2合成气(化学工艺学)解析
合集下载
化学工艺学概论ppt课件

②煤化工 通过煤的气化、干馏和生产的电石为原料的化学工业
③生物化工 采用农、林等生物资源以及非生物资源,通过发酵、 水解、酶催化而生产的化工产品
④矿产化工 以化学矿为原料的化工产品
⑤海洋化工 从海水中提炼的化工产品
1.1.2 化学工业的特征
⑴ 原料、生产方法和产品的多样性与复杂性 ⑵ 向大型化、综合化发展,精细化率也在不断提高 ⑶ 是多学科合作、生产技术密集型的生产部门 ⑷ 重视能量合理利用,采用节能工艺和方法 ⑸ 资金密集,投资回收速度快,利润高 ⑹ 化工生产中易燃、易爆、有毒、污染环境
1.1.1 化学工业的分类
➢ 分类方法主要按产品和原料来分类 ➢ 按产品的物质组成可分为有机化工(碳氢化合物及其
衍生物)和无机化工(非碳氢化合物)两大类。 ➢ 一般综合考虑产品的性质、用途和生产量分为如下几
类: ➢ 按原料的性质和来源分:
①无机化学工业
包括合成氨、无机酸、碱、盐和无机化学肥料
②基本有机化学工业
乙醇
酯化
乙酸乙酯、其它酯类
烯
水合
溶剂及合成原
加氢脱水
丁二烯
合成橡胶
丙酸
氢甲酰化 丙醛 还原 正丙醇
溶剂
加乙烯烷基化 加丙烯烷基化
乙苯 脱氢
丙酮
双酚 A
苯乙烯
聚苯乙烯、丁苯橡胶、 ABS树脂
聚碳酸酯、环氧树脂
异丙苯 苯酚
酚醛树脂、苯胺、壬基酚等
加十二烯
十二烷基苯
合成洗涤剂
苯
加氢
环己烷
己内酰胺
聚酰胺纤维
催化重整 (catalytic reforming)
催化裂化 (catalytic cracking)
催化加氢裂化 (catalytic hydrocracking)
③生物化工 采用农、林等生物资源以及非生物资源,通过发酵、 水解、酶催化而生产的化工产品
④矿产化工 以化学矿为原料的化工产品
⑤海洋化工 从海水中提炼的化工产品
1.1.2 化学工业的特征
⑴ 原料、生产方法和产品的多样性与复杂性 ⑵ 向大型化、综合化发展,精细化率也在不断提高 ⑶ 是多学科合作、生产技术密集型的生产部门 ⑷ 重视能量合理利用,采用节能工艺和方法 ⑸ 资金密集,投资回收速度快,利润高 ⑹ 化工生产中易燃、易爆、有毒、污染环境
1.1.1 化学工业的分类
➢ 分类方法主要按产品和原料来分类 ➢ 按产品的物质组成可分为有机化工(碳氢化合物及其
衍生物)和无机化工(非碳氢化合物)两大类。 ➢ 一般综合考虑产品的性质、用途和生产量分为如下几
类: ➢ 按原料的性质和来源分:
①无机化学工业
包括合成氨、无机酸、碱、盐和无机化学肥料
②基本有机化学工业
乙醇
酯化
乙酸乙酯、其它酯类
烯
水合
溶剂及合成原
加氢脱水
丁二烯
合成橡胶
丙酸
氢甲酰化 丙醛 还原 正丙醇
溶剂
加乙烯烷基化 加丙烯烷基化
乙苯 脱氢
丙酮
双酚 A
苯乙烯
聚苯乙烯、丁苯橡胶、 ABS树脂
聚碳酸酯、环氧树脂
异丙苯 苯酚
酚醛树脂、苯胺、壬基酚等
加十二烯
十二烷基苯
合成洗涤剂
苯
加氢
环己烷
己内酰胺
聚酰胺纤维
催化重整 (catalytic reforming)
催化裂化 (catalytic cracking)
催化加氢裂化 (catalytic hydrocracking)
合成气教学课件PPT

3)水碳比(3.5-4.0)
甲 烷 平 衡 含 量
%
实用文档 · 13 ·
2.1.1 烃类蒸汽转化
二、工艺流程及主要设备
(1) 天然气蒸气转化流程
蒸汽
原料天然气 弛放气
预热器 190℃ 脱硫 510℃ 预热 850℃ 一段转化
加压空气 蒸汽
预热
