BE=2AE ,∴S △AOE :S △BOE =1:2,又∵FM:BM=1:3,∴S △BCM =34 S △BCF =34S △BOE ∴S △AOE :S △BCM =2:3故④正确; 所以其中正确结论的个数为4个考点:(1)矩形的性质;(2)等腰三角形的性质;(3)全等三角形的性质和判定;(4)线段垂直平分线的性质12.C解析:C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ()244x x x x -+=-- ,故A 选项错误; B. ()21x xy x x x y ++=++,故B 选项错误; C. ()()()2x x y y y x x y -+-=- ,故C 选项正确;D. 244x x -+=(x-2)2,故D 选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底. 二、填空题13.【解析】【分析】根据反比例函数的几何意义可知:的面积为的面积为然后两个三角形面积作差即可求出结果【详解】解:根据反比例函数的几何意义可知:的面积为的面积为∴的面积为∴∴故答案为8【点睛】本题考查反比 解析:【解析】【分析】根据反比例函数k 的几何意义可知:AOP ∆的面积为112k ,BOP ∆的面积为212k ,然后两个三角形面积作差即可求出结果.【详解】解:根据反比例函数k 的几何意义可知:AOP ∆的面积为112k ,BOP ∆的面积为212k , ∴AOB ∆的面积为121122k k -,∴1211422k k -=,∴128k k -=. 故答案为8.【点睛】本题考查反比例函数k 的几何意义,解题的关键是正确理解k 的几何意义,本题属于基础题型. 14.【解析】试题解析:∵四边形ABCD 是矩形∴OB=ODOA=OCAC=BD∴OA=OB∵AE 垂直平分OB∴AB=AO∴OA=AB=OB=3∴BD=2OB=6∴AD=【点睛】此题考查了矩形的性质等边三角解析:【解析】试题解析:∵四边形ABCD 是矩形,∴OB =OD ,OA =OC ,AC =BD ,∴OA=OB ,∵AE 垂直平分OB ,∴AB =AO ,∴OA =AB =OB =3,∴BD =2OB =6,∴AD ==【点睛】此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键. 15.4【解析】【分析】将所给等式变形为然后两边分别平方利用完全平方公式即可求出答案【详解】∵∴∴∴∴故答案为:4【点睛】本题考查了二次根式的运算解题的关键是熟练运用二次根式的运算以及完全平方公式注意正确 解析:4【解析】【分析】将所给等式变形为x =【详解】∵x=,∴x-=∴(22x=,∴226x-+=,∴24x-=,故答案为:4【点睛】本题考查了二次根式的运算,解题的关键是熟练运用二次根式的运算以及完全平方公式.注意正确的变形可以使得运算简便.16.12【解析】【详解】解:设点A的坐标为(a)则点B的坐标为()∵AB∥x 轴AC=2CD∴∠BAC=∠ODC∵∠ACB=∠DCO∴△ACB∽△DCO∴∵OD=a则AB=2a∴点B的横坐标是3a∴3a=解析:12【解析】【详解】解:设点A的坐标为(a,4a),则点B的坐标为(ak4,4a),∵AB∥x轴,AC=2CD,∴∠BAC=∠ODC,∵∠ACB=∠DCO,∴△ACB∽△DCO,∴AB AC2 DA CD1==,∵OD=a,则AB=2a,∴点B的横坐标是3a,∴3a=ak4,解得:k=12.故答案为12.17.【解析】【分析】根据解分式方程的步骤即可解答【详解】方程两边都乘以得:解得:检验:当时所以分式方程的解为故答案为【点睛】考查了解分式方程解分式方程的基本思想是转化思想把分式方程转化为整式方程求解解分解析:x1=【解析】【分析】根据解分式方程的步骤,即可解答.【详解】方程两边都乘以x 2-,得:32x 2x 2--=-,解得:x 1=,检验:当x 1=时,x 21210-=-=-≠,所以分式方程的解为x 1=,故答案为x 1=.【点睛】考查了解分式方程,()1解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解().2解分式方程一定注意要验根.18.【解析】【分析】利用非负数的性质结合绝对值与二次根式的性质即可求出ab 的值进而即可得出答案【详解】∵+|b﹣1|=0又∵∴a﹣b=0且b ﹣1=0解得:a=b=1∴a+1=2故答案为2【点睛】本题主要解析:【解析】【分析】利用非负数的性质结合绝对值与二次根式的性质即可求出a ,b 的值,进而即可得出答案.【详解】b ﹣1|=0,0≥,|1|0b -≥,∴a ﹣b =0且b ﹣1=0,解得:a =b =1,∴a +1=2.故答案为2.【点睛】本题主要考查了非负数的性质以及绝对值与二次根式的性质,根据几个非负数的和为0,那么每个非负数都为0得到关于a 、b 的方程是解题的关键.19.66【解析】【分析】首先根据正五边形的性质得到度然后根据角平分线的定义得到度再利用三角形内角和定理得到的度数【详解】解:∵五边形为正五边形∴度∵是的角平分线∴度∵∴故答案为:66【点睛】本题考查了多 解析:66【解析】【分析】首先根据正五边形的性质得到108EAB ∠=度,然后根据角平分线的定义得到54PAB ∠=度,再利用三角形内角和定理得到APB ∠的度数.【详解】解:∵五边形ABCDE 为正五边形,∴108EAB ∠=度,∵AP 是EAB ∠的角平分线,∴54PAB ∠=度,∵60ABP ∠=︒,∴180605466APB ∠=︒-︒-︒=︒.故答案为:66.【点睛】本题考查了多边形内角与外角,题目中还用到了角平分线的定义及三角形内角和定理.20.【解析】【分析】【详解】试题分析:画树状图如下:∴P(两次摸到同一个小球)==故答案为考点:列表法与树状图法;概率公式 解析:14. 【解析】 【分析】【详解】 试题分析:画树状图如下:∴P (两次摸到同一个小球)=416=14.故答案为14. 考点:列表法与树状图法;概率公式.三、解答题21.(1)AD=95;(2)当点E 是AC 的中点时,ED 与⊙O 相切;理由见解析. 【解析】【分析】(1)由勾股定理易求得AB 的长;可连接CD ,由圆周角定理知CD ⊥AB ,易知△ACD ∽△ABC ,可得关于AC 、AD 、AB 的比例关系式,即可求出AD 的长.(2)当ED 与 O 相切时,由切线长定理知EC=ED ,则∠ECD=∠EDC ,那么∠A 和∠DEC 就是等角的余角,由此可证得AE=DE ,即E 是AC 的中点.在证明时,可连接OD ,证OD ⊥DE 即可.【详解】(1)在Rt △ACB 中,∵AC=3cm ,BC=4cm ,∠ACB=90°,∴AB=5cm ;连接CD ,∵BC 为直径,∴∠ADC=∠BDC=90°;∵∠A=∠A,∠ADC=∠ACB,∴Rt△ADC∽Rt△ACB;∴,∴;(2)当点E是AC的中点时,ED与⊙O相切;证明:连接OD,∵DE是Rt△ADC的中线;∴ED=EC,∴∠EDC=∠ECD;∵OC=OD,∴∠ODC=∠OCD;∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°;∴ED⊥OD,∴ED与⊙O相切.【点睛】本题考查了圆周角定理、切线的判定、相似三角形的判定与性质,熟练掌握该知识点是本题解题的关键.22.(1)证明见解析;(2)BH=.【解析】【分析】(1)先判断出∠AOC=90°,再判断出OC∥BD,即可得出结论;(2)先利用相似三角形求出BF,进而利用勾股定理求出AF,最后利用面积即可得出结论.【详解】(1)连接OC,∵AB是⊙O的直径,点C是的中点,∴∠AOC=90°,∵OA=OB,CD=AC,∴OC 是△ABD 是中位线,∴OC ∥BD ,∴∠ABD =∠AOC =90°,∴AB ⊥BD ,∵点B 在⊙O 上,∴BD 是⊙O 的切线;(2)由(1)知,OC ∥BD ,∴△OCE ∽△BFE , ∴,∵OB =2,∴OC =OB =2,AB =4,, ∴, ∴BF =3,在Rt △ABF 中,∠ABF =90°,根据勾股定理得,AF =5,∵S △ABF =AB•BF =AF•BH ,∴AB•BF =AF•BH ,∴4×3=5BH , ∴BH =. 【点睛】此题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键.23.(1)直线的表达式为5106y x =-,双曲线的表达式为30y x =-;(2)①52;②当06t <<时,BCD ∠的大小不发生变化,tan BCD ∠的值为56;③t 的值为52或152. 【解析】【分析】(1)由点(12,0)A 利用待定系数法可求出直线的表达式;再由直线的表达式求出点B 的坐标,然后利用待定系数法即可求出双曲线的表达式;(2)①先求出点C 的横坐标,再将其代入双曲线的表达式求出点C 的纵坐标,从而即可得出t 的值;②如图1(见解析),设直线AB 交y 轴于M ,则(0,10)M -,取CD 的中点K ,连接AK 、BK .利用直角三角形的性质证明A 、D 、B 、C 四点共圆,再根据圆周角定理可得BCD DAB ∠=∠,从而得出tan tan OM BCD DAB OA∠=∠=,即可解决问题; ③如图2(见解析),过点B 作⊥BM OA 于M ,先求出点D 与点M 重合的临界位置时t 的值,据此分05t <<和512t ≤<两种情况讨论:根据,,A B C 三点坐标求出,,AM BM AC 的长,再利用三角形相似的判定定理与性质求出DM 的长,最后在Rt ACD ∆中,利用勾股定理即可得出答案.【详解】(1)∵直线10y kx =-经过点(12,0)A 和(,5)B a -∴将点(12,0)A 代入得12100k -= 解得56k = 故直线的表达式为5106y x =- 将点(,5)B a -代入直线的表达式得51056a -=- 解得6a =(6,5)B ∴- ∵双曲线(0)m y x x=>经过点(6,5)B - 56m ∴=-,解得30m =- 故双曲线的表达式为30y x =-; (2)①//AC y 轴,点A 的坐标为(12,0)A∴点C 的横坐标为12 将其代入双曲线的表达式得305122y =-=- ∴C 的纵坐标为52-,即52AC = 由题意得512t AC ⋅==,解得52t = 故当点C 在双曲线上时,t 的值为52; ②当06t <<时,BCD ∠的大小不发生变化,求解过程如下:若点D 与点A 重合由题意知,点C 坐标为(12,)t -由两点距离公式得:222(612)(50)61AB =-+--= 2222(126)(5)36(5)BC t t =-+-+=+-+22AC t =由勾股定理得222AB BC AC +=,即226136(5)t t ++-+=解得12.2t =因此,在06t <<范围内,点D 与点A 不重合,且在点A 左侧如图1,设直线AB 交y 轴于M ,取CD 的中点K ,连接AK 、BK由(1)知,直线AB 的表达式为5106y x =- 令0x =得10y =-,则(0,10)M -,即10OM =点K 为CD 的中点,BD BC ⊥12BK DK CK CD ∴===(直角三角形中,斜边上的中线等于斜边的一半) 同理可得:12AK DK CK CD === BK DK CK AK ∴===∴A 、D 、B 、C 四点共圆,点K 为圆心BCD DAB ∴∠=∠(圆周角定理)105tan tan 126OM BCD DAB OA ∴∠=∠===;③过点B 作⊥BM OA 于M由题意和②可知,点D 在点A 左侧,与点M 重合是一个临界位置此时,四边形ACBD 是矩形,则5AC BD ==,即5t =因此,分以下2种情况讨论:如图2,当05t <<时,过点C 作CN BM ⊥于N(6,5(1),2,0),(12,)B A t C --12,6,6,5,OA OM AM OA OM BM AC t ∴===-===90CBN DBM BDM DBM ∠+∠=∠+∠=︒CBN BDM ∴∠=∠又90CNB BMD ∠=∠=︒CNB BMD ∴∆~∆ CN BN BM DM ∴= AM BM AC BM DM -∴=,即655t DM-= 5(5)6DM t ∴=- 56(5)6AD AM DM t ∴=+=+- 由勾股定理得222AD AC CD +=即222513616(5)()612t t ⎡⎤+-+=⎢⎥⎣⎦解得52t =或152t =(不符题设,舍去) 当512t ≤<时,同理可得:222513616(5)()612t t ⎡⎤--+=⎢⎥⎣⎦解得152t =或52t =(不符题设,舍去) 综上所述,t 的值为52或152.【点睛】本题考查反比例函数综合题、锐角三角函数、相似三角形的判定和性质、四点共圆、勾股定理等知识点,解题的关键是学会添加常用辅助线,构造相似三角形解决问题.24.(1) ),,;(2)见解析;(3)①随着的增大而减小;②图象关于直线对称;③函数的取值范围是. 【解析】【分析】(1)①利用线段的和差定义计算即可.②利用平行线分线段成比例定理解决问题即可.(2)①利用函数关系式计算即可.②描出点,即可.③由平滑的曲线画出该函数的图象即可.(3)根据函数图象写出两个性质即可(答案不唯一).【详解】解:(1)①如图3中,由题意,,,,故答案为:,.②作于.,,,,,,故答案为:,.(2)①当时,,当时,,故答案为2,6.②点,点如图所示.③函数图象如图所示.(3)性质1:函数值的取值范围为. 性质2:函数图象在第一象限,随的增大而减小.【点睛】 本题属于几何变换综合题,考查了平行线分线段成比例定理,函数的图象等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.25.(1)小聪上午7:30从飞瀑出发;(2)点B 的实际意义是当小慧出发1.5 h 时,小慧与小聪相遇,且离宾馆的路程为30 km.;(3)小聪到达宾馆后,立即以30 km/h 的速度按原路返回,那么返回途中他11:00遇见小慧.【解析】【分析】(1)由时间=路程÷速度,可得小聪骑车从飞瀑出发到宾馆所用时间为:50÷20=2.5(小时),从10点往前推2.5小时,即可解答;(2)先求GH 的解析式,当s=30时,求出t 的值,即可确定点B 的坐标;(3)根据50÷30=53(小时)=1小时40分钟,确定当小慧在D 点时,对应的时间点是10:20,而小聪到达宾馆返回的时间是10:00,设小聪返回x 小时后两人相遇,根据题意得:30x+30(x ﹣)=50,解得:x=1,10+1=11点,即可解答.【详解】(1)小聪骑车从飞瀑出发到宾馆所用时间为:50÷20=2.5(小时), ∵上午10:00小聪到达宾馆,∴小聪上午7点30分从飞瀑出发.(2)3﹣2.5=0.5,∴点G 的坐标为(0.5,50),设GH 的解析式为s kt b =+,把G (0.5,50),H (3,0)代入得;150{230k b k b +=+=,解得:20{60k b =-=, ∴s=﹣20t+60,当s=30时,t=1.5,∴B 点的坐标为(1.5,30),点B 的实际意义是当小慧出发1.5小时时,小慧与小聪相遇,且离宾馆的路程为30km;(3)50÷30=53(小时)=1小时40分钟,12﹣53=1103,∴当小慧在D点时,对应的时间点是10:20,而小聪到达宾馆返回的时间是10:00,设小聪返回x小时后两人相遇,根据题意得:30x+30(x﹣13)=50,解得:x=1,10+1=11=11点,∴小聪到达宾馆后,立即以30km/h的速度按原路返回,那么返回途中他11点遇见小慧.。

