6.3 STM32F103ZE的时钟深入剖析(32M,40M,72M灵活切换)
STM32F103ZET6的基本定时器

STM32F103ZET6的基本定时器1、定时器的分类 STM32F103ZET6总共有8个定时器,它们是:TIM1~TIM8。
STM32的定时器分为基本定时器、通⽤定时器和⾼等定时器。
TIM6、TIM7是基本定时器。
基本定时器是只能向上计数的16位定时器,基本定时器只能有定时的功能,没有外部IO⼝,所以没有捕获和⽐较通道。
TIM2、TIM3、TIM4、TIM5是通⽤定时器。
通⽤定时器是可以向上计数,也可以向下计数的16位定时器。
通⽤定时器可以定时、输出⽐较、输⼊捕捉,每个通⽤定时器具有4个外部IO⼝。
TIM1、TIM8是⾼等定时器。
⾼等定时器是是可以向上计数,也可以向下计数的16位定时器。
⾼等定时器可以定时、输出⽐较、输⼊捕捉、还可以输出三相电机互补信号,每个⾼等定时器有8个外部IO⼝。
定时器分类图如下:2、基本定时器 基本定时器没有外部IO⼝,所以它只有定时的功能。
基本定时器只能向上计数,也就是说基本定时器只能递增计数。
基本定时器功能框图如下: 从功能图的1中可以看到,基本定时器的时钟TIMxCLK来⾃内部时钟,该内部时钟为经过APB1预分频器分频后提供的。
基本定时器跟APB1总线时钟的关系如下:如果APB1预分频系数为1,则基本定时器的时钟等于APB1总线时钟。
如果APB1预分频系数不为1,则基本定时器的时钟等于APB1总线时钟经过分频后的2倍。
⽐如APB1总线经过2分频后的时钟为36MHZ,那么基本定时器的时钟就是72MHZ3(36*2)。
功能图中的2是⼀个预分频器,来⾃内部的时钟经过预分器分频后的时钟,⽤来驱动基本定时器的计数器计数。
基本定时器的预分频器是⼀个16位的预分频器,预分频器可以对定时器时钟进⾏1~65536之间的任何⼀个数进⾏分频。
计算⽅式如下: 定时器⼯作时钟 = 来⾃APB1的时钟/(预分频系数+1) 功能图中的3是⼀个16位的计数器,该计数器能能向上计数,最⼤计数值位65535。
stm32f103zet6定时器详解及应用

stm32f103zet6定时器详解及应用
1、stm32f103zet6芯片及引脚图
2、stm32f103xx器件功能与配置
3、stm32f103zet6 定时器大容量的STM32F103XX增强型系列产品包含最多2个高级控制定时器、4个普通定时器和2个基本定时器,以及2个看门狗定时器和1个系统嘀嗒定时器。
下表比较了高级控制定时器、普通定时器和基本定时器的功能:
定时器功能比较
1)计数器三种计数模式
向上计数模式:从0开始,计到arr预设值,产生溢出事件,返回重新计时
向下计数模式:从arr预设值开始,计到0,产生溢出事件,返回重新计时
中央对齐模式:从0开始向上计数,计到arr产生溢出事件,然后向下计数,计数到1以后,又产生溢出,然后再从0开始向上计数。
(此种技术方法也可叫向上/向下计数)
2)高级控制定时器(TIM1和TIM8)
两个高级控制定时器(TIM1和TIM8)可以被看成是分配到6个通的三三相PWM发生器,它具有带死区插入的互补PWM输出,还可以被当成完整的通用定时器。
四个独立的通道可以用于:
(1)输入捕获
(2)输出比较
(3)产生PWM(边缘或中心对齐模式)
(4)单脉冲输出
配置为16位标准定时器时,它与TIMX定时器具有相同的功能。
配置为16位PWM发生器时,它具有全调制能力(0~100%)。
在调试模式下,计数器可以被冻结,同时PWM输。
ARMFLY STM32F103ZE-EK 开发板 说明书

S T M32F103Z E-E K开发板用户手册版本:V1.0安富莱电子开发网W W W.A R M F L Y.C O M1.产品规格简介STM32F103ZE-EK开发板以STM32F103ZET6(LQFP144)为核心。
STM32F103ZE 是ST(意法半导体)公司推出的ARM Crotex-M3产品线中功能最强大的一款CPU。
片内集成512kB Flash、64kB RAM、1个USB、1个CAN、 8个定时器、5个USART、3个ADC、2个DAC、3个SPI、2个I2C、2个I2S、1个SDIO、112个GPIO、FSMC总线(支持NOR,NAND,SRAM)。
CPU主频72MHz,广泛适用于各种应用场合。
本开发板具备丰富的硬件资源,配套的试验例程均提供源代码,文档齐备,非常适合于学习和项目评估。