450℃
二段转化 1000℃
废热锅炉 370℃ 去变换
2.1.2 重油部分氧化
转化反应 甲烷转化:CH4+H2O CO+3H2 碳 转 化: C+H2O CO+H2 CO 转 化:CO+H2O CO2+H2
慢反应 可逆 吸热
实用文档 · 24 ·
2.1.2 重油部分氧化
二、工艺条件
(1) 温度(1400℃)
甲烷含量随温度提高迅速 降低。从反应速度方面看, 提高温度有利于加快甲烷和 炭黑的转化,对降低原料气 中甲烷和炭黑含量也是有利 的。但温变过高容易烧坏炉 衬,同时耗氧量会增加。
实用文档 · 34 ·
2.1.2 重油部分氧化
项目 喷嘴
余热利用方式
裂化气中 炭黑脱除 炭黑能否 返炉气化 典型工业装置
Shell法 两流道型,中心管进重油,氧与蒸汽 混和后进喷嘴环隙喷出,用水套冷 却。喷嘴为压力雾化(重油)与气 雾流化相结合。近年推出三套管型
废热锅炉(采用火管式变径盘管结 构,最高产汽压11.0MPa
重油kgkg10304212三工烃流程及主要烃烃裂化气炭黑回收粗合成激冷流程texaco原料直接相而原料迅速冷却原料除炭黑后直接送去烃行一激冷流程不允烃在烃烃前因硫而降低流程重液烃烃部分化法工烃流程212蒸汽氧气重油激冷流程重烃液烃烃部分化工烃流程212氧气蒸汽裂化气烃充水重油炭黑回212炭黑回收原理萃取萃取混合少量石烃油墨水mpa60871350140013001350蒸汽油比kgkg034040040kgkg0750750806401080停留烃烃炉内气体烃1020炉膛立式中心管烃重油蒸汽055蒸汽烃中心管重油蒸汽混合后由烃隙气温2601416可以可以典型工烃氨1400td甲醇600
甲 烷 平 衡 含 量
%
实用文档 · 13 ·
2.1.1 烃类蒸汽转化
二、工艺流程及主要设备
(1) 天然气蒸气转化流程
蒸汽
原料天然气 弛放气
预热器 190℃ 脱硫 510℃ 预热 850℃ 一段转化
加压空气 蒸汽
预热
450℃
二段转化 1000℃
废热锅炉 370℃ 去变换
2.1.2 重油部分氧化
转化反应 甲烷转化:CH4+H2O CO+3H2 碳 转 化: C+H2O CO+H2 CO 转 化:CO+H2O CO2+H2
慢反应 可逆 吸热
实用文档 · 24 ·
2.1.2 重油部分氧化
二、工艺条件
(1) 温度(1400℃)
甲烷含量随温度提高迅速 降低。从反应速度方面看, 提高温度有利于加快甲烷和 炭黑的转化,对降低原料气 中甲烷和炭黑含量也是有利 的。但温变过高容易烧坏炉 衬,同时耗氧量会增加。
实用文档 · 34 ·
2.1.2 重油部分氧化
项目 喷嘴
余热利用方式
裂化气中 炭黑脱除 炭黑能否 返炉气化 典型工业装置
Shell法 两流道型,中心管进重油,氧与蒸汽 混和后进喷嘴环隙喷出,用水套冷 却。喷嘴为压力雾化(重油)与气 雾流化相结合。近年推出三套管型
废热锅炉(采用火管式变径盘管结 构,最高产汽压11.0MPa
重油kgkg10304212三工烃流程及主要烃烃裂化气炭黑回收粗合成激冷流程texaco原料直接相而原料迅速冷却原料除炭黑后直接送去烃行一激冷流程不允烃在烃烃前因硫而降低流程重液烃烃部分化法工烃流程212蒸汽氧气重油激冷流程重烃液烃烃部分化工烃流程212氧气蒸汽裂化气烃充水重油炭黑回212炭黑回收原理萃取萃取混合少量石烃油墨水mpa60871350140013001350蒸汽油比kgkg034040040kgkg0750750806401080停留烃烃炉内气体烃1020炉膛立式中心管烃重油蒸汽055蒸汽烃中心管重油蒸汽混合后由烃隙气温2601416可以可以典型工烃氨1400td甲醇600