2020年四川省成都七中高考数学一诊试卷(文科)-教师用卷

2020年四川省成都七中高考数学一诊试卷(文科)-教师用卷

2020年四川省成都七中高考数学一诊试卷(文科)副标题题号一二三总分得分一、选择题(本大题共12小题,共60.0分)1.复数z=a+bi(a,b∈R)的虚部记作Im(z)=b,则Im(3+i1+i)=()A. −2B. −1C. 1D. 2【答案】B【解析】解:∵3+i1+i =(3+i)(1−i)(1+i)(1−i)=4−2i2=2−i,又复数z=a+bi(a,b∈R)的虚部记作Im(z)=b,∴Im(3+i1+i)=−1.故选:B.直接由复数代数形式的乘除运算化简3+i1+i,再根据题目中定义的复数的虚部,可得答案.本题考查了复数代数形式的乘除运算、虚部的定义,属于基础题.2.执行如图所示的程序框图,输出的S值为()A. 3B. −6C. 10D. −15【答案】C【解析】解:由程序框图知,程序的运行功能是求S=−12+22−32+42−⋯可得:当i=5时,不满足条件i<5,程序运行终止,输出S═−12+22−32+42=10.故选:C.根据程序框图判断,程序的运行功能是求S=−12+22−32+42,计算可得答案.本题考查了循环结构的程序框图,解答此类问题的关键是判断程序框图的功能.3.关于函数f(x)=|tanx|的性质,下列叙述不正确的是()A. f(x)的最小正周期为π2B. f(x)是偶函数C. f(x)的图象关于直线x=kπ2(k∈Z)对称D. f(x)在每一个区间(kπ,kπ+π2)(k∈Z)内单调递增【答案】A【解析】【分析】本题考查了正切函数的图象与性质,是基础题.根据正切函数的图象与性质,结合绝对值的意义,对选项中的结论进行判断即可.【解答】解:对于函数f(x)=|tanx|,根据该函数的图象与性质知,其最小正周期为π,A错误;又f(−x)=|tan(−x)|=|tanx|=f(x),所以f(x)是定义域上的偶函数,B正确;根据函数f(x)的图象与性质知,f(x)的图象关于直线x=kπ2(k∈Z)对称,C正确;根据f(x)的图象与性质知,f(x)在每一个区间(kπ,kπ+π2)(k∈Z)内单调递增,D正确.故选:A.4.已知a>0,b>0,则“a≤1且b≤1”是“a+b≤2且ab≤1”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】解:∵a>0,b>0,“a≤1且b≤1”可得:“a+b≤2且ab≤1”,反之不成立:取a=32,b=12,满足a+b≤2且ab≤1,而a≤1且b≤1不成立.故“a≤1且b≤1”是“a+b≤2且ab≤1”的充分不必要条件.故选:A.a>0,b>0,“a≤1且b≤1”可得:“a+b≤2且ab≤1”,反之不成立:取a=32,b=12,即可判断出结论.本题考查了不等式的性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.5.某几何体的三视图如图所示,则该几何体的表面积为()A. 36+12πB. 36+16πC. 40+12πD. 40+16π【答案】C【解析】解:由三视图可知几何体为长方体与半圆柱的组合体,作出几何体的直观图如图所示:其中半圆柱的底面半径为2,高为4,长方体的棱长分别为4,2,2,∴几何体的表面积S=12π×22×2+12×π×4×4+2×4+2×4×2+2×4+2×2×2=12π+40.故选:C.几何体为棱柱与半圆柱的组合体,作出直观图,代入数据计算.本题考查了几何体的常见几何体的三视图,几何体表面积计算,属于中档题.6.在约束条件:{x≤1y≤2x+y−1≥0下,目标函数z=ax+by(a>0,b>0)的最大值为1,则ab的最大值等于()A. 12B. 38C. 14D. 18【答案】D【解析】解:作出不等式组对应的平面区域如图:(阴影部分),由z=ax+by(a>0,b>0),则y=−ab x+zb,平移直线y=−ab x+zb,由图象可知当直线y=−abx+zb经过点A(1,2)时直线的截距最大,此时z最大为1.代入目标函数z=ax+by得a+2b=1.则1=a+2b≥2√2ab,则ab≤18当且仅当a=2b=12时取等号,∴ab 的最大值等于18,故选:D .作出不等式组对应的平面区域,利用目标函数取得最大值,确定a ,b 的关系,利用基本不等式求ab 的最大值.本题主要考查线性规划的应用,利用数形结合以及基本不等式是解决此类问题的基本方法.7. 已知正项等比数列{a n }中,S n 为其前n 项和,且a 2a 4=1,S 3=7则S 5=( )A. 152B. 314C. 334D. 172【答案】B【解析】【分析】本题考查等比数列的前5项和的求法,解题时要认真审题,注意等比数列的性质的合理运用,属于基础题.由已知条件利用等比数列的通项公式和前n 项和公式得{a 1q ⋅a 1q 3=1a 1(1−q 3)1−q=7q >0,由此能求出S 5.【解答】解:由已知得: {a 1q ⋅a 1q 3=1a 1(1−q 3)1−q=7q >0,解得a 1=4,q =12, ∴S 5=a 1(1−q 5) 1−q=4(1−125)1−12=314.故选:B .8. 双曲线x 26−y 23=1的渐近线与圆(x −3)2+y 2=r 2(r >0)相切,则r =( )A. √3B. 2C. 3D. 6【答案】A【解析】【分析】本题考查双曲线的性质、点到直线的距离公式,属于基础题.求出渐近线方程,再求出圆心到渐近线的距离,根据此距离和圆的半径相等,求出r . 【解答】解:双曲线的渐近线方程为y =√2,即x ±√2y =0, 圆心(3,0)到直线的距离d =√(√2)2+1=√3,∴r =√3. 故选:A .9. 已知函数f(x)对∀x ∈R 都有f(x)=f(4−x),且其导函数f′(x)满足当x ≠2时,(x −2)f′(x)>0,则当2<a <4时,有( )A. f(2a)<f(2)<f(log2a)B. f(2)<f(2a)<f(log2a)C. f(log2a)<f(2a)<f(2)D. f(2)<f(log2a)<f(2a)【答案】D【解析】解:∵函数f(x)对定义域R内的任意x都有f(x)=f(4−x),∴f(x)关于直线x=2对称;又当x≠2时其导函数f′(x)满足xf′(x)>2f′(x)⇔f′(x)(x−2)>0,∴当x>2时,f′(x)>0,f(x)在(2,+∞)上的单调递增;同理可得,当x<2时,f(x)在(−∞,2)单调递减;f(x)的最小值为f(2)∵2<a<4,∴1<log2a<2,∴2<4−log2a<3,又4<2a<16,f(log2a)=f(4−log2a),f(x)在(2,+∞)上的单调递增;∴f(log2a)<f(2a),∴f(2)<f(log2a)<f(2a),故选:D.由f(x)=f(4−x),可知函数f(x)关于直线x=2对称,由(x−2)f′(x)>0,可知f(x)在(−∞,2)与(2,+∞)上的单调性,从而可得答案.本题综合考查了导数的运用,函数的对称性,单调性的运用,综合运用对数解决问题的能力,属于中档题.10.对圆(x−1)2+(y−1)2=1上任意一点P(x,y),若点P到直线l1:3x−4y−9=0和l2:3x−4y+a=0的距离和都与x,y无关,则a的取值区间为()A. [6,+∞)B. [−4,6]C. (−4,6)D. (−∞,−4]【答案】A【解析】解:设z=|3x−4y+a|+|3x−4y−9|=5(|3x−4y−9|+5|3x−4y+a|),5故|3x−4y+a|+|3x−4y−9|可以看作点P(x,y)到直线l2:3x−4y+a=0与直线l1:3x−4y−9=0距离之和的5倍,∵|3x−4y+a|+|3x−4y−9|的取值与x,y无关,∴这个距离之和与点P在圆上的位置无关,如图所示:可知直线l1平移时,P点与直线l1,l2的距离之和均为l1,l2的距离,即此时圆在两直线内部,=1,当直线l2的与圆相切时,|3−4+a|5化简得|a−1|=5,解得a=6或a=−4(舍去),∴a≥6.故选:A.由题意可得|3x−4y+a|+|3x−4y−9|可以看作点P到直线m:3x−4y+a=0与直线l:3x−4y−9=0距离之和的5倍,根据点到直线的距离公式解得即可.本题考查了直线和圆的位置关系,以及点到直线的距离公式,考查数学转化思想方法,属于难题.11. 若a ⃗ ,b ⃗ ,c ⃗ 满足,|a ⃗ |=|b ⃗ |=2|c ⃗ |=2,则(a ⃗ −b ⃗ )⋅(c ⃗ −b ⃗ )的最大值为( ) A. 10 B. 12 C. 5√3 D. 6√2 【答案】B【解析】解:a ⃗ ,b ⃗ ,c ⃗ 满足,|a ⃗ |=|b ⃗ |=2|c ⃗ |=2, 则(a ⃗ −b ⃗ )⋅(c ⃗ −b ⃗ )=a ⃗ ⋅c ⃗ −a ⃗ ⋅b ⃗ −b ⃗ ⋅c ⃗ +b ⃗ 2=2cos <a ⃗ ,c ⃗ >−4cos <a ⃗ ,b⃗ >−2cos <b ⃗ ,c ⃗ >+4≤12, 当且仅当a ⃗ ,c ⃗ 同向,a ⃗ ,b ⃗ ,反向,b ⃗ ,c ⃗ 反向时,取得最大值.故选:B .利用向量的数量积公式化简表达式,转化求解最大值即可.本题考查了向量的数量积的运算,数量积的模的最值的求法,属于基础题.12. 点M ,N 分别是棱长为1的正方体ABCD −A 1B 1C 1D 1中棱BC ,CC 1的中点,动点P在正方形BCC 1B 1(包括边界)内运动,且PA 1//面AMN ,则PA 1的长度范围为( )A. [1,√52]B. [3√24,√52]C. [3√24,32]D. [1,32]【答案】B【解析】解:取B 1C 1的中点E ,BB 1的中点F ,连结A 1E ,A 1F ,EF ,取EF 中点O ,连结A 1O , ∵点M ,N 分别是棱长为1的正方体ABCD −A 1B 1C 1D 1中棱BC ,CC 1的中点, ∴AM//A 1E ,MN//EF ,∵AM ∩MN =M ,A 1E ∩EF =E , ∴平面AMN//平面A 1EF ,∵动点P 在正方形BCC 1B 1(包括边界)内运动,且PA 1//面AMN ,∴点P 的轨迹是线段EF , ∵A 1E =A 1F =√12+(12)2=√52,EF =12√12+12=√22, ∴A 1O ⊥EF ,∴当P 与O 重合时,PA 1的长度取最小值:A 1O =√(√52)2+(√24)2=3√24,当P 与E(或F)重合时,PA 1的长度取最大值:A 1E =A 1F =√52.∴PA 1的长度范围为[3√24,√52]. 故选:B .取B 1C 1的中点E ,BB 1的中点F ,连结A 1E ,A 1F ,EF ,取EF 中点O ,连结A 1O ,推导出平面AMN//平面A 1EF ,从而点P 的轨迹是线段EF ,由此能求出PA 1的长度范围. 本题考查线段长度的取值范围的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.二、填空题(本大题共4小题,共20.0分)13.命题“∀x∈N,x2>1”的否定为______ .【答案】∃x0∈N,x02≤1【解析】解:因为全称命题的否定是特称命题,所以,命题“∀x∈N,x2>1”的否定为∃x0∈N,x02≤1故答案为:∃x0∈N,x02≤1直接利用全称命题的否定是特称命题,写出结果即可.本题考查命题的否定,全称命题与特称命题的否定关系,是基础题.14.在样本的频率分布直方图中,共有9个小长方形,若第一个长方形的面积为0.02,前五个与后五个长方形的面积分别成等差数列且公差是互为相反数,若样本容量为1600,则中间一组(即第五组)的频数为______.【答案】360【解析】解:设公差为d,那么9个小长方形的面积分别为0.02,0.02+d,0.02+2d,0.02+3d,0.02+4d,0.02+3d,0.02+2d,0.02+d,0.02,而9个小长方形的面积和为1,可得0.18+16d=1解得d=0.8216,∴中间一组的频数为:1600×(0.02+4d)=360.故答案为:360.设出公差,利用9个小长方形面积和为1,求出公差,然后求解中间一组的频数.本题考查频率分布直方图的应用,考查计算能力.15.设O、F分别是抛物线y2=2x的顶点和焦点,M是抛物线上的动点,则|MO||MF|的最大值为______.【答案】2√33.【解析】解:焦点F(12,0),设M(m,n),则n2=2m,m>0,设M到准线x=−12的距离等于d,则由抛物线的定义得|MO||MF|=√m2+n2m+12=√1+m−14m2+m+14,令m−14=t,依题意知,m>0,若t>0,则m−14m2+m+14=tt2+32t+916=1t+916t+32≤13,∴t max =13,此时(|MO||MF|)max =√1+13=2√33;若−14<t <0,y =t +916t+32单调递减,故y <−1,1y ∈(−1,0); 综上所述,(|MO||MF|)max =2√33. 故答案为:2√33. 设M(m,n)到抛物线y 2=2x 的准线x =−12的距离等于d ,由抛物线的定义可得|MO||MF|=√m 2+n 2m+12=√1+m−14m 2+m+14,令m −14=t ,利用基本不等式可求得最大值.本题考查抛物线的定义、简单性质,基本不等式的应用,体现了换元的思想,属于难题.16. 若实数a ,b ∈(0,1)且ab =14,则11−a +21−b 的最小值为______. 【答案】4+4√23【解析】解:因为ab =14,所以b =14a , 因此11−a +21−b =11−a +21−14a,=11−a +8a4a−1, =11−a +2(4a−1)+24a−1,=11−a +24a−1+2,=2(14a−1+24−4a )+2,=23(14a−1+24−4a )[(4a −1)+(4−4a)]+2, =23[1+2+4−4a4a−1+2(4a−1)4−4a]+2,≥23(3+2√2)+2=4+4√23, 当且仅当a =√24+22,取“=”, 及11−a +21−b 的最小值为4+4√23, 故答案为:4+4√23, 先根据条件消掉b ,将b =14a 代入原式得11−a +8a4a−1,再列项并用贴“1“法,最后应用基本不等式求其最小值.本题考查基本不等式的应用,属于中档题.三、解答题(本大题共7小题,共82.0分)17.设△ABC的内角A、B、C的对边分别为a、b、c,已知c=3,且sin(C−π6)⋅cosC=14.(1)求角C的大小;(2)若向量m⃗⃗⃗ =(1,sinA)与n⃗=(2,sinB)共线,求a、b的值.【答案】解:(1)sin(C−π6)⋅cosC=(sinCcosπ6−cosCsinπ6)⋅cosC =√32sinCcosC−12cos2C=√34sin2C−1+cos2C4=12sin(2C−π6)−14=14,∴sin(2C−π6)=1;又0<C<π,∴−π6<2C−π6<11π6,∴2C−π6=π2,解得C=π3;(2)向量m⃗⃗⃗ =(1,sinA)与n⃗=(2,sinB)共线,∴2sinA−sinB=0,∴sinB=2sinA,即b=2a①;又c=3,C=π3,∴c2=a2+b2−2abcosC=a2+b2−ab=9②;由①②联立解得a=√3,b=2√3.【解析】(1)利用三角恒等变换化简sin(C−π6)⋅cosC=14,即可求出C的值;(2)根据向量m⃗⃗⃗ 、n⃗共线,得出sinB=2sinA,即b=2a①;由余弦定理得出a2+b2−ab=9②,①②联立解得a、b的值.本题考查了三角恒等变换以及向量共线定理和正弦、余弦定理的应用问题,是综合性题目.18.学校为了了解高三学生每天自主学习中国古典文学的时间,随机抽取了高三男生和女生各50名进行问卷调查,其中每天自主学习中国古典文学的时间超过3小时的学生称为“古文迷”,否则为“非古文迷”,调查结果如表:(Ⅱ)现从调查的女生中按分层抽样的方法抽出5人进行调查,求所抽取的5人中“古文迷”和“非古文迷”的人数;(Ⅲ)现从(Ⅱ)中所抽取的5人中再随机抽取3人进行调查,记这3人中“古文迷”的人数为ξ,求随机变量ξ的分布列与数学期望.参考公式:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.参考数据:P(K2≥k0)0.500.400.250.050.0250.010 k00.4550.708 1.321 3.841 5.024 6.635【答案】解:(Ⅰ)由列联表得K2=100(26×20−30×34)256×44×50×50≈0.6494<0.708,所以没有60%的把握认为“古文迷”与性别有关.(Ⅱ)调查的50名女生中“古文迷”有30人,“非古文迷”有20人,按分层抽样的方法抽出5人,则“古文迷”的人数为5×3050=3人,“非古文迷”有5×2050=2人.即抽取的5人中“古文迷”和“非古文迷”的人数分别为3人和2人,(Ⅲ)因为ξ为所抽取的3人中“古文迷”的人数,所以ξ的所有取值为1,2,3.P(ξ=1)=C31C22C53=310,P(ξ=2)=C32C21C53=35,P(ξ=3)=C33C53=110.所以随机变量ξ的分布列为ξ123P 31035110于是Eξ=1×310+2×35+3×110=95.【解析】本题考查独立性检验知识的运用,考查随机变量ξ的分布列与数学期望,考查学生的计算能力,属于中档题.(Ⅰ)求出K2,与临界值比较,即可得出结论;(Ⅱ)调查的50名女生中“古文迷”有30人,“非古文迷”有20人,按分层抽样的方法抽出5人,即可得出结论;(Ⅲ)ξ的所有取值为1,2,3.求出相应的概率,即可求随机变量ξ的分布列与数学期望.19.如图,在三棱柱ABC−A1B1C1中,每个侧面均为正方形,D为底边AB的中点,E为侧棱CC1的中点.(1)求证:CD//平面A1EB;(2)求证:AB1⊥平面A1EB;(3)若AB=2,求三棱锥A1−B1BE的体积.【答案】解:(1)证明:设AB1和A1B的交点为O,连接EO,连接OD.因为O为A1B的中点,D为AB的中点,所以OD//BB1且OD=12BB1.又E是CC1中点,所以EC//BB1,且EC=12BB1,所以EC//OD且EC=OD.所以,四边形ECOD为平行四边形.所以EO//CD.又CD⊄平面A1BE,EO⊂平面A1BE,所以CD//平面A1BE.(2)证明:因为三棱柱各侧面都是正方形, 所以BB 1⊥AB ,BB 1⊥BC .所以BB 1⊥平面ABC.因为CD ⊂平面ABC ,所以BB 1⊥CD . 由已知得AB =BC =AC ,所以CD ⊥AB , 所以CD ⊥平面A 1ABB 1.由(1)可知EO//CD , 所以EO ⊥平面A 1ABB 1.所以EO ⊥AB 1.因为侧面是正方形,所以AB 1⊥A 1B .又EO ∩A 1B =O ,EO ⊂平面A 1EB ,A 1B ⊂平面A 1EB , 所以AB 1⊥平面A 1BE .(3)解:由条件求得BE =√5=A 1E ,A 1B =2√2, 所以S △A 1BE =√6,所以三棱锥A 1−B 1BE 的体积为:V A 1−B 1BE =V B 1−A 1BE =13S △A 1BE ⋅|B 1O|=13×√6×√2=2√33. 【解析】(1)设AB 1和A 1B 的交点为O ,连接EO ,连接OD ,推导出四边形ECOD 为平行四边形.从而EO//CD.由此能证明CD//平面A 1BE .(2)推导出BB 1⊥AB ,BB 1⊥BC.从而BB 1⊥平面ABC ,BB 1⊥CD ,推导出CD ⊥AB ,从而CD ⊥平面A 1ABB 1.由EO//CD ,得EO ⊥平面A 1ABB 1.从而EO ⊥AB 1.因为侧面是正方形,得AB 1⊥A 1B .由此能证明AB 1⊥平面A 1BE .(3)三棱锥A 1−B 1BE 的体积为V A 1−B 1BE =V B 1−A 1BE =13S △A 1BE ⋅|B 1O|,由此能求出结果. 本题考查线面平行、线面垂直的证明,考查三棱锥的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.20. 已知椭圆C :x 2a2+y 2b 2=1(a >b >0)的两个焦点分别为F 1(−√2,0),F 2(√2,0),以椭圆短轴为直径的圆经过点M(1,0). (1)求椭圆C 的方程;(2)过点M 的直线l 与椭圆C 相交于A 、B 两点,设点N(3,2),记直线AN ,BN 的斜率分别为k 1,k 2,问:k 1+k 2是否为定值?并证明你的结论. 【答案】解:(1)∵椭圆C :x 2a +y 2b =1(a >b >0)的两个焦点分别为F 1(−√2,0),F 2(√2,0),以椭圆短轴为直径的圆经过点M(1,0), ∴{c =√2b =1a 2=b 2+c 2,解得a =√3,b =1,∴椭圆C 的方程为x 23+y 2=1.(2)k 1+k 2是定值.证明如下:设过M 的直线:y =k(x −1)=kx −k 或者x =1 ①x =1时,代入椭圆,y =±√63,∴令A(1,√63),B(1,−√63), k 1=2−√633−1,k 2=2+√633−1,∴k 1+k 2=2. ②y =kx −k 代入椭圆,(3k 2+1)x 2−6k 2x +(3k 2−3)=0设A(x 1,y 1),B(x 2,y 2).则x 1+x 2=6k 23k 2+1,x 1x 2=3k 2−33k 2+1,y1+y2=6k33k3+1−2k=−2k3k3+1,y1y2=k2x1x2−k2(x1+x2)+k2=−2k23k2+1,k1=2−y13−x1,k2=2−y23−x2,∴k1+k2=6−3y1−2x2+x2y1+6−3y2−2x1+x1x2(3−x1)(3−x2)=2.【解析】(1)由椭圆的两个焦点分别为F1(−√2,0),F2(√2,0),以椭圆短轴为直径的圆经过点M(1,0),列出方程组,能求出椭圆C的方程.(2)设过M的直线:y=k(x−1)=kx−k或者x=1,x=1时,代入椭圆,能求出k1+ k2=2;把y=kx−k代入椭圆,得(3k2+1)x2−6k2x+(3k2−3)=0,由此利用韦达定理能求出k1+k2=2.本题考查椭圆方程的求法,考查两直线斜率之和是否为定值的判断与证明,是中档题,解题时要认真审题,注意椭圆性质的合理运用.21.已知函数f(x)=tx+lnx(t∈R).(1)当t=−1时,证明:f(x)≤−1;(2)若对于定义域内任意x,f(x)≤x⋅e x−1恒成立,求t的范围?【答案】解:(1)证明:即是证明lnx−x≤−1,设g(x)=lnx−x+1,g′(x)=1−xx,当0<x<1,0'/>,g(x)单调递增;当x>1,,g(x)单调递减;所以g(x)在x=1处取到最大值,即g(x)≤g(1)=0,所以lnx−x≤−1得证;(2)解法一:原式子恒成立即t≤e x−lnx+1x在(0,+∞)恒成立,由(1)可以得到x≥lnx+1,所以x⋅e x≥ln(x⋅e x)+1=lnx+x+1,所以e x≥lnx+x+1x =lnx+1x+1,所以e x−lnx+1x≥1,当且仅当x⋅e x=1时取=,于是t的取值范围是(−∞,1].解法二:设ℎ(x)=xe x−tx−lnx(x>0),原题即ℎ(x)≥1恒成立,因为ℎ′(x)=(x+1)e x−t−1x ,而ℎ″(x)=(x+2)e x+1x2>0,所以单调递增,又因为x→0时,,当x→+∞时,,所以在(0,+∞)存在唯一零点,设为x0.所以ℎ′(x0)=(x0+1)e x0−t−1x=0,所以t=(x0+1)e x0−1x,且ℎ(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增,于是ℎ(x)的最小值为ℎ(x0)=x0e x0−tx0−lnx0=−x02⋅e x0−lnx0+1,原题即−x02⋅e x0−lnx0+1≥1,即x02⋅e x0+lnx0≤0,由此式子必然0<x0<1,x02⋅e x0≤−lnx0,把后面的不等式两边同时取对数整理后得x0+lnx0≤ln(−lnx0)+(−lnx0),易证明函数y=x+lnx是增函数,所以得x0≤−lnx0,所以e x0≤1x,故由t=(x0+1)e x0−1x0,得到t≤(x0+1)1x−1x0=1,于是t的取值范围是(−∞,1].解法三:原式子恒成立即t ≤e x −lnx+1x在(0,+∞)恒成立,设φ(x)=e x −lnx+1x,φ′(x)=x 2e x +lnxx 2,设Q(x)=x 2e x +lnx ,Q′(x)=(x 2+2x)e x +1x >0,所以Q(x)单调递增,且Q(12)<0,Q(1)>0,所以Q(x)有唯一零点x 0,而且x 02⋅e x 0+lnx 0=0,所以x 02⋅e x 0=−lnx 0, 两边同时取对数得x 0+lnx 0=ln(−lnx 0)+(−lnx 0),易证明函数y =x +lnx 是增函数,所以得x 0=−lnx 0,所以e x 0=1x 0,所以由φ(x)在(0,x 0)上单调递减,在(x 0,+∞)上单调递增, 所以φ(x)≥φ(x 0)=e x 0−lnx 0+1x 0=1x 0−−x 0+1x 0=2,于是t 的取值范围是(−∞,1].【解析】(1)事实上,只需证明函数g(x)=lnx −x +1的最大值小于等于0即可; (2)解法一,转化为证明t ≤e x −lnx+1x在(0,+∞)恒成立,结合(1)的结论即可得证;解法二,直接构造函数ℎ(x)=xe x −tx −lnx(x >0),证明其大于等于1恒成立即可;解法三,转化为证明t ≤e x −lnx+1x在(0,+∞)恒成立,设φ(x)=e x −lnx+1x,求其最小值即可.本题考查利用导数证明不等式,考查利用导数研究函数的单调性,极值及最值,以及不等式的恒成立问题,考查推理论证及运算求解能力,属于中档题.22. 在极坐标系下,知圆O :ρ=cosθ+sinθ和直线l :ρsin(θ−π4)=√22(ρ≥0,0≤θ≤2π).(1)求圆O 与直线l 的直角坐标方程;(2)当θ∈(0,π)时,求圆O 和直线l 的公共点的极坐标.【答案】解:(1)圆O :ρ=cosθ+sinθ,即ρ2=ρcosθ+ρsinθ, 故圆O 的直角坐标方程为:x 2+y 2−x −y =0, 直线l :ρsin(θ−π4)=√22,即ρsinθ−ρcosθ=1,则直线的直角坐标方程为:x −y +1=0.(2)由(1)知圆O 与直线l 的直角坐标方程,将两方程联立得{x 2+y 2−x −y =0x −y +1=0,解得{x =0y =1.即圆O 与直线l 的在直角坐标系下的公共点为(0,1), 转化为极坐标为(1,π2).【解析】(1)圆O 的极坐标方程化为ρ2=ρcosθ+ρsinθ,由此能求出圆O 的直角坐标方程;直线l 的极坐标方程化为ρsinθ−ρcosθ=1,由此能求出直线l 的直角坐标方程. (2)圆O 与直线l 的直角坐标方程联立,求出圆O 与直线l 的在直角坐标系下的公共点,由此能求出圆O 和直线l 的公共点的极坐标.本题考查直线与圆的直角坐标方程的求法,考查圆与直线的公共点的极坐标的求法,涉及到参数方程、普通方程、极坐标方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.23. 已知函数f(x)=|2x +3|+|2x −1|.(Ⅰ)求不等式f(x)≤5的解集;(Ⅱ)若关于x 的不等式f(x)<|m −1|的解集非空,求实数m 的取值范围. 【答案】解:(Ⅰ)原不等式为:|2x +3|+|2x −1|≤5, 能正确分成以下三类:当x ≤−32时,原不等式可转化为−4x −2≤5,即−74≤x ≤−32; 当−32<x <12时,原不等式可转化为4≤5恒成立,所以−32<x <12; 当x ≥12时,原不等式可转化为4x +2≤5,即12≤x ≤34. 所以原不等式的解集为{x|−74≤x ≤34}.(Ⅱ)由已知函数f(x)={−4x −2,x ≤−324,−32<x <124x +2,x ≥12,可得函数y =f(x)的最小值为4,由f(x)<|m −1|的解集非空得:|m −1|>4. 解得m >5或m <−3.【解析】(Ⅰ)零点分段求解不等式即可;(Ⅱ)由题意得到关于实数m 的不等式,求解不等式即可求得最终结果.本题考查了绝对值不等式的解法,分类讨论的数学思想等,重点考查学生对基础概念的理解和计算能力,属于中等题.。