硬件资源■ 8M晶振作为MCU的时钟,32768晶振用于RTC ■ 1M字节SRAM,16M字节NOR Flash,128M字节NADN Flash■ 2M字节串行Flash,256字节串行EEPROM■ 1个SD/MMC卡座■ 1个CAN2.0A/B接口■ 2个RS232串口■ 1个RS485接口■ 1个USB2.0全速DEVICE接口■ 1个USB2.0全速HOST接口■ 1个100M/10M以太网接口■ I2S音频DAC(24bit,96kHz),1个立体声耳机插座,1个扬声器■ 3.0寸TFT真彩触摸LCD(WQVGA,400x240)■ 1个5向摇杆,1个Reset按钮、1个wakeup按钮、1个自定义按钮 ■ 4个自定义LED,1个电源LED,1个音频LED ■ 1个CR1220电池座■ 1个精密可调电阻连接到ADC输入■ 所有的GPIO引到2.54mm间距焊盘■ 1个DAC引出端子,1个PWM引出端子■ 标准2.54mm间距JTAG插座■ 2个BNC输入端子,集成双通道示波器电路,具备AC/DC切换、输入增益切换开关■ 3种供电方式:USB电缆、外接5V电源、JTAG 调试接口(J-LINK仿真器)■ 1个电源开关,上下电时无需拔插电缆■ 3种启动方式:用户Flash、系统存储器、SRAM ■ 用拨码开关取代跳线帽,避免跳线帽丢失■ 板子规格:14cm x 12cm软件资源■ 提供100多个试验例程■ 提供uCOS_II+ucGUI例程和文档■ 即将展开USB虚拟示波器项目源码■ 即将移植ucLinux (硬件资源已满足要求) ■ 更多的软件资源将在发布标配清单■STM32F103ZE-EK开发板1块■ 3.0寸TFT触摸显示模块1块■1根串口线、1根网线、1根USB电缆■资料光盘1张可选的配件:■60M示波器探头1对■USB转串口线1根2.快速入门2.1.注意事项(1)外接电源必须是5.0V 的直流电源,插头有极性,内正外负。
stm32f103中文手册[1]
![stm32f103中文手册[1]](https://img.taocdn.com/s3/m/f9dc370982c4bb4cf7ec4afe04a1b0717fd5b3fc.png)
STM32F103中文手册概述32位ARM® Cortex®-M3内核,最高运行频率72 MHz从16 KB到1 MB的闪存,从6 KB到96 KB的SRAM从36到144个引脚的不同封装,支持LQFP、BGA、TFBGA、UFBGA和V FQFPN等从1.65 V到3.6 V的宽电源电压范围,支持低功耗模式和电池供电从-40°C到+105°C的工作温度范围多达11个通信接口,包括3个USART、2个UART、2个I2C、2个SPI、1个CAN和1个USB 2.0全速多达15个定时器,包括7个16位通用定时器、2个16位基本定时器、2个16位高级定时器、2个32位定时器和2个看门狗定时器多达3个12位模数转换器(ADC),每秒可采样1.2 M次两路12位数模转换器(DAC)多达80个外部中断/事件源多达112个GPIO端口,支持5 V耐压CRC计算单元,用于检测数据传输错误实时时钟(RTC),支持日历功能和闹钟功能嵌入式内存保护单元(MPU),用于增强应用程序安全性嵌入式调试支持,包括串行线调试(SWD)和JTAG接口7层DMA控制器,支持所有外设数据传输可选的双银行闪存模式,支持实时软件更新存储器映射STM32F103系列单片机的存储器映射如下图所示:![存储器映射]代码区:包括闪存和系统存储器。
闪存用于存储用户程序代码和数据。
系统存储器用于存储引导加载程序(bootloader)和设备标识符。
SRAM区:包括SRAM1和SRAM2。
SRAM1用于存储用户程序数据和堆栈。
SRAM2用于存储备份寄存器和备份域。
外设区:包括APB1外设、APB2外设和AHB外设。
APB1外设和APB2外设是通过两个高速总线矩阵连接到内核的低速外设。
AHB外设是通过一个高速总线矩阵连接到内核的高速外设。
外部设备区:包括FSMC区域、NOR/PSRAM区域和NAND/CF区域。
6.3 STM32F107VCT的时钟深入剖析(32M,40M,72M灵活切换)

RCC->CFGR2 |= 4<<4; // 5 分频
6.1.2 STM32的时钟
系统时钟的选择是在启动时进行,复位时内部 8MHZ 的 RC 振荡器被选为默认的 CPU 时钟,随后可以选择外部的、具失效监控的 3-25MHZ 时钟;当检测到外部时钟失效时,它 将被隔离,系统将自动地切换到内部的 RC 振荡器。