2.合成气

已知高温有利于甲烷裂解析碳,不利于CO歧化析碳, 却有利于碳被水蒸气所气化,温度越高,水蒸气比例 越大则越有利于消碳;如果气相中H2、CO2分压很大 时,均有利于抑制析碳。
由热力学第二定律知,在任何化学反应自发进 行的过程中,反应自由焓总是减小的。
以上三式中各组分的分压均为体系在某指定状态时的 实际分压,而非平衡分压。可由温度、压力查出Kp, 再根据指定组成和总压计算Jp,最后由Jp/ Kp是否小 于1来判断该状态下有否析碳发生。 当Jp/ Kp<1时,⊿G<0,反应自发向右进行,会 析碳; 当Jp/ Kp=1时,⊿G=0,反应达平衡,是热力学 析碳的边界; 当Jp/ Kp>1时,⊿G>0,反应不能自发进行,体 系不析碳。
甲烷水蒸气转化体系中,水蒸汽是一个重要组分,由各析碳反应 生成的碳与水蒸汽之间存在的平衡,通过热力学计算,可求得开 始析碳时所对应的H2O/CH4摩尔比,称为热力学最小水碳比。 不同温度、压力下有不同的热力学最小水碳比。综上所述,影响 甲烷水蒸气转化反应平衡的主要因素有温度、水碳比和压力。 (1) 温度的影响 甲烷与水蒸气反应生成CO和H2是吸热的可逆 反应,高温对平衡有利,即H2及CO的平衡产率高,CH4平衡含 量低。高温对一氧化碳变换反应的平衡不利,可以少生成二氧化 碳,而且高温也会抑制一氧化碳岐化和还原析碳的副反应。但是, 温度过高,会有利于甲烷裂解,当高于700℃时,甲烷均相裂解 速率很快,会大量析出碳,并沉积在催化剂和器壁上。 (2) 水碳比的影响 水碳比对于甲烷转化影响重大,高的水碳比 有利于甲烷的蒸汽重整反应,同时,高水碳比也有利于抑制析碳 副反应。 (3) 压力的影响 甲烷蒸气转化反应是体积增大的反应,低压有 利平衡,低压也可抑制一氧化碳的两个析碳反应,但是低压对甲 烷裂解析碳反应平衡有利,适当加压可抑制甲烷裂解。压力对一 氧化碳变换反应平衡无影响。
化学工艺学 第 2 章 合成气

原则:不析碳,原料充分利用,能耗小。
2.1 合成气的制取
2.1.1 烃类蒸汽转化
2.1.1.5 转化反应工艺流程及转化炉
燃料用天然气 11
8 9 过 热 蒸 汽
5
2
1 3
一段转化
4
二段转化
对流段
7 10 蒸汽 空气 原料天然气 锅炉给水 转化气去变换 6
氢氮气来自合成
天然气蒸汽转化工艺流程
1、钴钼加氢反应器;2、氧化锌脱硫槽;3、对流段;4、辐射段(一段炉);5、二段转化炉;6、第一废热锅炉;7、批二废热 锅炉;8、汽包;9、辅助锅炉;10、排风机;11、烟囱
图解法或迭代法求解x,y
2.1 合成气的制取
2.1.1 烃类蒸汽转化
2.1.1.1 甲烷蒸汽转化反应
甲烷蒸汽转化反应的热力学分析: c.影响甲烷蒸汽转化反应平衡组成的因素
水碳比 反应温度 反应压力
2.1 合成气的制取
2.1.1 烃类蒸汽转化
2.1.1.1 甲烷蒸汽转化反应
甲烷蒸汽转化反应的热力学分析: c.影响甲烷蒸汽转化反应平衡组成的因素
2.1 合成气的制取
2.1.1 烃类蒸汽转化
2.1.1.1 甲烷蒸汽转化反应
甲烷蒸汽转化反应的热力学分析: c.影响甲烷蒸汽转化反应平衡组成的因素
温度增加,甲烷平衡含量下降,反应温度每降低 10℃,甲烷平衡含量约增加1.0%-1.3%;
增加压力,甲烷平衡含量随之增大;
增加水碳比,对甲烷转化有利; 甲烷蒸汽转化在高温、高水碳比和低压下进行有利