成都七中高 2020 届一诊模拟数学文科

成都七中高 2020 届一诊模拟数学文科

成都七中高2020届一诊模拟数学(文史类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共 150分,考试时间 120分钟.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1、复数),(R b a bi a z ∈+=的虚部记作b z =)Im(,则3Im()1i i ++=()(A)-1(B)0(C)1(D)22、执行如图所示的程序框图,输出的S 值为()(A)3(B)-6(C)10(D)-153、关于函数()tan f x x =的性质,下列叙述不.正确的是()(A))(x f 的最小正周期为2π(B))(x f 是偶函数(C))(x f 的图象关于直线()2k x k Z π=∈对称(D))(x f 在每一个区间(,),2k k k Z πππ+∈内单调递增4、已知0,0a b >>,则“1a ≤且1b ≤”是“2a b +≤且1ab ≤”的()(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件5、某几何体的三视图如图所示,则该几何体的表面积为(A)π1236+(B)π1636+(C)π1240+(D)π1640+6、在约束条件⎪⎩⎪⎨⎧≥-+≤≤01,2,1:y x y x 下,目标函数z ax by =+(0,0a b >>)的最大值为1,则ab 的最大值等于()(A)21(B)83(C)41(D)81三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17、设ABC ∆的内角C B A ,,的对边分别为c b a ,,,已知3=c ,且sin(2)16C π-=.(1)求角C 的大小;(2)若向量)sin ,1(A =与)sin ,2(B =共线,求b a ,的值.18、学校为了解高二学生每天自主学习中国古典文学的时间,随机抽取了高二男生和女生各50名进行问卷调查,其中每天自主学习中国古典文学的时间超过3小时的学生称为“古文迷”,否则为“非古文迷”,调查结果如下表:(1)根据上表数据判断能否有60%的把握认为“古文迷”与性别有关?(2)现从调查的女生中按分层抽样的方法抽出5人进行理科学习时间的调查,求所抽取的5人中“古文迷”和“非古文迷”的人数;参考公式:22(),()()()()n ad bc K a b c d a c b d -=++++其中n a b c d =+++参考数据:19、如图,在三棱柱111ABC A B C -中,每个侧面均为正方形,D 为底边AB 的中点,E 为侧棱1CC 的中点.(Ⅰ)求证:CD ∥平面1A EB ;(Ⅱ)求证:1AB ⊥平面1A EB ;(Ⅲ)若2=AB ,求三棱锥BE B A 11-体积古文迷非古文迷合计男生262450女生302050合计564410020()P K k ≥0.5000.4000.2500.0500.0250.0100k 0.4550.708 1.321 3.841 5.024 6.635DB CE B 1C 1A A 120、已知椭圆2222:1(0)x y C a b a b+=>>的两个焦点分别为1(F ,2F ,以椭圆短轴为直径的圆经过点(1,0)M .(1)求椭圆C 的方程;(2)过点M 斜率为k 的直线l 与椭圆C 相交于B A ,两点,设点(3,2)N ,记直线BN AN ,的斜率分别为12,k k ,问:12k k +是否为定值?并证明你的结论.21、已知函数()ln ()f x tx x t R =+∈(1)当1t =-时,证明:()1f x ≤-(2)若对于定义域内任意x ,1)(-⋅≤xe x xf 恒成立,求t 的范围?请考生在第22、23两题中任选一题作答。