在 STM32 中,有五个时钟源,为 HSI、HSE、LSI、LSE、PLL,它们都是时钟所提供 的来源: 1. HSI 是高速内部时钟,RC 振荡器,频率默认为 8MHz,可以从 STM32 时钟树中看到
RCC->CFGR2 |= 6<<8; //8 倍频
RCC->CFGR2 |= 1<<16; //PLL2 作为 PRED2V1 时钟 RCC->CR |= 1<<26; //将 PLL2 使能
while(!(RCC->CR>>27));
RCC->CFGR2 |= 0x00000004; //5 分频 RCC->CFGR |= 1<<16; //PREDIV1 作为 PLL 时钟 RCC->CFGR |= 2<<18; //本例程希望设置成 32MHZ 的工作频率,我们在这里尝试
下表是结合图表明出来的: 标号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
STM32F103ZE手册

EM-STM3210E评估板用户手册V1.0深圳市英蓓特信息技术有限公司Embest info & Tech Co., Ltd.地址:深圳市罗湖区太宁路85号罗湖科技大厦509室(518020) Telephone: 86-755-25532557 25638952 25535753 25505451Fax: 86-755-25616057E-mail: sales@ support.realview@ Website: 第一章概述EM-STM3210E是英蓓特公司新推出的一款基于ST意法半导体STM32系列处理器(Cortex-M3内核)的全功能评估板。
功能接口丰富,是一个用于应用开发很好的平台,也是学习者的首选。
配合本公司的调试工具ULINK2一起使用,更是为大家提供了一个良好的开发环境,从而为自己的应用开发节省了时间,提高的效率。
EM-STM3210E评估板主要性能:◆处理器:STM32F103ZE,主频:72MHz◆2MB NOR FLASH◆128KB SRAM◆128MB NAND FLASH◆8M byte SPI Flash◆RTC( 带后备电池)◆启动跳线设置◆两路可选电源:5VDC供电,USB供电◆一个SD存储卡接口◆TFT- LCD屏接口◆一个温度传感器◆一路DAC音频输出◆20Pin JTAG调试接口◆2个三线RS232串行口◆一个USB Device接口◆一个具有控制四个方向和确定功能的摇杆手柄◆四个功能按键:Reset,Wakeup,Temper和User按键◆四个Led灯◆四位八段数码管输出◆一个CAN总线接口,通过DB9接口引出◆一路AD输入◆四个26Pin用户扩展接口第二章EM-STM3210E硬件介绍EM-STM3210E功能模块图如下图所示:2.1接口一览表SPI FLASH输入旋钮五维摇杆按键电源跳线选择SPEAKER2.2跳线一览表2.3电源EM-STM3210E评估板有两种供电方式,通过JP5选择以下其中一种方式供电。
STM32F103RC系统时钟配置

地址:安徽省、合肥市、肥东县、店埠镇,合肥市福来德电子科技有限公司 STM32F103RC 系统时钟配置1、打开D:\program\KEL_MDT_ARM\STM32_Template\USER 目录,找到STM32-DEMO 文件,双击打开,KEIL-uVision4就开始运行了,得到下图:2、双击“STARTCODE ”下面的“start_stm32f10x_hd.s ”打开STM32F103RC 的启动文件,找“SystemInit ”,得到下图:地址:安徽省、合肥市、肥东县、店埠镇,合肥市福来德电子科技有限公司3、点击当前的行,右击鼠标,将光标移动到“Go To Definition Of SystemInit”,见下图:4、点击“Go To Definition Of SystemInit ”,会跳转到system_stm32f10x.c 文件,见下图:地址:安徽省、合肥市、肥东县、店埠镇,合肥市福来德电子科技有限公司5、在“system_stm32f10x.c ”文件中,在“void SystemInit (void)”函数体内找到“SetSysClock();”,见下图:6、点击“SetSysClock()”,右击鼠标,将光标移动到“Go To Definition Of SystemClock”,见下图:地址:安徽省、合肥市、肥东县、店埠镇,合肥市福来德电子科技有限公司 7、点击“Go To Definition Of SystemClock”,会跳转到system_stm32f10x.c 