立式圆筒,内径约3米,高约13米;壳体材质 为碳钢,内衬不含硅的耐火材料,炉壳外保温。
上部有燃烧空间的固定床绝热式催化反应器。
2.1 合成气的制取
2.1.1 烃类蒸汽转化
2.1.1.5 转化反应工艺流程及转化炉
燃料用天然气 11
8 9 过 热 蒸 汽
5
2
1 3
一段转化
4
二段转化
对流段
7 10 蒸汽 空气 原料天然气 锅炉给水 转化气去变换 6
氢氮气来自合成
天然气蒸汽转化工艺流程
1、钴钼加氢反应器;2、氧化锌脱硫槽;3、对流段;4、辐射段(一段炉);5、二段转化炉;6、第一废热锅炉;7、批二废热 锅炉;8、汽包;9、辅助锅炉;10、排风机;11、烟囱
图解法或迭代法求解x,y
2.1 合成气的制取
2.1.1 烃类蒸汽转化
2.1.1.1 甲烷蒸汽转化反应
甲烷蒸汽转化反应的热力学分析: c.影响甲烷蒸汽转化反应平衡组成的因素
水碳比 反应温度 反应压力
2.1 合成气的制取
2.1.1 烃类蒸汽转化
2.1.1.1 甲烷蒸汽转化反应
甲烷蒸汽转化反应的热力学分析: c.影响甲烷蒸汽转化反应平衡组成的因素
2.1 合成气的制取
2.1.1 烃类蒸汽转化
2.1.1.1 甲烷蒸汽转化反应
甲烷蒸汽转化反应的热力学分析: c.影响甲烷蒸汽转化反应平衡组成的因素
温度增加,甲烷平衡含量下降,反应温度每降低 10℃,甲烷平衡含量约增加1.0%-1.3%;
增加压力,甲烷平衡含量随之增大;
增加水碳比,对甲烷转化有利; 甲烷蒸汽转化在高温、高水碳比和低压下进行有利
立式圆筒,内径约3米,高约13米;壳体材质 为碳钢,内衬不含硅的耐火材料,炉壳外保温。
上部有燃烧空间的固定床绝热式催化反应器。
2.2 合成气的净化

思 考 题
1、原料气中的二氧化碳脱除的方法有哪些?各有什
么特点? 2、物理法脱碳和化学法脱碳有什么特点和区别? 3、简述碳丙法脱碳的基本原理及其再生方法。 4、什么是转化度和再生度? 5、简述热碳酸钾法脱碳的原理及主要工艺条件。
2 4
反应 特点
一、CO变换的化学平衡和平衡转化率
化学平衡常数
Pco2 PH 2 Pco PH 2O yco2 y H 2 yco y H 2O
Kp
lg k p
2183 0.09361 lg T 0.000632 T 1.08 10 7 T 2 2.298 T
热和耐
硫性能
中高变催化剂还原与钝化
催化剂原始状态为氧化态Fe2O3, 必须还原为活性态Fe3O4 (1)还原 Fe2O3+H2=2Fe3O4+H2O(g) Fe2O3+CO=2Fe3O4+CO2 Fe3O4→Fe2O3
(2)钝化
低变催化剂 主要组分:CuO 活性组分:Cu(铜结晶-铜微晶)
稳定剂:ZnO、Al2O3或 Cr2O3
活性炭
物理性质:由许多毛细孔集聚而成
再生:150-180℃的水蒸汽 大孔,半径>20000nm 毛细孔 过渡孔,半径150 - 20000nm 微孔,半径<150nm, 比表面积500-1000m2/g 常用于活 性炭脱硫
H2S
表面反应:H2S→S 吸附 氧化
挥发性小的物质,噻吩 挥发性大的物质,COS
贫液再沸器 变换气
CO 13-15% 甲烷 化预 800℃, 3.04MPa 热器
思 考 题
• • • • • • •
变换反应的特点有哪些? 变换工序的任务是什么? 解释变换率、平衡变换率的概念。 温度、蒸汽用量对平衡变换率的影响如何? 铁系变换催化剂的主要组成是什么?各组分的作用 是什么? 催化剂在使用前为什么要进行升温还原?用后的催 化剂在卸出前要钝化? 什么是最适宜温度?变换反应存在最适宜温度的原 因是什么?