四川省成都市第七中学2020届高三数学上学期一诊模拟试题理含解析

四川省成都市第七中学2020届高三数学上学期一诊模拟试题理含解析

四川省成都市第七中学2020届高三数学上学期一诊模拟试题 理(含解析)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数(,)z a bi a b R =+∈的虚部记作Im()z b =,则3Im 1i i +⎛⎫= ⎪+⎝⎭( ) A. -1 B. 0C. 1D. 2【答案】A 【解析】 【分析】直接由复数代数形式的乘除运算化简31ii++,再根据题目中定义的复数的虚部,可得答案. 【详解】解:3(3)(1)4221(1)(1)2i i i ii i i i ++--===-++-, 又复数(,)z a bi a b R =+∈的虚部记作()Im z b =, 3()11iIm i+∴=-+. 故选:A .【点睛】本题考查了复数代数形式的乘除运算、虚部的定义,属于基础题. 2.执行如图所示的程序框图,输出的s 值为( )A.3B. 6-C. 10D. 15-【答案】C 【解析】【分析】程序框图的作用是计算22221234-+-+,故可得正确结果. 【详解】根据程序框图可知2222123410S=-+-+=,故选C. 【点睛】本题考查算法中的选择结构和循环结构,属于容易题. 3.关于函数()tan f x x=的性质,下列叙述不正确的是()A. ()f x的最小正周期为2πB. ()f x是偶函数C. ()f x的图象关于直线()2k x k Zπ=∈对称D. ()f x在每一个区间(,)()2k k k Zπππ+∈内单调递增【答案】A 【解析】试题分析:因为1()tan()()22tan f x x f x xππ+=+=≠,所以A错;()tan()tan ()f x x x f x -=-==,所以函数()f x 是偶函数,B 正确;由()tan f x x =的图象可知,C 、D 均正确;故选A. 考点:正切函数的图象与性质.4.已知0,0a b >>,则“1a ≤且1b ≤”是“2a b +≤且1ab ≤”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件【答案】A 【解析】试题分析:当01a <≤且01b <≤时,由不等式性质可得2a b +≤且1ab ≤;当31,22a b ==,满足2a b +≤且1ab ≤,但不满足1a ≤且1b ≤,所以“1a ≤且1b ≤”是“2a b +≤且1ab ≤”的充分不必要条件,故选A.考点:1.不等式性质;2.充要条件.5.如果21nx ⎫-⎪⎭的展开式中含有常数项,则正整数n 的最小值是( )A. 3B. 4C. 5D. 6【答案】C 【解析】 【分析】利用二项展开式的通项公式中x 的指数为0,得到5n r =,由此可得正整数n 的最小值是5.【详解】因为21nx ⎫⎪⎭的展开式的通项公式为52121()(1)n rrn rr r rr nn T C C x x--+=-=-,(0,1,2,)r n =,令502n r-=,则5n r =,因为*n N ∈,所以1r =时,n 取最小值5. 故选:C【点睛】本题考查了二项展开式的通项公式,利用通项公式是解题关键,属于基础题.6.在约束条件:1210xyx y≤⎧⎪≤⎨⎪+-≥⎩下,目标函数(0,0)z ax by a b=+>>的最大值为1,则ab的最大值等于()A. 12B.38C.14D.18【答案】D【解析】【分析】作出不等式组对应的平面区域,利用目标函数取得最大值,确定a,b的关系,利用基本不等式求ab的最大值.【详解】解:作出不等式组对应的平面区域如图:(阴影部分),由(0,0)z ax by a b=+>>,则a zy xb b=-+,平移直线a zy xb b=-+,由图象可知当直线a zy xb b=-+经过点(1,2)A时直线的截距最大,此时z最大为1.代入目标函数z ax by=+得21a b+=.则1222a b ab=+,则18ab当且仅当122a b==时取等号,ab∴的最大值等于18,故选:D.【点睛】本题主要考查线性规划的应用,利用数形结合以及基本不等式是解决此类问题的基本方法.7.设{a n }是有正数组成的等比数列,n S 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5=( ) A.152B.314C.334D.172【答案】B 【解析】 【分析】由等比数列的性质易得a 3=1,进而由求和公式可得q 12=,再代入求和公式计算可得. 【详解】由题意可得a 2a 4=a 32=1,∴a 3=1, 设{a n }的公比为q ,则q >0, ∴S 3211q q =++1=7,解得q 12=或q 13=-(舍去), ∴a 121q ==4,∴S 551413121412⎛⎫⨯- ⎪⎝⎭==-故选B.【点睛】本题考查等比数列的通项公式和求和公式,属基础题.8. 用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有( ) A. 288个 B. 306个 C. 324个 D. 342个【答案】C 【解析】试题分析:当个位、十位、百位全为偶数时,有3313434390C A C A -=;当个位、十位、百位为两个奇数、一个偶数时,有21312133434333234C C A A C C A -=,所以共有90234324+=种,故选C.考点:1.分类计数原理与分步计数原理;2.排列与组合.【名师点睛】本题主要考查两个基本原理与排列、组合知识的综合应用问题,属难题;计数原理应用的关键问题是合理的分类与分步,分类要按时同一个的标准进行,要做到不重不漏,分类运算中的每一类根据实际情况,要分步进行.9.已知函数()f x 对x R ∀∈都有()(4)f x f x =-,且其导函数()f x '满足当2x ≠时,(2)()0x f x '->,则当24a <<时,有( ) A. ()()22(2)log af f f a <<B. ()()2log (2)2af a f f <<C. ()()2log 2(2)af a f f <<D. ()()2(2)log 2af f a f <<【答案】D 【解析】 【分析】根据导函数()f x '满足当2x ≠时,(2)()0x f x '->,可得()f x 在(,2)-∞上递减,在(2,)+∞上递增,可得(2)f 为最小值,再根据对称轴和单调性可得2(log )(2)af a f <,从而可知选D【详解】因为函数()f x 对x R ∀∈都有()(4)f x f x =-, 所以()f x 的图象关于2x =对称,又当2x >时,'()0f x >,2x <时,'()0f x <, 所以()f x 在(,2)-∞上递减,在(2,)+∞上递增, 所以2x =时,函数取得最小值,因为24a <<,所以2221log 2log log 42a =<<=,2224a >=, 所以224log 3a <-<, 所以224log 2aa <-<,所以2(4log )(2)af a f -<, 所以2(log )(2)af a f <,所以()()2(2)log 2af f a f <<.故选:D【点睛】本题考查了利用导数判断函数的单调性,考查了利用单调性比较大小,考查了利用对数函数的单调性比较大小,属于中档题.10.对圆22(1)(1)1x y -+-=上任意一点(,)P x y ,|349||34|x y x y a --+-+的取值与x ,y 无关,则实数a 的取值范围是( )A. [6,)+∞B. [4,6]-C. (4,6)-D.(,4]-∞-【答案】A 【解析】 【分析】首先将|349||34|x y x y a --+-+的取值与x ,y 无关,转化为圆上的点到直线1;3490l x y --=的距离与到直线2:340l x y a -+=的距离之和与,x y 无关,继续转化为直线2:340l x y a -+=必与圆相离或相切,且圆在1;3490l x y --=与2:340l x y a -+=之间,再根据圆心到直线的距离小于等于半径且(349)(34)0a ---+≤,解不等式组可得答案. 【详解】因为|349||34|x y x y a --+-+的取值与x ,y 无关,所以+的取值与x ,y 无关,取值与x ,y 无关,即圆上的点到直线1;3490l x y --=的距离与到直线2:340l x y a -+=的距离之和与,x y 无关,因为圆心(1,1)到直线1;3490l x y --=21=>,所以直线1;3490l x y --=与圆相离,所以直线2:340l x y a -+=必与圆相离或相切,且圆在1;3490l x y --=与2:340l x y a -+=之间,1≥,且(349)(34)0a ---+≤,所以6a ≥或4a ≤- 且1a ≥, 所以6a ≥. 故选:A【点睛】本题考查了点到直线的距离公式,利用点到直线的距离公式将问题转化为直线2:340l x y a -+=必与圆相离或相切,且圆在1;3490l x y --=与2:340l x y a -+=之间是解题关键,属于中档题.11.若a ,b ,c 满足,||||2||2a b c ===,则()()a b c b -⋅-的最大值为( )A. 10B. 12C.D. 【答案】B 【解析】 【分析】设OA a =,OB b =,OC c =,表示出a b -,-c b 利用向量的数量积的定义求出最值. 【详解】解:设OA a =,OB b =,OC c =,则a b BA -=,c b BC -=()()cos a bc b BA BC BA BC ABC ∴--==⋅∠||||2||2a b c ===4BA ∴≤,3BC ≤当且仅当BA ,BC 同向时()()a b c b --取最大值12故()()max12a bc b --=故选:B【点睛】本题考查向量的数量积的定义,属于中档题.12.已知棱长为3的正方体1111ABCD A B C D -,点E 是棱AB 的中点,12CF FC =,动点P 在正方形11AA DD (包括边界)内运动,且1PB 面DEF ,则PC 的长度范围为( )A.B. 5⎡⎢⎣C. 5⎡⎢⎣D.5⎡⎢⎣ 【答案】B 【解析】 分析】如图:先作出过1B P 且与平面DEF 平行的平面,可知点P 的轨迹为QN ,然后根据平面几何知识求出DP 的最小值和最大值,根据勾股定理可求出PC 的取值范围. 【详解】如图所示:在1AA 上取点Q ,使得112AQ QA =,连接1B Q ,因为12CF FC =,所以1//B Q DF ; 取11C D 的中点M ,连接1B M ,因为E 为AB 的中点,所以1//B M DE ; 因此平面1//B QM 平面DEF ,过M 作//MN DF 交1DD 于N ,则四点1,,,B Q N M 共面,且123DN DD =, 因为1//B P 平面DEF ,所以点P 在线段QN 上运动, 连接DP ,根据正方体的性质可知CD DP ⊥, 所以22PC CD DP +,在平面QADN 中,1=AQ ,3AD =,2DQ =,所以23110DN +21310DQ =+=所以点D 到QN 的距离为13231021102⨯⨯=, 所以DP 310,10, 所以PC 22310335()35+=22(10)319+=. 所以PC 的取值范围是33519⎣. 故选:B【点睛】本题考查了作几何体的截面,考查了平面与平面平行的判定,考查了立体几何中的轨迹问题,关键是作出点P 的运动轨迹,属于中档题.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在答题卡相应位置上) 13.命题“2,1x N x ∀∈>”的否定为__________.” 【答案】2,1x N x ∃∈≤ 【解析】全称命题“,()x M p x ∀∈”的否定是存在性命题“,()x M p x ∃∈⌝”,所以“2,1x N x ∀∈>”的否定是“2,1x N x ∃∈≤”.14.在样本的频率分布直方图中, 共有9个小长方形, 若第一个长方形的面积为0.02, 前五个与后五个长方形的面积分别成等差数列且公差是互为相反数,若样本容量为1600,则中间一组(即第五组)的频数为 ▲ . 【答案】360 【解析】 【详解】根据题意9个小长方形面积依次为0.02,0.02,0.022,0.023,0.024,0.023,0.022,0.02,0.02d d d d d d d +++++++因为9个小长方形面积和为1,所以0.82160.1811600(0.024)36016d d d +=∴=∴⨯+= 15.设O 、F 分别是抛物线22y x =的顶点和焦点,M 是抛物线上的动点,则MOMF的最大值为__________.【解析】【详解】试题分析:设点M 的坐标为(,)M x y ,由抛物线的定义可知,12MF x =+,则22MOMFx x ==++ 令14t x =-,则14t >-,14x t =+,若t>021123111399333216162MO tMF t t t t =+=+≤+=++++,当且仅当3t 4=时等号成立, 所以MOMF的最大值为233. 考点:1.抛物线的定义及几何性质;2.基本不等式.【名师点睛】本题主要考查抛物线的定义及几何性质、基本不等式,属中档题;求圆锥曲线的最值问题,可利用定义和圆锥曲线的几何性质,利用其几何意义求之,也可根据已知条件把所求的问题用一个或两个未知数表示,即求出其目标函数,利用函数的性质、基本不等式或线性规划知识求之. 16.已知14ab =,,(0,1)a b ∈,则1211a b +--的最小值为 .【答案】424+ 【解析】试题分析:因为,所以,则(当且仅当,即时,取等号);故填4243+. 【方法点睛】本题考查利用基本不等式求函数的最值问题,属于难题;解决本题的关键是消元、裂项,难点是合理配凑、恒等变形,目的是出现基本不等式的使用条件(正值、定积),再利用基本不等式进行求解,但要注意验证等号成立的条件. 考点:基本不等式.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.设ABC ∆的内角A 、B 、C 所对的边分别为a 、b 、c ,已知3c =,且1sin cos 64C C π⎛⎫-⋅= ⎪⎝⎭.(1)求角C 的大小;(2)若向量()1,sin m A =与()2,sin n B =共线, 求,a b 的值. 【答案】(1)3π;(2)a b ==. 【解析】试题分析:(1)根据三角恒等变换,sin 216C π⎛⎫-= ⎪⎝⎭,可解得3C π=;(2)由m 与n 共线, 得sin 2sin 0B A -=,再由正弦定理,得2b a =,在根据余弦定理列出方程,即可求解,a b 的值.试题解析:(1)2113sin cos cos ,2cos 2122C C C C C -=-=, 即sin 21,0,2662C C C ππππ⎛⎫-=<<∴-= ⎪⎝⎭,解得3C π=. (2)m 与n 共线,sin 2sin 0B A ∴-=, 由正弦定理sin sin a bA B=,得2b a =,① 3c =,由余弦定理,得2292cos 3a b ab π=+-, ② 联立①②,{a b ==考点:正弦定理;余弦定理.18.学校为了了解高三学生每天自主学习中国古典文学的时间,随机抽取了高三男生和女生各50名进行问卷调查,其中每天自主学习中国古典文学的时间超过3小时的学生称为“古文迷”,否则为“非古文迷”,调查结果如表:(Ⅰ)根据表中数据能否判断有60%的把握认为“古文迷”与性别有关?(Ⅱ)现从调查的女生中按分层抽样的方法抽出5人进行调查,求所抽取的5人中“古文迷”和“非古文迷”的人数;(Ⅲ)现从(Ⅱ)中所抽取的5人中再随机抽取3人进行调查,记这3人中“古文迷”的人数为ξ,求随机变量ξ的分布列与数学期望.参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:20()P K k ≥0.50 0.40 0.25 0.05 0.025 0.0100k0.455 0.708 1.321 3.841 5.024 6.635【答案】(I )没有的把握认为“古文迷”与性别有关;(II )“古文迷”的人数为3,“非古文迷”有2;(III )分布列见解析,期望为95. 【解析】【详解】(I )由列联表得所以没有的把握认为“古文迷”与性别有关.(II )调查的50名女生中“古文迷”有30人,“非古文迷”有20人,按分层抽样的方法抽出5人,则“古文迷”的人数为人,“非古文迷”有人.即抽取的5人中“古文迷”和“非古文迷”的人数分别为3人和2人(III )因为为所抽取3人中“古文迷”的人数,所以的所有取值为1,2,3.,,.所以随机变量ξ的分布列为123于是.19.如图,在三棱柱111ABC A B C -中,每个侧面均为正方形,D 为底边AB 的中点,E 为侧棱1CC 的中点.(Ⅰ)求证:CD ∥平面1A EB ; (Ⅱ)求证:1AB ⊥平面1A EB ;(Ⅲ)求直线1B E 与平面11AAC C 所成角的正弦值.【答案】(Ⅰ)见解析(Ⅱ)见解析(Ⅲ)直线1B E 与平面11AAC C 所成角的正弦值为155【解析】【详解】证明:(Ⅰ)设11AB A B 和的交点为O ,连接EO ,连接EO .因为O 为1AB 的中点,O 为EO 的中点,所以EO ∥1AB 且112OD BB =.又O 是1AB 中点, 所以AB ∥1AB 且112OD BB =,所以AB ∥EO 且EC OD =.所以,四边形ECOD 为平行四边形.所以EO ∥EC .又CD ⊄平面1A BE ,EO ⊂平面1A BE ,则EC ∥平面1A BE . (Ⅱ)因为三棱柱各侧面都是正方形,所以1BB AB ⊥,1BB AB ⊥. 所以1BB ⊥平面ABC .因为CD ⊂平面ABC ,所以1BB AB ⊥. 由已知得AB BC AC ==,所以CD AB ⊥, 所以ABC 平面11A ABB .由(Ⅰ)可知EO ∥EC ,所以CD ⊂平面11A ABB . 所以CD ⊂1AB .因为侧面是正方形,所以11AB A B ⊥.又1EO A B O ⋂=,EO ⊥平面1A EB ,1A B ⊂平面1A EB , 所以1A B ⊂平面1A BE .(Ⅲ)解: 取11A C 中点F ,连接1,?B F EF . 在三棱柱111ABC A B C -中,因1BB ⊥平面ABC ,所以侧面11ACC A ⊥底面1AB ⊥.因为底面1AB ⊥是正三角形,且F 是11A C 中点, 所以111B F AC ⊥,所以1BB ⊥侧面11ACC A . 所以EF 是11A C 在平面11ACC A 上的射影. 所以1FEB ∠是11A C 与平面11ACC A 所成角.111sin B F BE F B E ∠==20.已知椭圆2222:1(0)x y C a b a b+=>>的两个焦点分别为())12,F F ,以椭圆短轴为直径的圆经过点()1,0M . (1)求椭圆C 的方程;(2)过点M 的直线l 与椭圆C 相交于,A B 两点,设点()3,2N ,直线,AN BN 的斜率分别为12,k k ,问12k k +是否为定值?并证明你的结论.【答案】(1)2213x y +=;(2)定值为2.【解析】试题分析:(1)由题意得到c =1b OM ==,所以a =(2)联立直线方程与椭圆方程,得到韦达定理2122631k x x k +=+,21223331k x x k -=+,()()()()()21212121212212121212211222462223393621k x x k x x x x y y k k x x x x x x k +⎡⎤-++-++--⎣⎦+=+===---+++. 试题解析: (1)依题意,c =222a b -=.∵点()1,0M 与椭圆短轴的两个端点的连线相互垂直, ∴1b OM ==,∴a =∴椭圆C 的方程为2213x y +=.(2)①当直线l 的斜率不存在时,由22113x x y =⎧⎪⎨+=⎪⎩解得1x =,3y =±.设A ⎛ ⎝⎭,1,B ⎛ ⎝⎭,则122233222k k ++=+=为定值. ②当直线l 的斜率存在时,设直线l 的方程为:()1y k x =-.将()1y k x =-代入2213x y +=整理化简,得()2222316330k x k x k +-+-=.依题意,直线l 与椭圆C 必相交于两点,设()11,A x y ,()22,B x y ,则2122631k x x k +=+,21223331k x x k -=+. 又()111y k x =-,()221y k x =-, 所以1212122233y y k k x x --+=+-- ()()()()()()122112232333y x y x x x --+--=-- ()()()()()1221121221321393k x x k x x x x x x ⎡⎤⎡⎤---+---⎣⎦⎣⎦=-++ ()()()121212121212224693x x k x x x x x x x x ⎡⎤-++-++⎣⎦=-++()22122222223361222463131633933131k k x x k k k k k k k ⎡⎤--++⨯-⨯+⎢⎥++⎣⎦=--⨯+++ ()()2212212621k k +==+. 综上得12k k +为常数2.点睛:圆锥曲线大题熟悉解题套路,本题先求出椭圆方程,然后与直线方程联立方程组,求得韦达定理,则2122631k x x k +=+,21223331k x x k -=+,()()()()()21212121212212121212211222462223393621k x x k x x x x y y k k x x x x x x k +⎡⎤-++-++--⎣⎦+=+===---+++,为定值.21.已知函数()ln ()f x tx x t =+∈R . (1)当1t =-时,证明:()1f x ≤-;(2)若对于定义域内任意x ,()1xf x x e ≤⋅-恒成立,求t 的范围 【答案】(1)见解析 (2)(,1]-∞ 【解析】 【分析】(1)构造函数()ln 1g x x x =-+利用导数求出函数的单调性,得到函数的最大值,即可得证;(2)参变分离得到ln 1xx t e x +≤-在(0,)+∞恒成立,构造函数ln 1()xx x e xϕ+=-求出函数的最小值,即可得到参数t 的取值范围.【详解】(1)证明:即是证明ln 1x x -≤-,设()ln 1g x x x =-+,1()xg x x-'=当01x <<,()0g x '>,()g x 单调递增;当1x >,()0g x '<,()g x 单调递减;所以()g x 在1x =处取到最大值,即()(1)0g x g ≤=,所以ln 1x x -≤-得证 (2)原式子恒成立即ln 1xx t e x+≤-在(0,)+∞恒成立 设ln 1()xx x e xϕ+=-, 22ln ()x x e x x x ϕ+'=,设2()ln xQ x x e x =+, ()21()20x Q x x x e x '=++>,所以()Q x 单调递增,且102Q ⎛⎫< ⎪⎝⎭,(1)0Q > 所以()Q x 有唯一零点0x ,而且0200ln 0x x ex ⋅+=,所以0200ln x x e x ⋅=-两边同时取对数得()()0000ln ln ln ln x x x x +=-+- 易证明函数ln y x x =+是增函数,所以得00ln x x =-,所以01x e x =所以由()x ϕ在()00,x 上单调递减,在()0,x +∞上单调递增,所以()0000000ln 111()1xx x x x e x x x ϕϕ+-+≥=-=-= 于是t 的取值范围是(,1]-∞【点睛】本题考查利用导数证明不等式恒成立问题,属于中档题.请考生在第22、23两题中任选一题作答.注意:只能做选定的题目.如果多做,则按所做的第一个题目计分.22.在极坐标系下,已知圆:cos sin O ρθθ=+和直线()2:sin 0,0242l πρθρθπ⎛⎫-=≥≤≤ ⎪⎝⎭(1)求圆O 和直线l 的直角坐标方程;(2)当()0,θπ∈时,求圆O 和直线l 的公共点的极坐标.【答案】(1) 圆O 的直角坐标方程为x 2+y 2-x-y=0,直线l 的直角坐标方程为x-y+1=0 (2)【解析】试题分析:(1)根据222cos ,sin ,x y x y ρθρθρ===+ 将圆O 和直线l 极坐标方程化为直角坐标方程(2)先联立方程组解出直线l 与圆O 的公共点的直角坐标,再根据222cos ,sin ,x y x y ρθρθρ===+化为极坐标试题解析:(1)圆O :ρ=cos θ+sin θ, 即ρ2=ρ cos θ+ρ sin θ,故圆O 的直角坐标方程为x 2+y 2-x -y =0. 直线l :ρsin=,即ρsin θ-ρcos θ=1,则直线l 的直角坐标方程为x -y +1=0.(2)由(1)知圆O 与直线l 的直角坐标方程,将两方程联立得,,解得即圆O 与直线l 在直角坐标系下的公共点为(0,1), 将(0,1)转化为极坐标为,即为所求.23.已知函数()2321f x x x =++-. (1)求不等式()5f x <的解集;(2)若关于x 的不等式()1f x m <-的解集非空,求实数m 的取值范围. 【答案】(1)73|44x x ⎧⎫-≤≤⎨⎬⎩⎭(2)6m >或2m <- 【解析】 【分析】(1)通过讨论x 的范围,求出不等式的解集即可;(2)求出f (x )的最小值,得到关于m 的不等式,解出即可. 【详解】(1)原不等式为:23215x x ++-≤,当32x ≤-时,原不等式可转化为425x --≤,即7342x -≤≤-; 当3122x -<<时,原不等式可转化为45≤恒成立,所以3122x -<<;当12x ≥时,原不等式可转化为425x +≤,即1324x ≤≤.所以原不等式的解集为73|44x x ⎧⎫-≤≤⎨⎬⎩⎭. (2)由已知函数()342,2314,22142,2x x f x x x x ⎧--≤-⎪⎪⎪=-<<⎨⎪⎪+≥⎪⎩,可得函数()y f x =的最小值为4,所以24m ->,解得6m >或2m <-.【点睛】含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.。

2020届四川省成都市第七中学高三上学期一诊模拟数学(理)试题(解析版)

2020届四川省成都市第七中学高三上学期一诊模拟数学(理)试题(解析版)