文件,见下图:8、点击“defined SYSCLK_FREQ_72MHz ”,右击鼠标,将光标移到到“Go To Definition Of SYSCLK_FREQ_72MHz ”,见下图:地址:安徽省、合肥市、肥东县、店埠镇,合肥市福来德电子科技有限公司9、点击“Go To Definition Of SYSCLK_FREQ_72MHz ”,会跳转到下图:10、在上图中,我们可以设置所需要的系统时钟,这里设置系统时钟是SYSCLK_FREQ_72MHz ,见下面粘贴的部分#if defined (STM32F10X_LD_VL) || (defined STM32F10X_MD_VL) || (defined STM32F10X_HD_VL) /* #define SYSCLK_FREQ_HSE HSE_VALUE */#define SYSCLK_FREQ_24MHz 24000000#else/* #define SYSCLK_FREQ_HSE HSE_VALUE *//* #define SYSCLK_FREQ_24MHz 24000000 *//* #define SYSCLK_FREQ_36MHz 36000000 *//* #define SYSCLK_FREQ_48MHz 48000000 *//* #define SYSCLK_FREQ_56MHz 56000000 */#define SYSCLK_FREQ_72MHz 72000000 //这是我们要设置的系统时钟#endif。
STM32F103_数据手册(中文)

参照2008年4月 STM32F103xCDE数据手册 英文第1.0版 (本译文仅供参考,如有翻译错误,请以英文原稿为准)
4/30
STM32F103xC, STM32F103xD, STM32F103xE数据手册
● 代码可以在除PC卡外的片外存储器运行; ● 目标频率为SYSCLK/2,即当系统时钟为72MHz时,外部访问的速度可达36MHz;
数据手册
STM32F103xC STM32F103xD
功能
STM32F103xE
增强型,32位基于ARM核心的带512K字节闪存的微控制器 USB、CAN、11个定时器、3个ADC 、13个RM 32位的Cortex™-M3 CPU − 最高72MHz工作频率, 1.25DMips/MHz(Dhrystone 2.1), 在存储器的0等待周期访问时 − 单周期乘法和硬件除法
STM32F103xC, STM32F103xD, STM32F103xE数据手册
1 介绍
本文给出了STM32F103xC、STM32F103xD和STM32F103xE增强型的订购信息和器件的机械特性。
有关闪存存储器的编程、擦除和保护等信息,请参考《STM32F10xxx闪存编程参考手册》。 有关Cortex-M3的信息,请参考《Cortex-M3技术参考手册》
嵌套的向量式中断控制器(NVIC) STM32F103xC、STM32F103xD和STM32F103xE增强型内置嵌套的向量式中断控制器,能够处
理多达60个可屏蔽中断通道(不包括16个Cortex™-M3的中断线)和16个优先级。 ● 紧耦合的NVIC能够达到低延迟的中断响应处理 ● 中断向量入口地址直接进入内核 ● 紧耦合的NVIC接口 ● 允许中断的早期处理 ● 处理晚到的较高优先级中断 ● 支持中断尾部链接功能 ● 自动保存处理器状态 ● 中断返回时自动恢复,无需额外指令开销 该模块以最小的中断延迟提供灵活的中断管理功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
17
ADC预分频寄存器
18
ADC外设
19
PLL2分频数寄存器
20
PLL2倍频寄存器
21
PLL 时钟源选择寄存器
22
独立看门狗设备
23
RTC 设备
在认识这颗时钟树之前,首先要明确“主干”和最终的“分支”。假设使用外部 8MHz
晶振作为 STM32 的时钟输入源(这也是最常见的一种做法),则这个 8MHz 便是“主干”,
1) 由 3 所知晶振输入为 8MHz,由○5——○21 知 PLL 的时钟源为经过分频后的外部 晶振时钟,并且此分频数为 1 分频,因此首先得出 PLL 的时钟源为:8MHz / 1 = 8MHz。
2) 由 8、9 知 PLL 倍频 9,且将 PLL 倍频后的时钟输出选择为系统时钟,则得出系统 时钟为 8MHz * 9 = 72MHz。
6.2 时钟
6.1.1 什么是时钟