第2章合成气(上课)

生产的单质炭叫炭黑,对主反应影响很大
CH4 2CO H2+CO
C+2H2 CO2+C C+H2O
析 炭 危 害
炭黑覆盖在催化剂表面,堵塞微孔,降低催化剂活性。 影响传热,使局部反应区产生过热而缩短反应管使用寿
命。
催化剂内表面炭与水蒸气反应,使催化剂破碎,影响生 产能力。
· 10 ·
防止析碳的原则
· 12 ·
2.1.1 烃类蒸汽转化
(3) 二段转化过程
烃类蒸汽转化制取合成氨原料气的工业过程,大多采用
二段转化工艺。
● 首先在外加热的反应管中进行烃类的蒸汽转化反应,即
一段转化;
● 然后,高温的一段转化气进入二段转化炉并加入空气,
利用反应热将甲烷转化反应进行到底。
· 13 ·
2.1.1 烃类蒸汽转化
2.2 合成气的净化
2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 脱硫 一氧化碳变换 二氧化碳的脱除 少量CO、CO2、O2和H2O的清除 热法与冷法净化流程的比较
· 38 ·
2.1.2 重油部分氧化
一、重油部分氧化气化反应 O2 (空气) 气化剂 水蒸气(或蒸汽) 部分氧化: CmHn + (m + n/4)O2 瞬间反应 不可逆 放热
高水碳比可以降低甲烷转化反应中甲烷平衡含量,并可以抑制 一氧化碳还原析碳反应
综合考虑:适当的高温,稍低的压力和高水碳比
2.1.1 烃类蒸汽转化
二、工艺流程及主要设备
(1) 天然气蒸气转化流程
蒸汽 原料天然气 弛放气 加压空气 蒸汽
190℃ 510℃ 850℃
预热器
脱硫
预热
一段转化
预热
450℃
CH4 2CO H2+CO
C+2H2 CO2+C C+H2O
析 炭 危 害
炭黑覆盖在催化剂表面,堵塞微孔,降低催化剂活性。 影响传热,使局部反应区产生过热而缩短反应管使用寿
命。
催化剂内表面炭与水蒸气反应,使催化剂破碎,影响生 产能力。
· 10 ·
防止析碳的原则
· 12 ·
2.1.1 烃类蒸汽转化
(3) 二段转化过程
烃类蒸汽转化制取合成氨原料气的工业过程,大多采用
二段转化工艺。
● 首先在外加热的反应管中进行烃类的蒸汽转化反应,即
一段转化;
● 然后,高温的一段转化气进入二段转化炉并加入空气,
利用反应热将甲烷转化反应进行到底。
· 13 ·
2.1.1 烃类蒸汽转化
2.2 合成气的净化
2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 脱硫 一氧化碳变换 二氧化碳的脱除 少量CO、CO2、O2和H2O的清除 热法与冷法净化流程的比较
· 38 ·
2.1.2 重油部分氧化
一、重油部分氧化气化反应 O2 (空气) 气化剂 水蒸气(或蒸汽) 部分氧化: CmHn + (m + n/4)O2 瞬间反应 不可逆 放热
高水碳比可以降低甲烷转化反应中甲烷平衡含量,并可以抑制 一氧化碳还原析碳反应
综合考虑:适当的高温,稍低的压力和高水碳比
2.1.1 烃类蒸汽转化
二、工艺流程及主要设备
(1) 天然气蒸气转化流程
蒸汽 原料天然气 弛放气 加压空气 蒸汽
190℃ 510℃ 850℃
预热器
脱硫
预热
一段转化
预热
450℃
第二章合成气1

以重油或渣油为原料的生产方法
合成气的生产方法
(1)以煤为原料的生产方法 高温条件下,以水蒸气和氧气为气化剂;
C H 2O CO H 2
特点:H2/CO比值较低,适于合成有机化合物 (煤化工)
(2)以天然气为原料的生产方法
水蒸气转化法 Steam reforming
CH 4 H 2O CO 3H 2 H (298K ) 206kJ / mol
(4)烯烃的氢甲酰化产品 烯烃与合成气在过渡金属配位化合物的作用下发生加成反应, 生成比原料烯烃多一个碳原子的醛。 2CH3CH=CH2+2CO+2H2==CH3CH2CH2CHO+(CH3)2CHCHO 特点
• 使用钴、铑等过渡金属的羰基配位化合物催化剂