2020届四川省成都市第七中学高三上学期一诊模拟数学(理)试题一、单选题1.复数(,)z a bi a b R =+∈的虚部记作Im()z b =,则3Im 1i i +⎛⎫= ⎪+⎝⎭( ) A .-1 B .0C .1D .2【答案】A2.执行如图所示的程序框图,输出的s 值为( )A .3B .6-C .10D .15-【答案】C3.关于函数()tan f x x =的性质,下列叙述不正确的是( ) A .()f x 的最小正周期为2π B .()f x 是偶函数C .()f x 的图象关于直线()2k x k Z π=∈对称 D .()f x 在每一个区间(,)()2k k k Z πππ+∈内单调递增【答案】A4.已知0,0a b >>,则“1a ≤且1b ≤”是“2a b +≤且1ab ≤”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A5.如果21nx ⎫-⎪⎭的展开式中含有常数项,则正整数n 的最小值是( ) A .3 B .4C .5D .6【答案】C6.在约束条件:1210x y x y ≤⎧⎪≤⎨⎪+-≥⎩下,目标函数(0,0)z ax by a b =+>>的最大值为1,则ab 的最大值等于( ) A .12B .38C .14D .18【答案】D7.设{a n }是有正数组成的等比数列,n S 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5=( ) A .152B .314C .334D .172【答案】B8.用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有( )A .288个B .306个C .324个D .342个 【答案】C9.已知函数()f x 对x R ∀∈都有()(4)f x f x =-,且其导函数()f x '满足当2x ≠时,(2)()0x f x '->,则当24a <<时,有( ) A .()()22(2)log af f f a <<B .()()2log (2)2af a f f <<C .()()2log 2(2)af a f f <<D .()()2(2)log 2af f a f <<【答案】D10.对圆22(1)(1)1x y -+-=上任意一点(,)P x y ,|349||34|x y x y a --+-+的取值与x ,y 无关,则实数a 的取值范围是( ) A .[6,)+∞ B .[4,6]-C .(4,6)-D .(,4]-∞-【答案】A11.若a r ,b r ,c r 满足,||||2||2a b c ===r r r ,则()()a b c b -⋅-r rr r 的最大值为( )A .10B .12C .53D .62【答案】B12.已知棱长为3的正方体1111ABCD A B C D -,点E 是棱AB 的中点,12CF FC =u u u r u u u u r,动点P 在正方形11AA DD (包括边界)内运动,且1PB P 面DEF ,则PC 的长度范围为( ) A .[13,19] B .335,19⎡⎤⎢⎥⎣ C .335,13⎡⎤⎢⎥⎣ D .339,19⎡⎤⎢⎥⎣ 【答案】B【解析】如图:先作出过1B P 且与平面DEF 平行的平面,可知点P 的轨迹为QN ,然后根据平面几何知识求出DP 的最小值和最大值,根据勾股定理可求出PC 的取值范围. 【详解】 如图所示:在1AA 上取点Q ,使得112AQ QA =,连接1B Q ,因为12CF FC =u u u r u u u u r ,所以1//B Q DF ;取11C D 的中点M ,连接1B M ,因为E 为AB 的中点,所以1//B M DE ; 因此平面1//B QM 平面DEF ,过M 作//MN DF 交1DD 于N ,则四点1,,,B Q N M 共面,且123DN DD =, 因为1//B P 平面DEF ,所以点P 在线段QN 上运动, 连接DP ,根据正方体的性质可知CD DP ⊥, 所以22PC CD DP +,在平面QADN 中,1=AQ ,3AD =,2DQ =,所以23110DN =+=21310DQ =+=,所以点D 到QN 的距离为132310215102⨯⨯=⨯, 所以DP 的最小值为310,最大值为10, 所以PC 的最小值为22310335()355+=,最大值为22(10)319+=. 所以PC 的取值范围是335,195⎡⎤⎢⎥⎣. 故选:B 【点睛】本题考查了作几何体的截面,考查了平面与平面平行的判定,考查了立体几何中的轨迹问题,关键是作出点P 的运动轨迹,属于中档题.二、填空题13.命题“2,1x N x ∀∈>”的否定为__________.” 【答案】2,1x N x ∃∈≤【解析】全称命题“,()x M p x ∀∈”的否定是存在性命题“,()x M p x ∃∈⌝”,所以“2,1x N x ∀∈>”的否定是“2,1x N x ∃∈≤”. 14.在样本的频率分布直方图中, 共有9个小长方形, 若第一个长方形的面积为0.02, 前五个与后五个长方形的面积分别成等差数列且公差是互为相反数,若样本容量为1600, 则中间一组(即第五组)的频数为 ▲ . 【答案】360 【解析】略15.设、分别是抛物线的顶点和焦点,是抛物线上的动点,则的最大值为__________. 【答案】【解析】试题分析:设点的坐标为,由抛物线的定义可知,,则,令,则,,所以,当且仅当时等号成立,所以的最大值为.【考点】1.抛物线的定义及几何性质;2.基本不等式.【名师点睛】本题主要考查抛物线的定义及几何性质、基本不等式,属中档题;求圆锥曲线的最值问题,可利用定义和圆锥曲线的几何性质,利用其几何意义求之,也可根据已知条件把所求的问题用一个或两个未知数表示,即求出其目标函数,利用函数的性质、基本不等式或线性规划知识求之.16.已知,,则的最小值为.【答案】【解析】试题分析:因为,所以,则(当且仅当,即时,取等号);故填.【方法点睛】本题考查利用基本不等式求函数的最值问题,属于难题;解决本题的关键是消元、裂项,难点是合理配凑、恒等变形,目的是出现基本不等式的使用条件(正值、定积),再利用基本不等式进行求解,但要注意验证等号成立的条件.【考点】基本不等式.三、解答题17.设的内角、、所对的边分别为、、,已知,且.(1)求角的大小;(2)若向量与共线, 求的值.【答案】(1);(2)。

2020年四川省成都七中中考数学一诊试题及答案

2020年四川省成都七中中考数学一诊试卷A卷一.选择题(每题3分,共30分)1.(3分)﹣2的相反数是()A.﹣2B.2C.﹣D.2.(3分)如图所示的几何体,它的左视图是()A.B.C.D.3.(3分)下列计算中,正确的是()A.a2+a3=a5B.a2•a3=a6C.(a3b2)3=a6b5D.(a2)5=(﹣a5)24.(3分)在平面直角坐标系中,点P的坐标是(2,3),则点P到y轴的距离是()A.2B.3C.D.45.(3分)3月9日中国政府向世界卫生组织捐款2000万美元,捐款将用于新冠肺炎防控、发展中国家公共卫生体系建设等指定用途.2000万用科学记数法表示为()A.2×103B.2000×104C.2×106D.2×1076.(3分)在中考体育加试中,某班30名男生的跳远成绩如下表:成绩/m 1.95 2.00 2.05 2.10 2.15 2.25人数239853这些男生跳远成绩的众数、中位数分别是()A.2.10,2.05B.2.10,2.10C.2.05,2.10D.2.05,2.057.(3分)分式方程+1=的解为()A.无解B.x=1C.x=﹣1D.x=﹣28.(3分)已知:如图,∠ABC=∠EBD,BC=BD,增加一个条件使得△ABC≌△EBD,下列条件中错误的是()A.AC=ED B.BA=BE C.∠C=∠D D.∠A=∠E9.(3分)如图,在⊙O中,若点C是的中点,∠A=50°,则∠BOC=()A.40°B.45°C.50°D.60°10.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给出下列结论:①abc>0;②9a+3b+c =0;③b2﹣4ac<0;④5a+b+c>0.其中正确结论的是()A.①②B.①②③C.①②④D.①②③④二.填空题(每题4分,共16分)11.(4分)的算术平方根是.12.(4分)要使代数式有意义,则x的取值范围是.13.(4分)已知一次函数y=(k+3)x+1的图象经过第一、二、四象限,则k的取值范围是.14.(4分)已知锐角∠AOB,如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;(3)连接OM,MN,ON.根据以上作图过程及所作图形,若∠AOB=20°,则∠OMN=.三.解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(1)计算2cos30°+|﹣2|﹣(2020﹣π)0+(﹣1)2019.(2)解不等式组,并写出该不等式组的整数解.16.(6分)先化简,再求值:(1﹣)÷,其中x=+1.17.(8分)如图,在河对岸有一棵大树A,在河岸B点测得A在北偏东60°方向上,向东前进120m到达C点,测得A在北偏东30°方向上,求河的宽度(精确到0.1m).参考数据:≈1.414,≈1.732.18.(8分)某中学组织七、八、九年级学生参加“州庆60年,梦想红河”作文比赛.该校将收到的参赛作文进行分年级统计,绘制了如图1和图2两幅不完整的统计图.根据图中提供的信息完成以下问题.(1)扇形统计图中九年级参赛作文篇数对应的圆心角是度,并补全条形统计图;(2)经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,把七年级特等奖作文被选登在校刊上的事件记为A,其它年级特等奖作文被选登在校刊上的事件分别记为B,C,D.请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率.19.(10分)已知一次函数y1=kx﹣(2k+1)的图象与x轴和y轴分别交于A、B两点,A(3,0),一次函数与反比例函数y2=﹣的图象分别交于C、D两点.(1)求一次函数与反比例函数解析式;(2)求△OCD的面积;(3)直接写出y1>y2时,x的取值范围.20.(10分)如图1,已知AB是⊙O的直径,点D是弧AB上一点,AD的延长线交⊙O的切线BM于点C,点E为BC的中点,(1)求证:DE是⊙O的切线;(2)如图2,若DC=4,tan∠A=,延长OD交切线BM于点H,求DH的值;(3)如图3,若AB=8,点F是弧AB的中点,当点D在弧AB上运动时,过F作FG⊥AD于G,连接BG,求BG的最小值.B卷四.填空题(每题4分,共20分)21.(4分)绝对值小于的整数有个.22.(4分)已知x1,x2是关于的一元二次方程x2﹣3x+a=0的两个实数根,x12﹣3x1x2+x22=4,则a=.23.(4分)有6张卡片,上面分别标有0,1,2,3,4,5这6个数字,将它们背面洗匀后,任意抽出一张,记卡片上的数字为a,若数a使关于x的分式方程+=2的解为正数,且使关于y的不等式组的解集为y<﹣2,则抽到符合条件的a的概率为.24.(4分)如图,正方形ABCD中,AD=6,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB边的中点,则△EDM的面积是.25.(4分)如图,反比例函数y=(x>0)的图象与矩形ABCO的边AB交于点G,与边BC交于点D,过点A,D作DE∥AF,交直线y=kx(k<0)于点E,F,若OE=OF,BG=GA,则四边形ADEF 的面积为.五.解答题(共30分)26.(8分)某商家在购进一款产品时,由于运输成本及产品成本的提高,该产品第x天的成本y(元/件)与x(天)之间的关系如图所示,并连续60天均以80元/件的价格出售,第x天该产品的销售量z(件)与x(天)满足关系式z=x+15.(1)第25天,该商家的成本是元,获得的利润是元;(2)设第x天该商家出售该产品的利润为w元.①求w与x之间的函数关系式;②求出第几天的利润最大,最大利润是多少?27.(10分)如图1,在矩形ABCD中,AB=8,AD=10,E是CD边上一点,连接AE,将矩形ABCD沿AE折叠,顶点D恰好落在BC边上点F处,延长AE交BC的延长线于点G.(1)求线段CE的长;(2)如图2,M,N分别是线段AG,DG上的动点(与端点不重合),且∠DMN=∠DAM,设DN=x.①求证四边形AFGD为菱形;②是否存在这样的点N,使△DMN是直角三角形?若存在,请求出x的值;若不存在,请说明理由.28.(12分)如图,在平面直角坐标系xOy中,将抛物线y=﹣x2+bx+c与直线y=﹣x+1相交于点A(0,1)和点B(3,﹣2),交x轴于点C,顶点为点F,点D是该抛物线上一点.(1)求抛物线的函数表达式;(2)如图1,若点D在直线AB上方的抛物线上,求△DAB的面积最大时点D的坐标;(3)如图2,若点D在对称轴左侧的抛物线上,且点E(1,t)是射线CF上一点,当以C、B、D为顶点的三角形与△CAE相似时,求所有满足条件的t的值.参考答案A卷一.选择题(每题3分,共30分)1.B;2.C;3.D;4.A;5.D;6.C;7.B;8.A;9.A;10.C;二.填空题(每题4分,共16分)11.;12.x≥4;13.k<﹣3;14.60°;三.解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.解:(1)原式=2×+2﹣×1﹣1=+2﹣﹣1=1;(2),由①得:x<2,由②得:x>﹣1,∴不等式组的解集为﹣1<x<2,则该不等式组的整数解为0,1.16.解:原式=•=•=,当x=+1时,原式==.17.解:过点A作AD⊥直线BC,垂足为点D,如图所示.在Rt△ABD中,tan∠BAD=,∴BD=AD•tan60°=AD;在Rt△ACD中,tan∠CAD=,∴CD=AD•tan30°=AD.∴BC=BD﹣CD=AD=120,∴AD=103.9.∴河的宽度为103.9米.18.解:(1)20÷20%=100,九年级参赛作文篇数对应的圆心角=360°×=126°;八年级人数为:100﹣20﹣35=45,补全条形统计图如图所示:故答案为:126;(2)列表如下:A B C DA AB AC ADB AB BC BDC AC BC CDD AD BD CD由表格可知,共有12种可能性结果,它们发生的可能性相等,其中七年级特等奖作文被选登在校刊上的有6种结果,∴七年级特等奖作文被选登在校刊上的概率为.19.解:(1)把A(3,0)代入y1=kx﹣(2k+1)中得,3k﹣(2k+1)=0,解得:k=1,∴一次函数的解析式为:y1=x﹣3,反比例函数解析式为:y2=﹣;(2)解得,,,∴C(1,﹣2),D(2,﹣1);∵A(3,0),B(0,﹣3),∴△OCD的面积=S△AOB﹣S△BOC﹣S△AOD=﹣﹣=;(3)∵C(1,﹣2),D(2,﹣1),∴当y1>y2时,x的取值范围为:0<x<1或x>2.20.(1)证明:如图,连接OD,BD,∵AB是⊙O的直径,∴∠ADB=∠CDB=90°,∵BM是⊙O的切线,∴∠ABC=90°,∵点E是BC的中点,∴DE=BC=BE=CE,∴∠EDB=∠EBD,又∵OD=OB,∴∠ODB=∠OBD,∴∠ODB+∠EDB=∠OBD+∠EBD=90°,即∠ODE=90°,∴OD⊥DE,∴DE是⊙O的切线;(2)解:如图2,连接BD,∵∠A+∠ABD=∠ABD+∠CBD=90°,∴∠A=∠CBD,∵DC=4,tan∠A=,∴tan∠CBD=tan∠A=,∴BD=8,∴BC==4,∴DE=,∴AB=,∴BO=OD=4,又∵DE是⊙O的切线,∴∠HDE=90°,∴tan∠DHE==,设DH=x,则,∴BH=2x,在Rt△BOH中,OB2+BH2=OH2,即,解得:x=或x=0(舍去),∴DH=;(3)解:如图3,连接BF,取AF中点N,构造圆N,连接NG,∵FG⊥AD于点G,∴当点D在弧AB上运动时,点G在圆N上运动,∴当点N、G、B三点共线时,BG有最小值,∵AB=8,点F是弧AB的中点,∴∠AFB=90°,AF=BF=,∴NG=NF=,BN===2,∴BG=BN﹣NG=2.B卷四.填空题(每题4分,共20分)21.13;22.1;23.;24.;25.;五.解答题(共30分)26.解:(1)由图象可知,此时的产量为z=25+15=40(件),设直线BC的关系为y=kx+b,∴,∴,∴y=x+10,故第25天,该商家的成本是:25+10=35(元)则第25天的利润为:(80﹣35)×40=1800(元);故答案为:35,1800;(2)①当0≤x≤20时,w=(80﹣30)(x+15)=50x+750,当20<x≤60时,w=[80﹣(x+10)](x+15)=﹣x2+55x+1050∴w=.②当0≤x≤20时w=(80﹣30)(x+15)=50x+750,当x=20时,w最大=1750元;当20<x≤60时,w=﹣x2+55x+1050∵﹣1<0,抛物线开口向下,对称轴为x=∴当x=27或x=28时,w=﹣272+55×27+1050=1806(元)∵1806>1750∴第27天或28天的利润最大,最大为1806元.27.(1)解:如图1中,∵四边形ABCD是矩形,∴AD=BC=10,AB=CD=8,∴∠B=∠BCD=90°,由翻折可知:AD=AF=10.DE=EF,设EC=x,则DE=EF=8﹣x.在Rt△ABF中,BF===6,∴CF=BC﹣BF=10﹣6=4,在Rt△EFC中,则有:(8﹣x)2=x2+42,∴x=3,∴EC=3.(2)①证明:如图2中,∵四边形ABCD是矩形,∴AD∥BG,∴∠DAG=∠AGB,∵∠DAG=∠GAF,∴∠GAF=∠AGF,∴AF=FG,∵AD=AF,∴AD=FG,∵AD∥FG,∴四边形AFGD是平行四边形,∵F A=FG,∴四边形AFGD是菱形.②解:∵△DMN是直角三角形,∠DMN=∠DAG<90°,∴只有∠MDN=90°或∠MND=90°.如图3﹣1中,当∠MDN=90°时,∵AD∥CG,∴=,∴=,∴CG=6,∴BG=BC+CG=16,在Rt△ABG中,AG===8,在Rt△DCG中,DG===10,∵AD=DG=10,∴∠DAG=∠AGD,∵∠DAG+∠DEA=90°,∠DGA+∠DMG=90°,∴∠DME=∠DEM,∴DM=DE=5,∵∠MDN=∠MDG,∠DMN=∠DGM,∴△DMN∽△DGM,∴=,∴=,∴x=,如图3﹣2中,当∠MND=90°时,∵∠DGM+∠NMG=90°,∠DMN=∠DGM,∴∠DMN+∠NMG=90°,∴DM⊥AG,∵AD=DG=10,∴AM=MG=4,∴DM===2,∵△DMN∽△DGM,∴=,∴=,∴x=2,综上所述,满足条件的x的值为或2.28.解:(1)将点A(0,1)和点B(3,﹣2)代入抛物物线y=﹣x2+bx+c中得,解得∴y=﹣x2+2x+1(2)如图1所示:过点D作DM∥y轴交AB于点M,设D(a,﹣a2+2a+1),则M(a,﹣a+1).∴DM=﹣a2+2a+1﹣(﹣a+1)=﹣a2+3a∴∵有最大值,当时,此时图1(3)∵OA=OC,如图2,CF∥y轴,∴∠ACE=∠ACO=45°,∴△BCD中必有一个内角为45°,由题意可知,∠BCD不可能为45°,①若∠CBD=45°,则BD∥x轴,∴点D与点B于抛物线的対称轴直线x=1対称,设BD与直线=1交于点H,则H(1,﹣2)B(3,﹣2),D(﹣1,﹣2)此时△BCD是等腰直角三角形,因此△ACE也是等腰直角三角形,(i)当∠AEC=90°时,得到AE=CE=1,∴E(1.1),得到t=1(ii)当∠CAE=90时,得到:AC=AE=,∴CE=2,∴E(1.2),得到t=2图2②若∠CDB=45°,如图3,①中的情况是其中一种,答案同上以点H为圆心,HB为半径作圆,则点B、C、D都在圆H上,设圆H与对称左侧的物线交于另一点D1,则∠CD1B=∠CDB=45°(同弧所对的圆周角相等),即D1也符合题意设由HD1=DH=2解得n1=﹣1(含去),n2=3(舍去),(舍去),∴,则,(i)若△ACE∽△CD1B,则,即,解得(舍去)(ii)△ACE∽△BD1C则,即,解得(舍去)综上所述:所有满足条件的t的值为t=1或t=2或或图3。