从 CPU 的时钟说起。 计算机是一个十分复杂的电子设备。它由各种集成电路和电子器件组成,每一块集成电 路中都集成了数以万计的晶体管和其他电子元件。这样一个十分庞大的系统,要使它能够正 常地工作,就必须有一个指挥,对各部分的工作进行协调。各个元件的动作就是在这个指挥 下按不同的先后顺序完成自己的操作的,这个先后顺序我们称为时序。时序是计算机中一个 非常重要的概念,如果时序出现错误,就会使系统发生故障,甚至造成死机。那么是谁来产 生和控制这个操作时序呢?这就是“时钟”。“时钟”可以认为是计算机的“心脏”,如同人 一样,只有心脏在跳动,生命才能够继续。不要把计算机的“时钟”等同于普通的时钟,它 实际上是由晶体振荡器产生的连续脉冲波,这些脉冲波的幅度和频率是不变的,这种时钟信 号我们称为外部时钟。它们被送入 CPU 中,再形成 CPU 时钟。不同的 CPU,其外部时钟 和 CPU 时钟的关系是不同的,下表列出了几种不同 CPU 外部时钟和 CPU 时钟的关系。 CPU 时钟周期通常为节拍脉冲或T周期,它是处理操作的最基本的单位。 在微程序控制器中,时序信号比较简单,一般采用节拍电位——节拍脉冲二级体制。就 是说它只要一个节拍电位,在节拍电位又包含若干个节拍脉冲(时钟周期)。节拍电位表示 一个CPU周期的时间,而节拍脉冲把一个CPU周期划分为几个叫较小的时间间隔。根据 需要这些时间间隔可以相等,也可以不等。 指令周期是取出并执行一条指令的时间。 指令周期常常有若干个CPU周期,CPU周期也称为机器周期,由于CPU访问一次 内存所花费的时间较长,因此通常用内存中读取一个指令字的最短时间来规定CPU周期。 这就是说,这就是说一条指令取出阶段(通常为取指)需要一个CPU周期时间。而一个C PU周期时间又包含若干个时钟周期(通常为节拍脉冲或T周期,它是处理操作的最基本的 单位)。这些时钟周期的总和则规定了一个CPU周期的时间宽度。
4. LSE 是低速外部时钟,接频率为 32.768kHz 的石英晶体,也可以被用来驱动 RTC,时钟 树的截图如下:
5. PLL 为锁相环倍频输出,其时钟输入源可选择为 HSI/2、HSE 或者 HSE/2。倍频可选择 为 2~16 倍,但是其输出频率最大不得超过 72MHz,时钟树的截图如下:
6.1.3 STM32的时钟深入分析
对于 13,时钟到达 AHB 总线;
在上一章节中所介绍的 GPIO 外设属于 APB2 设备,即 GPIO 的时钟来源于 APB2 总线,
同样在上图中也可以寻获 GPIO 外设的时钟轨迹:
3——5——7——21——8——9——11——15——16
对于 3,首先是外部的 3-25MHz(前文已假设为 8MHz)输入;
6.1.4 例程01 STM32芯片32MHZ频率下跑点灯程序
1. 示例简介 让点灯程序在时钟主频 32MHz 下面运行,LED 灯的正极接的是 3.3V 电源,所以我们编 程让 LED 负极拉低即 GPIO 引脚端口 F 的管脚 6 拉低,即 PF6 拉低,那么 LED 灯就会 变亮,相关电路图如下图所示:
3
外部高速振荡器(HSE,3-25MHz)
4
内部高速振荡器(HSI,8MHz)
5
PLL输入选择位
6
RTC时钟选择位
7
PLL1分频数寄存器
8
PLL1倍频寄存器
9
系统时钟选择位
10
USB分频寄存器
11
AHB分频寄存器
12
APB1分频寄存器
13
AHB总线
14
APB1外设总线
15
APB2分频寄存器
16
APB2外设总线
众所周知,微控制器(处理器)的运行必须要依赖周期性的时钟脉冲来驱动——往往由 一个外部晶体振荡器提供时钟输入为始,最终转换为多个外部设备的周期性运作为末,这种 时钟“能量”扩散流动的路径,犹如大树的养分通过主干流向各个分支,因此常称之为“时 钟树”。在一些传统的低端 8 位单片机诸如 51,AVR,PIC 等单片机,其也具备自身的一个 时钟树系统,但其中的绝大部分是不受用户控制的,亦即在单片机上电后,时钟树就固定在 某种不可更改的状态(假设单片机处于正常工作的状态)。比如 51 单片机使用典型的 12MHz 晶振作为时钟源,则外设如 IO 口、定时器、串口等设备的驱动时钟速率便已经是固定的, 用户无法将此时钟速率更改,除非更换晶振。
2. 调试说明: 下载代码,并且按下【复位】键,在神舟 III 号板上找到 DS1,可以看到该 DS1 灯一亮
一灭。
3. 关键代码: /************ *******/ int main(void) //main 是程序入口 { /**** 程序总共 2 部分之第 1 部分 时钟频率的配置 {开始 *******/