• 120~140℃, 20MPa • 均相反应
特点:目前工艺多采用的方法,H2/CO=3, 以天然气为原料的大型合成氨厂广泛采用。
强吸热反应
非催化部分氧化法 Partial oxidation
CH 4 1 / 2O 2 CO 2H 2 CH 4 CO 2 2CO 2H 2 H( 298K ) 35.7kJ / mol H( 298K ) 247kJ / mol
加氢
乙二醇
4CH3OH+O2==2CO(OCH3)2+2H2O (COOCH3)2+4H2==(CH2OH)2+2CH3OH
(6) 合成气与烯烃衍生物羰基化
羰基钴或铑的配位化合物催化剂
合成气+烯烃衍生物
不饱和的醇、醛、酯、醚、缩醛、卤化物和含氮化合物等
羰基化产物
特点:双键参与羰基化反应,官能团不参与反应
2.制取半水煤气的工业方法
合成气的生产过程《化学工艺学(第二版)》米镇涛主编

第5章 合成气的生产过程 5.1 概述 5.1.1 合成气的生产方法 (1)以煤为原料的生产方法 有间歇和连续操作两种方式。 (2)以天然气为原料的生产方法 主要有转化法和部分氧化法。 (3)以重油或渣油为原料的生产方法 主要采用部分氧化法。
5.1.2 合成气的应用实例 合成气的应用途径非常广泛,在此列举一些主要实例。
C+O2 CO2 Δ =-406kJ/mol(5-13)
C+H2O CO+H2 Δ =131kJ/mol(5-14)
C+2H2O
CO2+2H2 Δ =90.3kJ/mol(5-15)
C+CO2 2CO Δ =172.6kJ/mol(5-16)
C+2H2 CH4 Δ =-74.9kJ/mol (5-17)
典型的工业规模的温克勒气化炉内径5.5m,高23m,以褐煤为原料 ,氧-水蒸气鼓风时生产能力47000m3/h,空气-水蒸气鼓风时生产能 力94000m3/h,生产能力可在气化制水煤气
较早的气流床法是K-T法,由德国Koppers公司的Totzek工程师开发 成功,是一种在常压、高温下以水蒸气和氧气与粉煤反应的气化 法。第二代气流床是德士古法。
2CH3OH+CO+ O2 CO(OCH3)2+H2O(5-10)
(COOCH3)2+4H2
(CH2OH)2+2CH3OH (5-11)
(6)合成气与烯烃衍生物羰基化产物 在羰基钴或铑的配位化合物催 化剂作用下,不饱和的醇、醛、酯、醚、缩醛、卤化物、含氮化合 物等中的双键都能进行羰基合成反应,但官能团不参与反应。
5.1.2.2 合成气应用新途径
(1)直接合成乙烯等低碳烯烃 近年来的研究致力于将合成气一步 转化为乙烯等低碳烯烃
5.1.2 合成气的应用实例 合成气的应用途径非常广泛,在此列举一些主要实例。
C+O2 CO2 Δ =-406kJ/mol(5-13)
C+H2O CO+H2 Δ =131kJ/mol(5-14)
C+2H2O
CO2+2H2 Δ =90.3kJ/mol(5-15)
C+CO2 2CO Δ =172.6kJ/mol(5-16)
C+2H2 CH4 Δ =-74.9kJ/mol (5-17)
典型的工业规模的温克勒气化炉内径5.5m,高23m,以褐煤为原料 ,氧-水蒸气鼓风时生产能力47000m3/h,空气-水蒸气鼓风时生产能 力94000m3/h,生产能力可在气化制水煤气
较早的气流床法是K-T法,由德国Koppers公司的Totzek工程师开发 成功,是一种在常压、高温下以水蒸气和氧气与粉煤反应的气化 法。第二代气流床是德士古法。
2CH3OH+CO+ O2 CO(OCH3)2+H2O(5-10)
(COOCH3)2+4H2
(CH2OH)2+2CH3OH (5-11)
(6)合成气与烯烃衍生物羰基化产物 在羰基钴或铑的配位化合物催 化剂作用下,不饱和的醇、醛、酯、醚、缩醛、卤化物、含氮化合 物等中的双键都能进行羰基合成反应,但官能团不参与反应。
5.1.2.2 合成气应用新途径