2020年四川省成都七中中考数学一诊试题及答案

2020年四川省成都七中中考数学一诊试卷A卷一.选择题(每题3分,共30分)1.(3分)﹣2的相反数是()A.﹣2B.2C.﹣D.2.(3分)如图所示的几何体,它的左视图是()A.B.C.D.3.(3分)下列计算中,正确的是()A.a2+a3=a5B.a2•a3=a6C.(a3b2)3=a6b5D.(a2)5=(﹣a5)24.(3分)在平面直角坐标系中,点P的坐标是(2,3),则点P到y轴的距离是()A.2B.3C.D.45.(3分)3月9日中国政府向世界卫生组织捐款2000万美元,捐款将用于新冠肺炎防控、发展中国家公共卫生体系建设等指定用途.2000万用科学记数法表示为()A.2×103B.2000×104C.2×106D.2×1076.(3分)在中考体育加试中,某班30名男生的跳远成绩如下表:成绩/m 1.95 2.00 2.05 2.10 2.15 2.25人数239853这些男生跳远成绩的众数、中位数分别是()A.2.10,2.05B.2.10,2.10C.2.05,2.10D.2.05,2.057.(3分)分式方程+1=的解为()A.无解B.x=1C.x=﹣1D.x=﹣28.(3分)已知:如图,∠ABC=∠EBD,BC=BD,增加一个条件使得△ABC≌△EBD,下列条件中错误的是()A.AC=ED B.BA=BE C.∠C=∠D D.∠A=∠E9.(3分)如图,在⊙O中,若点C是的中点,∠A=50°,则∠BOC=()A.40°B.45°C.50°D.60°10.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给出下列结论:①abc>0;②9a+3b+c =0;③b2﹣4ac<0;④5a+b+c>0.其中正确结论的是()A.①②B.①②③C.①②④D.①②③④二.填空题(每题4分,共16分)11.(4分)的算术平方根是.12.(4分)要使代数式有意义,则x的取值范围是.13.(4分)已知一次函数y=(k+3)x+1的图象经过第一、二、四象限,则k的取值范围是.14.(4分)已知锐角∠AOB,如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;(3)连接OM,MN,ON.根据以上作图过程及所作图形,若∠AOB=20°,则∠OMN=.三.解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(1)计算2cos30°+|﹣2|﹣(2020﹣π)0+(﹣1)2019.(2)解不等式组,并写出该不等式组的整数解.16.(6分)先化简,再求值:(1﹣)÷,其中x=+1.17.(8分)如图,在河对岸有一棵大树A,在河岸B点测得A在北偏东60°方向上,向东前进120m到达C点,测得A在北偏东30°方向上,求河的宽度(精确到0.1m).参考数据:≈1.414,≈1.732.18.(8分)某中学组织七、八、九年级学生参加“州庆60年,梦想红河”作文比赛.该校将收到的参赛作文进行分年级统计,绘制了如图1和图2两幅不完整的统计图.根据图中提供的信息完成以下问题.(1)扇形统计图中九年级参赛作文篇数对应的圆心角是度,并补全条形统计图;(2)经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,把七年级特等奖作文被选登在校刊上的事件记为A,其它年级特等奖作文被选登在校刊上的事件分别记为B,C,D.请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率.19.(10分)已知一次函数y1=kx﹣(2k+1)的图象与x轴和y轴分别交于A、B两点,A(3,0),一次函数与反比例函数y2=﹣的图象分别交于C、D两点.(1)求一次函数与反比例函数解析式;(2)求△OCD的面积;(3)直接写出y1>y2时,x的取值范围.20.(10分)如图1,已知AB是⊙O的直径,点D是弧AB上一点,AD的延长线交⊙O的切线BM于点C,点E为BC的中点,(1)求证:DE是⊙O的切线;(2)如图2,若DC=4,tan∠A=,延长OD交切线BM于点H,求DH的值;(3)如图3,若AB=8,点F是弧AB的中点,当点D在弧AB上运动时,过F作FG⊥AD于G,连接BG,求BG的最小值.B卷四.填空题(每题4分,共20分)21.(4分)绝对值小于的整数有个.22.(4分)已知x1,x2是关于的一元二次方程x2﹣3x+a=0的两个实数根,x12﹣3x1x2+x22=4,则a=.23.(4分)有6张卡片,上面分别标有0,1,2,3,4,5这6个数字,将它们背面洗匀后,任意抽出一张,记卡片上的数字为a,若数a使关于x的分式方程+=2的解为正数,且使关于y的不等式组的解集为y<﹣2,则抽到符合条件的a的概率为.24.(4分)如图,正方形ABCD中,AD=6,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB边的中点,则△EDM的面积是.25.(4分)如图,反比例函数y=(x>0)的图象与矩形ABCO的边AB交于点G,与边BC交于点D,过点A,D作DE∥AF,交直线y=kx(k<0)于点E,F,若OE=OF,BG=GA,则四边形ADEF 的面积为.五.解答题(共30分)26.(8分)某商家在购进一款产品时,由于运输成本及产品成本的提高,该产品第x天的成本y(元/件)与x(天)之间的关系如图所示,并连续60天均以80元/件的价格出售,第x天该产品的销售量z(件)与x(天)满足关系式z=x+15.(1)第25天,该商家的成本是元,获得的利润是元;(2)设第x天该商家出售该产品的利润为w元.①求w与x之间的函数关系式;②求出第几天的利润最大,最大利润是多少?27.(10分)如图1,在矩形ABCD中,AB=8,AD=10,E是CD边上一点,连接AE,将矩形ABCD沿AE折叠,顶点D恰好落在BC边上点F处,延长AE交BC的延长线于点G.(1)求线段CE的长;(2)如图2,M,N分别是线段AG,DG上的动点(与端点不重合),且∠DMN=∠DAM,设DN=x.①求证四边形AFGD为菱形;②是否存在这样的点N,使△DMN是直角三角形?若存在,请求出x的值;若不存在,请说明理由.28.(12分)如图,在平面直角坐标系xOy中,将抛物线y=﹣x2+bx+c与直线y=﹣x+1相交于点A(0,1)和点B(3,﹣2),交x轴于点C,顶点为点F,点D是该抛物线上一点.(1)求抛物线的函数表达式;(2)如图1,若点D在直线AB上方的抛物线上,求△DAB的面积最大时点D的坐标;(3)如图2,若点D在对称轴左侧的抛物线上,且点E(1,t)是射线CF上一点,当以C、B、D为顶点的三角形与△CAE相似时,求所有满足条件的t的值.参考答案A卷一.选择题(每题3分,共30分)1.B;2.C;3.D;4.A;5.D;6.C;7.B;8.A;9.A;10.C;二.填空题(每题4分,共16分)11.;12.x≥4;13.k<﹣3;14.60°;三.解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.解:(1)原式=2×+2﹣×1﹣1=+2﹣﹣1=1;(2),由①得:x<2,由②得:x>﹣1,∴不等式组的解集为﹣1<x<2,则该不等式组的整数解为0,1.16.解:原式=•=•=,当x=+1时,原式==.17.解:过点A作AD⊥直线BC,垂足为点D,如图所示.在Rt△ABD中,tan∠BAD=,∴BD=AD•tan60°=AD;在Rt△ACD中,tan∠CAD=,∴CD=AD•tan30°=AD.∴BC=BD﹣CD=AD=120,∴AD=103.9.∴河的宽度为103.9米.18.解:(1)20÷20%=100,九年级参赛作文篇数对应的圆心角=360°×=126°;八年级人数为:100﹣20﹣35=45,补全条形统计图如图所示:故答案为:126;(2)列表如下:A B C DA AB AC ADB AB BC BDC AC BC CDD AD BD CD由表格可知,共有12种可能性结果,它们发生的可能性相等,其中七年级特等奖作文被选登在校刊上的有6种结果,∴七年级特等奖作文被选登在校刊上的概率为.19.解:(1)把A(3,0)代入y1=kx﹣(2k+1)中得,3k﹣(2k+1)=0,解得:k=1,∴一次函数的解析式为:y1=x﹣3,反比例函数解析式为:y2=﹣;(2)解得,,,∴C(1,﹣2),D(2,﹣1);∵A(3,0),B(0,﹣3),∴△OCD的面积=S△AOB﹣S△BOC﹣S△AOD=﹣﹣=;(3)∵C(1,﹣2),D(2,﹣1),∴当y1>y2时,x的取值范围为:0<x<1或x>2.20.(1)证明:如图,连接OD,BD,∵AB是⊙O的直径,∴∠ADB=∠CDB=90°,∵BM是⊙O的切线,∴∠ABC=90°,∵点E是BC的中点,∴DE=BC=BE=CE,∴∠EDB=∠EBD,又∵OD=OB,∴∠ODB=∠OBD,∴∠ODB+∠EDB=∠OBD+∠EBD=90°,即∠ODE=90°,∴OD⊥DE,∴DE是⊙O的切线;(2)解:如图2,连接BD,∵∠A+∠ABD=∠ABD+∠CBD=90°,∴∠A=∠CBD,∵DC=4,tan∠A=,∴tan∠CBD=tan∠A=,∴BD=8,∴BC==4,∴DE=,∴AB=,∴BO=OD=4,又∵DE是⊙O的切线,∴∠HDE=90°,∴tan∠DHE==,设DH=x,则,∴BH=2x,在Rt△BOH中,OB2+BH2=OH2,即,解得:x=或x=0(舍去),∴DH=;(3)解:如图3,连接BF,取AF中点N,构造圆N,连接NG,∵FG⊥AD于点G,∴当点D在弧AB上运动时,点G在圆N上运动,∴当点N、G、B三点共线时,BG有最小值,∵AB=8,点F是弧AB的中点,∴∠AFB=90°,AF=BF=,∴NG=NF=,BN===2,∴BG=BN﹣NG=2.B卷四.填空题(每题4分,共20分)21.13;22.1;23.;24.;25.;五.解答题(共30分)26.解:(1)由图象可知,此时的产量为z=25+15=40(件),设直线BC的关系为y=kx+b,∴,∴,∴y=x+10,故第25天,该商家的成本是:25+10=35(元)则第25天的利润为:(80﹣35)×40=1800(元);故答案为:35,1800;(2)①当0≤x≤20时,w=(80﹣30)(x+15)=50x+750,当20<x≤60时,w=[80﹣(x+10)](x+15)=﹣x2+55x+1050∴w=.②当0≤x≤20时w=(80﹣30)(x+15)=50x+750,当x=20时,w最大=1750元;当20<x≤60时,w=﹣x2+55x+1050∵﹣1<0,抛物线开口向下,对称轴为x=∴当x=27或x=28时,w=﹣272+55×27+1050=1806(元)∵1806>1750∴第27天或28天的利润最大,最大为1806元.27.(1)解:如图1中,∵四边形ABCD是矩形,∴AD=BC=10,AB=CD=8,∴∠B=∠BCD=90°,由翻折可知:AD=AF=10.DE=EF,设EC=x,则DE=EF=8﹣x.在Rt△ABF中,BF===6,∴CF=BC﹣BF=10﹣6=4,在Rt△EFC中,则有:(8﹣x)2=x2+42,∴x=3,∴EC=3.(2)①证明:如图2中,∵四边形ABCD是矩形,∴AD∥BG,∴∠DAG=∠AGB,∵∠DAG=∠GAF,∴∠GAF=∠AGF,∴AF=FG,∵AD=AF,∴AD=FG,∵AD∥FG,∴四边形AFGD是平行四边形,∵F A=FG,∴四边形AFGD是菱形.②解:∵△DMN是直角三角形,∠DMN=∠DAG<90°,∴只有∠MDN=90°或∠MND=90°.如图3﹣1中,当∠MDN=90°时,∵AD∥CG,∴=,∴=,∴CG=6,∴BG=BC+CG=16,在Rt△ABG中,AG===8,在Rt△DCG中,DG===10,∵AD=DG=10,∴∠DAG=∠AGD,∵∠DAG+∠DEA=90°,∠DGA+∠DMG=90°,∴∠DME=∠DEM,∴DM=DE=5,∵∠MDN=∠MDG,∠DMN=∠DGM,∴△DMN∽△DGM,∴=,∴=,∴x=,如图3﹣2中,当∠MND=90°时,∵∠DGM+∠NMG=90°,∠DMN=∠DGM,∴∠DMN+∠NMG=90°,∴DM⊥AG,∵AD=DG=10,∴AM=MG=4,∴DM===2,∵△DMN∽△DGM,∴=,∴=,∴x=2,综上所述,满足条件的x的值为或2.28.解:(1)将点A(0,1)和点B(3,﹣2)代入抛物物线y=﹣x2+bx+c中得,解得∴y=﹣x2+2x+1(2)如图1所示:过点D作DM∥y轴交AB于点M,设D(a,﹣a2+2a+1),则M(a,﹣a+1).∴DM=﹣a2+2a+1﹣(﹣a+1)=﹣a2+3a∴∵有最大值,当时,此时图1(3)∵OA=OC,如图2,CF∥y轴,∴∠ACE=∠ACO=45°,∴△BCD中必有一个内角为45°,由题意可知,∠BCD不可能为45°,①若∠CBD=45°,则BD∥x轴,∴点D与点B于抛物线的対称轴直线x=1対称,设BD与直线=1交于点H,则H(1,﹣2)B(3,﹣2),D(﹣1,﹣2)此时△BCD是等腰直角三角形,因此△ACE也是等腰直角三角形,(i)当∠AEC=90°时,得到AE=CE=1,∴E(1.1),得到t=1(ii)当∠CAE=90时,得到:AC=AE=,∴CE=2,∴E(1.2),得到t=2图2②若∠CDB=45°,如图3,①中的情况是其中一种,答案同上以点H为圆心,HB为半径作圆,则点B、C、D都在圆H上,设圆H与对称左侧的物线交于另一点D1,则∠CD1B=∠CDB=45°(同弧所对的圆周角相等),即D1也符合题意设由HD1=DH=2解得n1=﹣1(含去),n2=3(舍去),(舍去),∴,则,(i)若△ACE∽△CD1B,则,即,解得(舍去)(ii)△ACE∽△BD1C则,即,解得(舍去)综上所述:所有满足条件的t的值为t=1或t=2或或图3。