3) 时钟到达 AHB 预分频器,由 11 知时钟经过 AHB 预分频器之后的速率仍为 72MHz。 4) 时钟到达 APB2 预分频器,由 15 经过 APB2 预分频器后速率仍为 72MHz。 5) 时钟到达 APB2 总线外设 上面是原理的剖析,如果再不明白的,可以接下来看例程代码,理论联系实践是最好的老师。
/** 以下是关于 RCC 时钟 详细请见《STM32F10XXX 参考手册》6.3 节 RCC 寄存器描述**/ unsigned char sws = 0; RCC->CR |= 0X00010000; //使能外部高速时钟 HSEON //将 RCC_CR 寄存器的值右移 17 位,等待 HSERDY 就绪,即外部时钟就绪 while(!(RCC->CR>>17));
对于 7,设置外部晶振的分频数(假设 1 分频);
对于 21,选择 PLL 倍频的时钟源(假设选择经过分频后的外部晶振时钟);
对于 8,设置 PLL 倍频数(假设 9 倍频);
对于 9,选择系统时钟源(假设选择经过 PLL 倍频所输出的时钟);
对于 11,设置 AHB 总线分频数(假设 1 分频);
对于 5, 通过 PLL 选择位预先选择后续 PLL 分支的输入时钟(假设选择外部晶振);
对于 7,设置外部晶振的分频数(假设 1 分频);
对于 21,选择 PLL 倍频的时钟源(假设选择经过分频后的外部晶振时钟);
对于 8,设置 PLL 倍频数(假设 9 倍频); 对于 9,选择系统时钟源(假设选择经过 PLL 倍频所输出的时钟); 对于 11,设置 AHB 总线分频数(假设 1 分频); 对于 15,设置 APB2 总线分频数(假设 1 分频) 对于 16,时钟到达 APB2 总线; 现在来计算一下 GPIO 设备的最大驱动时钟速率(各个条件已在上述要点中假设):
而 STM32 微控制器的时钟树则是可配置的,其时钟输入源与最终达到外设处的时钟速
率不再有固定的关系,下面来详细解析 STM32 微控制器的时钟树。下图是 STM32 微控制 器的时钟树:
下表是结合图表明出来的: 标号
释义
1
内部低速振荡器(LSI,40Khz)
2
外部低速振荡器(LSE,32.768Khz)
6.1.2 STM32的时钟
系统时钟的选择是在启动时进行,复位时内部 8MHZ 的 RC 振荡器被选为默认的 CPU 时钟,随后可以选择外部的、具失效监控的 4-16MHZ 时钟;当检测到外部时钟失效时,它 将被隔离,系统将自动地切换到内部的 RC 振荡器。
在 STM32 中,有五个时钟源,为 HSI、HSE、LSI、LSE、PLL,它们都是时钟所提供 的来源: 1. HSI 是高速内部时钟,RC 振荡器,频率默认为 8MHz,可以从 STM32 时钟树中看到
6.2 时钟...............................................................................................................................2 6.1.1 什么是时钟.......................................................................................................2 6.1.2 STM32 的时钟..................................................................................................2 6.1.3 STM32 的时钟深入分析..................................................................................3 6.1.4 例程 01 STM32 芯片 32MHZ频率下跑点灯程序 ..........................................6 6.1.5 例程 02 STM32 芯片 40MHZ频率下跑点灯程序 ........................................12 6.1.6 例程 03 STM32 芯片 72MHZ频率下跑点灯程序 ........................................13