(1)直接合成乙烯等低碳烯烃 近年来的研究致力于将合成气一步 转化为乙烯等低碳烯烃
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
K P1
P CO
P3 H2
P P CH 4 H 2 O
K P2
P P CO 2 H 2 P CO P H 2 O
b.平衡组成的计算
已知条件: m原 料 气 中 的 水 碳 比 (m H2O)
CH4 P 系 统 压 力 ; T 转 化 温 度 假定:无炭黑析出
计算基准:1mol CH4 在甲烷转化反应达到平衡时,设x为按式(2-3)转化了
压力和水碳比确定后,按平衡甲烷的浓度来确定温度。一般要
求yCH4<0.005,出口温度应为1000℃ 左右。实际生产中,转
化炉出口温度比达到出口气体浓度指标对应的平衡温度高, 这个差值叫平衡温距。
T =T-Te(实际温度-平衡温度) 平衡温距低,说明催化剂活性好。一、二段平衡温距通常分 别为 10~15 ℃ 和 15~30 ℃ 。
为代表来讨论气态烃类蒸汽转化 的主要反应及其控制条件。
➢ 烃类主要进行的反应 烷烃
烯烃 CnH2n n2H2O34nCH4 n4CO2 CnH2n nH2OnCO2nH2 CnH2n 2nH2OnCO2 3nH2
2.1.1.1 甲烷蒸汽转化反应
主要反应
高温、催化 剂
( 1 ) C 4 H H 2 O = C 3 H O 2 2.4 0 km 6 J o ( 2 ) C H O 2 O = C 2 H O 2 4 .2 k 1 /m J
水碳比 反应温度 反应压力
➢ 温度增加,甲烷平衡含量下降,反应温度每降 低10℃,甲烷平衡含量约增加1.0%-1.3%;
➢ 增加压力,甲烷平衡含量随之增大;
➢ 增加水碳比,对甲烷转化有力;
➢ 甲烷蒸汽转化在高温、高水碳比和低压下进行 有利
2.1.1.2 烃类蒸汽转化催化剂
➢ 催化剂组成:NiO为最主要活性成份。实际加 速反应的活性成份是Ni,所以使用前必须进行 还原反应,使氧化态变成还原态Ni。
2.1.3.1 固体燃料气化反应
➢ 固体燃料的气化反应主要是碳与氧的反应和碳 与蒸汽的反应
(1)以空气为气化剂
C + O2 =CO2 C +1/2O2 =CO C + CO2 = 2CO CO + 1/2O2 =CO2
-393.777KJ/mol (5-1) -110.595KJ/mol (5-2) +172.284KJ/mol (5-3) -283.183KJ/mol (5-4)
全厂流程统筹
减少设备体积降低投资
综合经济效益
b. 温度: 理论上,温度↑反应越有利。
一段炉温度 主要考虑投资费用及设备寿命,
一般选择760~800℃
原因:一段炉最重要最贵的合金钢管在温度为950℃时寿命8.4万小时, 960℃时减少到6万小时。
一段炉投资约为全厂30%,其中主要为合金钢管。
二段炉温度 主要按甲烷控制指标来确定。
天然气蒸汽转化工艺流程
1、钴钼加氢反应器;2、氧化锌脱硫槽;3、对流段;4、辐射段(一段炉);5、二段转化炉;6、第一废热锅炉;7、批二废热
锅炉;8、汽包;9、辅助锅炉;10、排风机;11、烟囱
3.6MPa
天然气
380
℃
配入中压蒸汽
变换工序
离开二段转化炉
370 ℃
回收 热量
1000℃ CH4<0.3%
➢ 氢气的主要来源有:气态烃类转化、固体燃料 气化和重质烃类转化
➢ 气态和液态烃类主要采用蒸汽转化和部分氧化 法,固体燃料主要采用间歇气化法。
2.1.1 烃类蒸汽转化
合成氨的生产需
要高纯氢气和氮气, 以天然气为原料的气 态烃类转化过程,经 济效益最高。
天然气主要成份为甲烷(CH4), 还含有乙烷、丙烷及其它少量烯 烃等,其中也有极少量的S等对 催化剂有害的元素。一般以甲烷
2.1.2.2 重油气化工艺条件
1.反应温度 重油气化的控制步骤:
热力学分析:均为可逆吸热反应,提高温度可提高甲烷 与碳黑的平衡转化率。