2024年四川省成都七中初中学校中考数学一模试卷及参考答案

2024年四川省成都七中初中学校中考数学一模试卷一、选择题(每小题4分,共32分)1.(4分)﹣2024的绝对值是()A.2024B.﹣2024C.D.2.(4分)据报道2023年国庆出游的全国旅客数达到754000000人次,754000000用科学记数法可表示为()A.7.54×109B.7.54×108C.75.4×108D.0.754×109 3.(4分)下列运算正确的是()A.3x2y+2xy=5x3y2B.(﹣2ab2)3=﹣6a3b6C.(2a+b)2=4a2+b2D.(2a+b)(2a﹣b)=4a2﹣b24.(4分)要调查下列两个问题:(1)了解班级同学中哪个月份出生的人数最多;(2)了解全市七年级学生早餐是否有喝牛奶的习惯.这两个问题分别采用什么调查方式更合适()A.全面调查,全面调查B.抽样调查,抽样调查C.抽样调查,全面调查D.全面调查,抽样调查5.(4分)正多边形的一个外角的度数为30°,则这个正多边形的边数为()A.12B.10C.8D.66.(4分)如图,在扇形AOB中,AO⊥OB,∠AOC=∠BOC,若扇形AOB的半径为2,则扇形AOC的面积为()A.2πB.C.πD.7.(4分)我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多六客,一房八客一房空.”诗中后面两句的意思是:如果一间客房住7人,那么有6人无房可住;如果一间客房住8人,那么就空出一间客房,若设该店有客房x间,可列方程为()A.7x﹣6=8x﹣1B.7x﹣6=8(x﹣1)C.7x+6=8x﹣1D.7x+6=8(x﹣1)8.(4分)二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1,其中结论正确的为()A.abc<0B.b2﹣4ac=0C.a﹣b+c>0D.4a+2b+c<0二、填空题(每小题4分,共20分)9.(4分)分解因式:xy2+6xy+9x=.10.(4分)若正比例函数y=﹣2x与反比例函数的图象交于(1,﹣2),则另一个交点坐标为.11.(4分)如图,△ABC与△DEF是位似图形,点O是位似中心,OB:BE=1,若S△ABC =.=2,则S△DEF12.(4分)分式方程的解是.13.(4分)如图,在△ABC,∠C=90°,∠ABC=40°,按以下步骤作图:①以点A为圆心,小于AC的长为半径.画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF的长为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D,则∠ADC的度数为.三、解答题(共48分)14.(12分)(1)计算:﹣12019+|﹣2|+2cos30°+(2﹣tan60°)0.(2)解不等式组:.15.(8分)为全面增强中学生的体质健康,某学校开展“阳光体育活动”,开设了:A.跳绳;B.篮球;C.排球;D.足球,这4门选修课,要求每名学生只能选择其中的一项参加.全校共有100名男同学选择了A项目,为了解选择A项目男同学的情况,从这100名男同学中随机抽取了30人在操场进行测试,并将他们的成绩x(个/分钟)绘制成频数分布直方图.(1)若抽取的同学的测试成绩落在160≤x<165这一组的数据为160,162,162,163,161,164,则该组数据的中位数是,众数是;(2)根据题中信息,估计选择B项目的男生共有人,扇形统计图中D项目所占圆的圆心角为度;(3)学校准备推荐甲、乙、丙、丁四名同学中的2名参加全区的跳绳比赛,请用画树状图法或列表法计算出甲和乙同学同时被选中的概率.16.(8分)图1是安装在倾斜屋顶上的热水器,图2是安装热水器的侧面示意图.已知屋面AE的倾斜角∠EAD为22°,长为3米的真空管AB与水平线AD的夹角∠BAD为37°,倾斜屋顶上的E处到水平线的距离DE为1.3米,C、D、E在同一直线上,且CD⊥AD.求安装热水器的铁架水平横管BC的长度(参考数据:sin37°≈,cos37°≈,tan37°≈,sin22°≈,cos22°≈,tan22°≈,结果精确到0.1米).17.(10分)如图,AB为⊙O的直径,C、D为圆上两点,∠ABD=2∠BAC,AB与CD交于点M过点C作CE⊥BD交DB延长线于点E.(1)求证:CE是⊙O的切线;(2)若BE=1,BD=7,求CE和cos∠ABD的值.18.(10分)如图,一次函数y=x﹣1的图象与反比例函数y=的图象交于A(a,1),B(﹣2,b)两点,M为反比例函数图象第一象限上的一动点.(1)求反比例函数的表达式;(2)当∠MBA=45°时,求点M的坐标;(3)我们把对角线互相垂直且相等的四边形称为“垂等四边形”.设点N是平面内一点,是否存在这样的N,M两点,使四边形ABNM是“垂等四边形”,且∠ABM=∠MAN?若存在,求出M,N两点的坐标;若不存在,请说明理由.一、填空题(每小题4分,共20分)19.(4分)若2x2+2xy﹣5=0,则代数式的值为.20.(4分)如图是一个正六棱柱的主视图和左视图,则这个六棱柱的一个侧面面积是________m2.(单位:m)21.(4分)如图所示,扇形AOB的圆心角是直角,半径为,C为OA边上一点,将△BOC沿BC边折叠,圆心O恰好落在弧AB上的点D处,则阴影部分的面积为.22.(4分)如图,二次函数y=的图象交x轴于点A,B(点A在点B 的左侧),交y轴于点C.现有一长为3的线段DE在直线y=上移动,且在移动过程中,线段DE上始终存在点P,使得三条线段PA,PB,PC能与某个等腰三角形的三条边对应相等.若线段DE左端点D的横坐标为t,则t的取值范围是.23.(4分)如图,矩形ABCD中,已知AB=3,BC=6,E为AD边上一动点,将△ABE沿BE边翻折到△FBE,点A与点F重合,连接DF、CF.则DF+FC的最小值为.二、解答题(共30分)24.(8分)春节期间,晓东计划和家人自驾来阿掖山游玩,晓东家汽车是某型号油电混合动力汽车,有用油和用电两种驱动方式,两种驱动方式不能同时使用.经过计算,该汽车从晓东家行驶到阿掖山,全程用油驱动需60元油费,全程用电驱动需12元电费,已知每行驶1千米,用油比用电的费用多0.6元.(1)求该汽车用电驱动方式行驶1千米的电费;(2)若驾驶该汽车从晓东家行驶至阿掖山,游玩后再返回家,需要燃油和用电两种驱动方式,往返全程用电和用油的总费用不超过78元,则最多用油行驶多少千米?25.(10分)已知:在平面直角坐标系中,点O为坐标原点,直线y=﹣x+3与x轴交于点B,与y轴交于点C,抛物线y=﹣x2+bx+c经过B、C两点,与x轴的另一交点为点A.(1)如图1,求抛物线的解析式;(2)如图2,点D为直线BC上方抛物线上一动点,连接AC、CD,设直线BC交线段AD于点E,△CDE的面积为S1,△ACE的面积为S2,当最大值时,求点D的坐标及的最大值;(3)如图3,P、Q分别为抛物线上第一、四象限两动点,连接AP、AQ,分别交y轴于M、N两点,若在P、Q两点运动过程中,始终有MO与NO的积等于2.试探究直线PQ 是否过某一定点.若是,请求出该定点坐标;若不是,请说明理由.26.(12分)(1)如图1,在直角△ABC中,∠ACB=90°,过C作CD⊥AB交AB于点D,求证:CD2=AD•BD;(2)如图2,在菱形ABCD中,过C作CE⊥AB交AB的延长线于点E,过E作EF⊥AD交AD边于点F.①若,求的值;②若(n>2),直接写出的值(用含n的式子表示);(3)如图3,在菱形ABCD中,∠A=60°,点E在CD上,EC=2且=a,点F为BC上一点,连接EF,过E作EG⊥EF交AD于点G,EG•EF=a,求AG的值(用含a的式子表示).2024年四川省成都七中初中学校中考数学一模试卷参考答案一、选择题(每小题4分,共32分)1.A;2.B;3.D;4.D;5.A;6.B;7.D;8.D二、填空题(每小题4分,共20分)9.x(y+3)2;10.(﹣1,2);11.8;12.x=﹣2;13.65°三、解答题(共48分)14.(1)2;(2)﹣1≤x<2.;15.162;162;175;108;16.安装热水器的铁架水平横管BC的长度约为0.9米.;17.(1)答案见解答过程(2).;18.(1)y=;(2)点M(,6);(3)存在,点M(,8),点N(﹣6,).;一、填空题(每小题4分,共20分)19.;20.6;21.﹣9;22.﹣≤t≤2;23.;二、解答题(共30分)24.(1)0.15元;(2)90千米.;25.(1)y=﹣x2+2x+3;(2)有最大值为,此时D(,);(3)直线PQ经过点(3,﹣2).;26.(1)见解析;(2)①,②;(3)AG=2+3a﹣或AG=2+3a﹣a.。

2020年四川省成都市中考数学一诊试卷解析版

中考数学一诊试卷题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.下列是一元二次方程的是( )A. x2-2x-3=0B. x-2y+1=0C. 2x+3=0D. x2+2y-10=02.一个由半球和圆柱组成的几何体如图水平放置,其俯视图为( )A.B.C.D.3.菱形的两条对角线长分别为6和8,则菱形的面积是( )A. 10B. 20C. 24D. 484.在△ABC中,若∠C=90°,cos A=,则∠A等于( )A. 30°B. 45°C. 60°D. 90°5.若△ABC∽△DEF,△ABC与△DEF的相似比为2:3,则S△ABC:S△DEF为( )A.2:3 B. 4:9 C. : D. 3:26.如图是用卡钳测量容器内径的示意图,现量得卡钳上A,D两个端点之间的距离为10m,,则容器的内径是( )A. 5cmB. 10cmC. 15cmD. 20cm7.如图,已知AB∥CD∥EF,BD:DF=2:5,那么下列结论正确的是( )A. AC:EC=2:5B. AB:CD=2:5C. CD:EF=2:5D. AC:AE=2:58.某超市一月份营业额为100万元,一月、二月、三月的营业额共500万元,如果平均每月增长率为x,则由题意可列方程( )A. 100(1+x)2=500B. 100+100•2x=500C. 100+100•3x=500D. 100[1+(1+x)+(1+x)2]=5009.在同一坐标系中,函数y=和y=kx+3(k≠0)的图象大致是( )A. B.C. D.10.如图,⊙O的半径OD垂直于弦AB,垂足为点C,连接AO并延长交⊙O于点E,连接BE,CE.若AB=8,CD=2,则△BCE的面积为( )A. 12B. 15C. 16D. 18二、填空题(本大题共9小题,共36.0分)11.若,则=______.12.抛物线y=x2-4x-4的顶点坐标是______.13.设A(x1,y1),B(x2,y2)是反比例函数y=-图象上的两点,若x1<x2<0,则y1与y2之间的关系是______.14.如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q.若QC=1,BC=3,则平行四边形ABCD周长为______15.设a、b是方程x2+x-2021=0的两个实数根,则(a-1)(b-1)的值为______.16.在一个不透明的袋中装有若干个红球,为了估计袋中红球的个数,小明在袋中放入3个黑球(每个球除颜色外其余都与红球相同),摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,则袋中红球约有______个.17.已知一列数a1,a2,…,a n(n为正整数)满足a1=1,a2==,…,a n=,请通过计算推算a2019=______,a n=______.(用含n的代数式表示)18.如图,点A在双曲线y=(k≠0)的第一象限的分支上,AB垂直x轴于点B,点C在x轴正半轴上,OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,连接CD,若△CDE的面积为1,则k的值为______.19.如图,矩形ABCD中,AB=3,BC=4,点E是A边上一点,且AE=,点F是边BC上的任意一点,把△BEF沿EF翻折,点B的对应点为G,连接AG,CG,则四边形AGCD的面积的最小值为______.三、解答题(本大题共9小题,共84.0分)20.(1)计算:(π-2)0-2cos30°-(2)解方程:x2-5x+4=0.21.已知:如图,M为平行四边形ABCD边AD的中点,且MB=MC.求证:四边形ABCD是矩形.22.小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为45°,35°.已知大桥BC与地面在同一水平面上,其长度为100m,请求出热气球离地面的高度.(结果保留整数)(参考数据:sin35°≈,cos35°≈,tan35°≈)23.今年猪肉价格受非洲猪瘟疫情影响,有较大幅度的上升,为了解某地区养殖户受非洲猪瘟疫情感染受灾情况,现从该地区建档的养殖户中随机抽取了部分养殖户进行了调查(把调查结果分为四个等级:A级:非常严重;B级:严重;C级:一般;D 级:没有感染),并将调查结果绘制成如下两幅不完整的统计图.请根据统计图中的信息解决下列问题:(1)本次抽样调查的养殖户的总户数是______;把图2条形统计图补充完整.(2)若该地区建档的养殖户有1500户,求非常严重与严重的养殖户一共有多少户?(3)某调研单位想从5户建档养殖户(分别记为a,b,c,d,e)中随机选取两户,进一步跟踪监测病毒传播情况,请用列表或画树状图的方法求出选中养殖户e的概率.24.如图,在平面直角坐标系中,一次函数y=-x+m的图象与反比例函数y=(x>0)的图象交于A、B两点,已知A(2,4).(1)求一次函数和反比例函数的解析式;(2)求B点的坐标;(3)连接AO、BO,求△AOB的面积.25.如图,△ABC内接于⊙O,AB是直径,过点A作直线MN,且∠MAC=∠ABC.(1)求证:MN是⊙O的切线.(2)设D是弧AC的中点,连结BD交AC于点G,过点D作DE⊥AB于点E,交AC于点F.①求证:FD=FG.②若BC=3,AB=5,试求AE的长.26.为建设天府新区“公园城市”,实现城市生活垃圾减量化、资源化、无害化的目标.近日,成都市天府新区计划在各社区试点实施生活垃圾分类处理活动,取得市民积极响应.某创业公司发现这一商机,研发生产了一种新型家庭垃圾分类桶,并投入市场试营销售.已知该新型垃圾桶成本为每个40元,市场调查发现,该垃圾桶每件售价y(元)与每天的销售量为x(个)的关系如图.为推广新产品及考虑每件利润因素,公司计划每天的销售量不低于1000件且不高于2000件.(1)求每件销售单价y(元)与每天的销售量为x(个)的函数关系式;(2)设该公司日销售利润为W(元),求每天的最大销售利润是多少元?27.已知,在△ABC和△EFC中,∠ABC=∠EFC=90°,点E在△ABC内,且∠CAE+∠CBE=90°(1)如图1,当△ABC和△EFC均为等腰直角三角形时,连接BF,①求证:△CAE∽△CBF;②若BE=2,AE=4,求EF的长;(2)如图2,当△ABC和△EFC均为一般直角三角形时,若=k,BE=1,AE=3,CE=4,求k的值.28.已知,如图,抛物线y=ax2+bx+c(a≠0)的顶点为M(1,9),经过抛物线上的两点A(-3,-7)和B(3,m)的直线交抛物线的对称轴于点C.(1)求抛物线的解析式及点B的坐标.(2)在抛物线上A,M两点之间的部分(不包含A,M两点),是否存在点D,使得S△DAC=2S△DCM?若存在,求出点D的坐标;若不存在,请说明理由.(3)上下平移直线AB,设平移后的直线与抛物线交与A′,B′两点(A′在左边,B'在右边),且与y轴交与点P(0,n),若∠A′MB′=90°,求n的值.答案和解析1.【答案】A【解析】解:A、是一元二次方程,故此选项正确;B、是二元一次方程,故此选项错误;C、是一元一次方程,故此选项错误;D、是二元二次方程,故此选项错误;故选:A.根据一元二次方程的定义即可求出答案.此题主要考查了一元二次方程定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.2.【答案】A【解析】解:这个几何体的俯视图为:故选:A.根据俯视图是指从几何体的上面观察得出的图形作答.本题考查了简单几何体的三视图,能理解三视图的定义是解此题的关键.3.【答案】C【解析】【分析】此题考查了菱形的性质.菱形的面积等于对角线积的一半是解此题的关键.由菱形的两条对角线的长分别是6和8,根据菱形的面积等于对角线积的一半,即可求得答案.【解答】解:∵菱形的两条对角线的长分别是6和8,∴这个菱形的面积是:×6×8=24.故选C.4.【答案】C【解析】解:∵△ABC中,∠C=90°,cos A=,∴∠A=60°.故选:C.根据∠A为△ABC的内角,且∠C=90°可知∠A为锐角,再根据cos A=即可求出∠A的度数.本题比较简单,考查的是直角三角形的性质及特殊角的三角函数值.5.【答案】B【解析】解:因为△ABC∽△DEF,所以△ABC与△DEF的面积比等于相似比的平方,所以S△ABC:S△DEF=()2=,故选B.因为两相似三角形的面积比等于相似比的平方,所以.本题比较容易,考查了两个相似三角形面积比等于相似比的平方的性质.6.【答案】C【解析】解:连接AD、BC,∵,∠AOD=∠BOC,∴△AOD∽△BOC,∴==,∵A,D两个端点之间的距离为10m,∴BC=15m,故选:C.首先连接AD、BC,然后判定△AOD∽△BOC,根据相似三角形的性质可得==,进而可得答案.此题主要考查了相似三角形的应用,关键是掌握相似三角形的判定和性质.7.【答案】A【解析】解:∵AB∥CD∥EF,∴AC:EC=BD:DF=2:5,AC:AE=BD:BF=2:7.故选:A.根据平行线分线段成比例定理对各选项进行判断.本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.8.【答案】D【解析】解:设平均每月增长率为x,100[1+(1+x)+(1+x)2]=500.故选:D.如果平均每月增长率为x,根据某超市一月份营业额为100万元,一月、二月、三月的营业额共500万元,可列方程.本题考查理解题意的能力,分别求出一,二,三月份的,以总和为等量关系列出方程.9.【答案】C【解析】解:分两种情况讨论:①当k>0时,y=kx+3与y轴的交点在正半轴,过一、二、三象限,y=的图象在第一、三象限;②当k<0时,y=kx+3与y轴的交点在正半轴,过一、二、四象限,y=的图象在第二、四象限.故选C.根据一次函数和反比例函数的特点,k≠0,所以分k>0和k<0两种情况讨论.当两函数系数k取相同符号值,两函数图象共存于同一坐标系内的即为正确答案.本题主要考查了反比例函数的图象性质和一次函数的图象性质,关键是由k的取值确定函数所在的象限.10.【答案】A【解析】解:∵⊙O的半径OD垂直于弦AB,垂足为点C,AB=8,∴AC=BC=AB=4.设OA=r,则OC=r-2,在Rt△AOC中,∵AC2+OC2=OA2,即42+(r-2)2=r2,解得r=5,∴AE=10,∴BE===6,∴△BCE的面积=BC•BE=×4×6=12.故选:A.先根据垂径定理求出AC的长,再设OA=r,则OC=r-2,在Rt△AOC中利用勾股定理求出r的值,再求出BE的长,利用三角形的面积公式即可得出结论.本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.11.【答案】【解析】解:∵=,∴3(x+y)=5y,∴3x=2y,∴=.故答案为:.根据两内项之积等于两外项之积列式整理即可.本题考查了比例的性质,主要利用了两内项之积等于两外项之积的性质,需熟记.12.【答案】(2,-8)【解析】解:解法1:利用公式法y=ax2+bx+c的顶点坐标公式为(,),代入数值求得顶点坐标为(2,-8);解法2:利用配方法y=x2-4x-4=x2-4x+4-8=(x-2)2-8,所以顶点的坐标是(2,-8).故答案为:(2,-8).本题可以运用配方法求顶点坐标,也可以根据顶点坐标公式求坐标.本题考查求抛物线的顶点坐标、对称轴的方法.13.【答案】y2>y1>0【解析】解:∵反比例函数y=-中,k=-2<0,∴函数图象的两个分支位于二、四象限,且在每一象限内y随x的增大而增大,∵x1<x2<0,∴y2>y1>0.故答案为:y2>y1>0.先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<x2<0即可得出结论.本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.14.【答案】14【解析】解:∵由作图可知,AQ是∠DAB的平分线,∴∠DAQ=∠BAQ.∵四边形ABCD是平行四边形,∴CD∥AB,BC=AD=3,∠BAQ=∠DQA,∴∠DAQ=∠DQA,∴△AQD是等腰三角形,∴DQ=AD=3.∵QC=1,∴CD=DQ+CQ=3+1=4,∴平行四边形ABCD周长=2(DC+AD)=2×(4+3)=14.故答案为:14.根据角平分线的性质可知∠DAQ=∠BAQ,再由平行四边形的性质得出CD∥AB,BC=AD=3,∠BAQ=∠DQA,故可得出△AQD是等腰三角形,据此可得出DQ=AD,进而可得出平行四边形ABCD周长.本题考查的是复杂作图,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.15.【答案】-2019【解析】解:∵a、b是方程x2+x-2021=0的两个实数根,∴a+b=-1,ab=-2021,∴(a-1)(b-1)=ab-(a+b)+1=-2021+1+1=-2019,故答案为:-2019.根据根与系数的关系得出a+b=-1,ab=-2021,再代入计算即可.本题主要考查根与系数的关系,熟练掌握根与系数的关系是解题的关键.16.【答案】17【解析】解:通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,口袋中有3个黑球,∵假设有x个红球,∴=0.85,解得:x=17,经检验x=17是分式方程的解,∴口袋中有红球约有17个.故答案为:17.根据口袋中有3个黑球,利用小球在总数中所占比例得出与实验比例应该相等求出即可.此题主要考查了用样本估计总体,根据已知得出小球在总数中所占比例得出与实验比例应该相等是解决问题的关键.17.【答案】【解析】解:根据题意得,a1=1=;a2=;a3==;…发现规律:∴a n=.∴a2019==.故答案为:,.根据题意先计算出前几个数,发现规律即可求解.本题考查了规律型-数字的变化类,解决本题的关键是写出前几个数之后,寻找规律,总结规律,运用规律.18.【答案】【解析】解:设A(a,b),∵OC=2AB,点D为OB的中点,∴C(2a,0),D(0,b),∵AE=3EC,△CDE的面积为1,∴S△ADC=4S△CDE=4,∵S梯形ABOC=S△ABD+S△OCD+S△ADC,∴(a+2a)•b=•a•b+•2a•b+4,∴ab=,∵点A在双曲线y=(k≠0)的图象上,∴k=.故答案为.设A(a,b),则C(2a,0),D(0,b),根据三角形面积公式,由AE=3EC得到S△ADC=4S△CDE=4,由于S梯形ABOC=S△ABD+S△OCD+S△ADC,则(a+2a)•b=•a•b+•2a•b+4,整理得ab=,然后根据反比例函数图象上点的坐标特征即可得到k=.本题考查了反比例函数系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.也考查了反比例函数图象上点的坐标特征.19.【答案】【解析】解:如图,在矩形ABCD中,AB=3,BC=4,∠B=∠D=90°,连接AC,∴AC=5,∵AB=3,AE=,∴点F是边BC上的任意位置时,点G始终在AC的下方,设点G到AC的距离为h,S四边形AGCD=S△ACD+S△ACG=3×4+×5h,=6+h.要使四边形AGCD的面积的最小,即h最小.∵点G在以点E为圆心,BE为半径的圆上,且在矩形ABCD的内部.过点E作EH⊥AC,交圆E于点G,此时h最小.在Rt△ABC中,sin∠BAC==,在Rt△AEH中,AE=,sin∠BAC==,解得EH=AE=,EG=BE=AB-AE=3-,∴h=EH-EG=-(3-)=-3.∴S四边形AGCD=6+×(-3)=-=.故答案为:.根据矩形ABCD中,AB=3,BC=4,可得AC=5,由AE=可得点F是边BC上的任意位置时,点C始终在AC的下方,设点G到AC的距离为h,要使四边形AGCD的面积的最小,即h最小.所以点G在以点E为圆心,BE为半径的圆上,且在矩形ABCD的内部.过点E作EH⊥AC,交圆E于点G,此时h最小.根据锐角三角函数先求得h的值,再分别求得三角形ACD和三角形ACG的面积即可得结论.本题考查了翻折变换,解决本题的关键是确定满足条件的点G的位置,运用相似、锐角三角函数等知识解决问题.20.【答案】解:(1)原式=1-2×-4+-1=1--4+-1=-4;(2)分解因式得:(x-1)(x-4)=0,可得x-1=0或x-4=0,解得:x1=1,x2=4.【解析】(1)原式利用零指数幂法则,特殊角的三角函数值,算术平方根定义,以及绝对值的代数意义计算即可求出值;(2)方程利用因式分解法求出解即可.此题考查了解一元二次方程的解法,以及实数的运算,熟练掌握运算法则是解本题的关键.21.【答案】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠A+∠D=180°,在△ABM和△DCM中,,∴△ABM≌△DCM(SSS),∴∠A=∠D=90°,即可得出平行四边形ABCD是矩形.【解析】根据平行四边形的两组对边分别相等可知△ABM≌△DCM,可知∠A=∠D=90°,所以是矩形.此题主要考查了平行四边形的性质,矩形的判定,即有一个角是90度的平行四边形是矩形.22.【答案】解:作AD⊥BC交CB的延长线于D,设AD为x,由题意得,∠ABD=45°,∠ACD=35°,在Rt△ADB中,∠ABD=45°,∴DB=x,在Rt△ADC中,∠ACD=35°,∴tan∠ACD=,∴=,解得,x≈233m.【解析】本题考查的是解直角三角形的应用,理解仰角和俯角的概念、掌握锐角三角函数的概念是解题的关键,解答时,注意正确作出辅助线构造直角三角形.作AD⊥BC交CB的延长线于D,设AD为x,表示出DB和DC,根据正切的概念求出x 的值即可.23.【答案】60【解析】解:(1)21÷35%=60户,60-9-21-9=21户,故答案为:60,补全条形统计图如图所示:(2)1500×=750户,答:若该地区建档的养殖户有1500户中非常严重与严重的养殖户一共有750户;(3)用表格表示所有可能出现的情况如下:共有20种不同的情况,其中选中e的有8种,∴P(选中e)==,(1)从两个统计图可得,“B级”的有21户,占调查总户数的35%,可求出调查总户数;求出“C级”户数,即可补全条形统计图:(2)样本估计总体,样本中“严重”和“非常严重”占,估计总体1500户的是“严重”和“方程严重”的户数;(3)用列表法或树状图法列举出所有等可能出现的情况,从中找出符合条件的情况数,进而求出概率.考查扇形统计图、条形统计图的意义和制作方法,从统计图中获取数量及数量之间的关系是解决问题的关键,样本估计总体是统计中常用的方法.考查列表法或树状图法求等可能事件发生的概率,使用此方法一定注意每一种结果出现的可能性是均等的,即为等可能事件.24.【答案】解:(1)将A(2,4)代入y=-x+m与y=(x>0)中得4=-2+m,4=,∴m=6,k=8,∴一次函数的解析式为y=-x+6,反比例函数的解析式为y=;(2)解方程组得或,∴B(4,2);(3)设直线y=-x+6与x轴,y轴交于C,D点,易得D(0,6),∴OD=6,∴S△AOB=S△DOB-S△AOD=×6×4-×6×2=6.【解析】(1)由点A的坐标利用一次函数、反比例函数图象上点的坐标特征即可得出反比例函数解析式;(2)联立方程,解方程组即可求得;(3)求出直线与y轴的交点坐标后,即可求出S△AOD和S△BOD,继而求出△AOB的面积.本题考查了反比例函数与一次函数的交点问题、待定系数法求一次函数和反比例函数解析式以及三角形的面积,解题的关键是:根据点的坐标利用待定系数法求出函数解析式;利用分割图形求面积法求出△AOB的面积.25.【答案】(1)证明:∵AB是直径,∴∠ACB=90°,∴∠CAB+∠ABC=90°;∵∠MAC=∠ABC,∴∠MAC+∠CAB=90°,即MA⊥AB,∴MN是⊙O的切线;(2)①证明:∵D是弧AC的中点,∴∠DBC=∠ABD,∵AB是直径,∴∠CBG+∠CGB=90°,∵DE⊥AB,∴∠FDG+∠ABD=90°,∵∠DBC=∠ABD,∴∠FDG=∠CGB=∠FGD,∴FD=FG;②解:连接AD、CD,作DH⊥BC,交BC的延长线于H点.∵∠DBC=∠ABD,DH⊥BC,DE⊥AB,∴DE=DH,在Rt△BDE与Rt△BDH中,,∴Rt△BDE≌Rt△BDH(HL),∴BE=BH,∵D是弧AC的中点,∴AD=DC,在Rt△ADE与Rt△CDH中,,∴Rt△ADE≌Rt△CDH(HL).∴AE=CH.∴BE=AB-AE=BC+CH=BH,即5-AE=3+AE,∴AE=1.【解析】(1)由AB为直径知∠ACB=90°,∠ABC+∠CAB=90°.由∠MAC=∠ABC可证得∠MAC+∠CAB=90°,则结论得证;(2)①证明∠BDE=∠DGF即可.∠BDE=90°-∠ABD;∠DGF=∠CGB=90°-∠CBD.因为D 是弧AC的中点,所以∠ABD=∠CBD.则问题得证;②连接AD、CD,作DH⊥BC,交BC的延长线于H点.证明Rt△ADE≌Rt△CDH,可得AE=CH.根据AB=BH可求出答案.本题是圆的综合题,考查了切线的判定,圆周角定理,全等三角形的判定与性质,等腰三角形的判定,正确作出辅助线来构造全等三角形是解题的关键.26.【答案】解:(1)设y与x的函数解析式为:y=kx+b(k≠0),∵函数图象过点(1500,55)和(2000,50),∴,∴,∴y与x的函数解析式为:y=-0.01x+70;(2)由题意得,w=(y-40)x=(-0.01x+70-40)x=-0.01x2+30x,即w=-0.01x2+30x,∵-0.01<0,∴当x=时,,∵1000≤x≤2000,∴当每天销售1500件时,利润最大为22500元.∴每天的最大销售利润是22500元.【解析】(1)设y与x的函数解析式为:y=kx+b(k≠0),将函数图象上的两个点的坐标代入列出方程组,进行解答便可;(2)根据“利润=(售价-进价)×销售量“列出函数解析式,然后根据二次函数的性质,求出其最大值.本题是一次函数与二次函数的应用的综合题,主要考查了一次函数的实际应用,二次函数的实际应用,待定系数法求函数的解析式,求二次函数的最大值,关键是正确运用待定系数法和从实际问题中列出二次函数的解析式.27.【答案】解:(1)①∵△ABC和△CEF都是等腰直角三角形,∴∠ECF=∠ACB=45°,∴∠BCF=∠ACE,∵△ABC和△CEF都是等腰直角三角形,∴CE=CF,AC=CB,∴=,∴,∴△BCF∽△ACE;②由①知,△BCF∽△ACE,∴∠CBF=∠CAE,=,∴BF=AE=×4=2,∵∠CAE+∠CBE=90°,∴∠CBF+∠CBE=90°,即:∠EBF=90°,根据勾股定理得,EF===2;(2)如图(2),连接BF,在Rt△ABC中,tan∠ACB==k,同理,tan∠ECF=k,∴tan∠ACB=tan∠ECF,∴∠ACB=∠ECF,∴∠BCF=∠ACE,在Rt△ABC中,设BC=m,则AB=km,根据勾股定理得,AC==m;在Rt△CEF中,设CF=n,则EF=nk,同理,CE=n∴,=,∴,∵∠BCF=∠ACE,∴△BCF∽△ACE,∴∠CBF=∠CAE,∵∠CAE+∠CBE=90°,∴∠CBF+∠CBE=90°,即:∠EBF=90°,∵△BCF∽△ACE,∴,∴BF=AE=,∵CE=4,∴n=4,∴n=,∴EF=,在Rt△EBF中,根据勾股定理得,BE2+BF2=EF2,∴12+()2=()2,∴k=或k=-(舍),即:k的值为.【解析】(1)①先判断出∠BCF=∠ACE,再判断出,即可得出结论;②先判断出∠CBF=∠CAE,进而判断出∠EBF=90°,再求出BF=2,最后用勾股定理求解即可得出结论;(2)先判断出∠BCF=∠ACE,再判断出,进而判断出△BCF∽△ACE,进而表示出BF=,再表示出EF=,最后用勾股定理得,BE2+BF2=EF2,建立方程求解即可得出结论.此题是相似形综合题,主要考查了等腰直角三角形的性质,勾股定理,相似三角形的判定和性质,判断出∠EBF=90°是解本题的关键.28.【答案】解:(1)抛物线的表达式为:y=a(x-1)2+9,将点A的坐标代入上式并解得:a=-1,故抛物线的表达式为:y=-x2+2x+8,将点B坐标代入上式并解得:m=5,故点B(3,5);(2)过点M、C、A分别作三条相互平移的平行线,分别交y轴于点G、H、N,直线l 与抛物线交于点D,设直线m的表达式为:y=kx+t,将点M的坐标代入上式并解得:t=9-k,故直线m的表达式为:y=kx+9-t,即点G(0,9-t),同理直线l的表达式为:y=kx+1-k,故点H(0,1-k),同理直线n的表达式为:y=kx+3k-7,故点N(3k-7),S△DAC=2S△DCM,则HN=2GH,即1-k-(3k-7)=2(9-k-1+k),解得:k=-2,故直线l的表达式为:y=-2x+3…②,联立①②并解得:x=5(舍去)或-1,故点D(-1,5);(3)直线A′B′的表达式为:y=2x+n,设点A′、B′的坐标分别为:(x1,y1)、(x2,y2),将抛物线与直线A′B′的表达式联立并整理得:x2+n-8=0,故x1+x2=0,x1x2=n-8,y1+y2=2(x1+x2)+2n=2n,同理可得:y1y2=4n-32+n2,过点M作x轴的平行线交过点A′与y轴的平行线于点G,交过点B′与y轴的平行线于点H,∵∠A′MB′=90°,∴∠GMA′+∠GA′M=90°,∠GMA′+∠MHB′=90°,∴∠GA′M=∠HMB′,故tan∠GA′M=tan∠HMB′,即:,而x1+x2=0,x1x2=n-8,y1+y2=2n,y1y2=4n-32+n2,整理得:n2-13n+30=0,解得:n=3或10(舍去10),故n=3.【解析】(1)抛物线的表达式为:y=a(x-1)2+9,将点A的坐标代入上式并解得:a=-1,即可求解;(2)S△DAC=2S△DCM,则HN=2GH,即1-k-(3k-7)=2(9-k-1+k),即可求解;(3)∠GA′M=∠HMB′,故tan∠GA′M=tan∠HMB′,即:,而x1+x2=0,x1x2=n-8,y1+y2=2n,y1y2=4n-32+n2,即可求解.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.第21页,共21页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年四川省成都七中中考数学一诊试卷
一.选择题(每题3分,共30分)
1.(3分)2-的相反数是( )
A .2-
B .2
C .12-
D .12
2.(3分)如图所示的几何体,它的左视图是( )
A .
B .
C .
D .
3.(3分)下列计算中,正确的是( )
A .235a a a +=
B .236a a a =g
C .32365()a b a b =
D .2552()()a a =-
4.(3分)在平面直角坐标系中,点P 的坐标是(2,3),则点P 到y 轴的距离是( )
A .2
B .3
C 13
D .4
5.(3分)3月9日中国政府向世界卫生组织捐款2000万美元,捐款将用于新冠肺炎防控、发展中国家公共卫生体系建设等指定用途.2000万用科学记数法表示为( )
A .3210⨯
B .4200010⨯
C .6210⨯
D .7210⨯
6.(3分)在中考体育加试中,某班30名男生的跳远成绩如下表: 成绩/m
1.95
2.00 2.05 2.10 2.15 2.25 人数 2 3 9 8 5 3
这些男生跳远成绩的众数、中位数分别是( )
A .2.10,2.05
B .2.10,2.10
C .2.05,2.10
D .2.05,2.05 7.(3分)分式方程
1133x x x +=--的解为( ) A .无解 B .1x = C .1x =-
D .2x =-
8.(3分)已知:如图,ABC EBD ∠=∠,BC BD =,增加一个条件使得ABC EBD ∆≅∆,下列条件中错误的是( )
A .AC ED =
B .BA BE =
C .C
D ∠=∠ D .A
E ∠=∠
9.(3分)如图,在O e 中,若点C 是¶AB 的中点,50A ∠=︒,则(BOC ∠= )
A .40︒
B .45︒
C .50︒
D .60︒
10.(3分)已知二次函数2(0)y ax bx c a =++≠的图象如图所示,现给出下列结论:①0abc >;②930a b c ++=;③240b ac -<;④50a b c ++>.其中正确结论的是( )
A .①②
B .①②③
C .①②④
D .①②③④
二.填空题(每题4分,共16分)
11.(4分)925
的算术平方根是 . 12.(44x -有意义,则x 的取值范围是 . 13.(4分)已知一次函数(3)1y k x =++的图象经过第一、二、四象限,则k 的取值范围是 .
14.(4分)已知锐角AOB ∠,如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为
半径作¶PQ,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交¶PQ于点M,N;(3)连接OM,MN,ON.根据以上作图过程及所作图形,若20
AOB
∠=︒,则OMN

=.
三.解答题(本大题共6个小题,共54分,解答过程写在答题卡上)
15.(12分)(1)计算02019
2cos30|2|3(2020)(1)
π
︒+---+-.
(2)解不等式组
360
2131
32
x
x x
-<


-+

<
⎪⎩
,并写出该不等式组的整数解.
16.(6分)先化简,再求值:
2
321
(1)
224
x x
x x
-+

++
,其中31
x=+.
17.(8分)如图,在河对岸有一棵大树A,在河岸B点测得A在北偏东60︒方向上,向东前进120m到达C点,测得A在北偏东30︒方向上,求河的宽度(精确到0.1)
m.参考数据:2 1.414
≈,3 1.732
≈.
18.(8分)某中学组织七、八、九年级学生参加“州庆60年,梦想红河”作文比赛.该校将收到的参赛作文进行分年级统计,绘制了如图1和图2两幅不完整的统计图.根据图中提供的信息完成以下问题.
(1)扇形统计图中九年级参赛作文篇数对应的圆心角是 度,并补全条形统计图;
(2)经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖
作文中任选两篇刊登在校刊上,把七年级特等奖作文被选登在校刊上的事件记为A ,其它年级特等奖作文被选登在校刊上的事件分别记为B ,C ,D .请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率.
19.(10分)已知一次函数1(21)y kx k =-+的图象与x 轴和y 轴分别交于A 、B 两点,(3,0)A ,
一次函数与反比例函数21k y x
+=-的图象分别交于C 、D 两点.
(1)求一次函数与反比例函数解析式;
(2)求OCD ∆的面积;
(3)直接写出12y y >时,x 的取值范围.
20.(10分)如图1,已知AB 是O e 的直径,点D 是弧AB 上一点,AD 的延长线交O e 的切线BM 于点C ,点E 为BC 的中点,
(1)求证:DE 是O e 的切线;。

相关文档
最新文档