动力学分析:提高温度有利于提高甲烷和碳黑的转化反 应速率。
国内T<1400 ℃ , ①保护炉衬和喷嘴 ②O2消耗指标 (T提高,氧耗增加)
2.反应压力 热力学不利--体积增大反应 动力学有利--加速反应
与回收
主要设备
➢ 气化炉 受限射流反应器
直立式 卧式
内壁衬有保温材料
2.1.3 固体燃料气化
➢ 固体燃料(煤或焦炭等)在高温下,与气化剂 反应,使碳转变为可燃性气体的过程,称为固 体燃料气化。
➢ 以空气为气化剂制得的煤气称为空气煤气,主 要含大量的氮和一定量的一氧化碳。
➢ 以水蒸汽为气化剂制得的煤气称为水煤气,氢 气与一氧化碳含量可达85%以上。
(5 -7 )
图5-1 0.1MPa下碳-蒸汽反应的平衡组成 T>900℃ ,含有等量的H2和CO,其它组分含量接近于零。 T↓ ,H2O、CO2、CH4含量逐渐增加。 故高温下H2和CO含量高。
图5-2 2MPa下碳-蒸汽反应的平衡组成 相同T ,P↑, H2O、CO2、CH4含量增加,H2和CO含量减小。 故制得H2和CO含量高的水煤气,在低压、高温下进行。
y/(1+m+2x) ·P
P
CH4 H2OCO3H2 COH2OCO2 H2
KP1
PCOPH32 P P CH4 H2O
(xy)(3xy)3
[
](
p
)2
(1x)(mxy) 1m2x
KP2
P P CO2 H2 PCOPH2O
y(3xy) (xy)(mxy)
图解法或迭代法求解x,y
c.影响甲烷蒸汽转化反应平衡组成的因素
2.1.2.3 工艺流程及主要设备
➢ 工艺流程主要包括气化、热量回收和炭黑清除 等部分。
➢ 按照热量回收方式分为直接回收热能的激冷流 程和间接回收热量的废热锅炉流程。
➢ 激冷流程:
将高温原料气直接与热水接触,水迅速蒸发 进入气相,而原料气快速冷却,原料气清除炭 黑后直接送去进行一氧化碳变换反应,由于激 冷流程不允许在变换前因脱硫而降低温度,所 以要求原料是低硫重油或后续变换用耐硫催化 剂。
C H 4
C + 2 H 2
气态烃与蒸汽反应:
C m H n + m H 2 O m C O + ( n / 2 + m ) H 2
C m H n + 2 m H 2 Om C O 2 + ( n / 2 + 2 m ) H 2
➢ 水蒸气、二氧化碳与另一部分重油及高温热裂 解生成的甲烷、游离碳发生转化反应。
的甲烷摩尔数,y为按式(2-4)变换了的一氧化碳摩尔 数。
气体在反应后各组分的平衡分压
组分
CH4 H2O CO H2 CO2 合计
气体组成
反应前 平衡时
1
1-x
m
m-x-y
x-y
3x+y
y
1+m 1+m+2x
平衡分压,MPa
(1-x)/(1+m+2x)·P (m-x-y)/(1+m+2x) ·P
(x-y)/(1+m+2x) ·P (3x+y)/(1+m+2x) ·P
(2)以水蒸汽为气化剂
C + H 2 O (g )= C O + H 2 C O + H 2 O (g )= C O 2 + H 2 C + 2H 2 = CH 4
+ 1 3 1 .3 9 0 K J/m o l (5 -5 )
-4 1 .1 9 4 K J/m o l (5 -6 )
-7 4 .8 9 8 K J/m o l
2合成气(化学工艺学)解析
合成气(synthesis gas or syngas) CO和H2的混合物
原料: 焦炭 无烟煤 天然气 石脑油 重油
合成气的生产工艺
造气 净化
用煤、原油、或天然气作原料, 制备含氢和一氧化碳的气体。
将原料气中的杂质如CO、 CO2、S等脱除到ppm级(10-6)。
2.1 合成气的制取
2.1.2 重油部分氧化
➢ 重油部分氧化法是以重油(即渣油)为原料, 利用氧气在高温下进行反应,获得主要含氢和 一氧化碳的原料气。
2.1.2.1 重油部分氧化反应
1.气化反应 重油雾滴气化:
气态烃的氧化燃烧: CmHn + (m + n/4)O2
mCO2 + n/2H2O
气态烃高温热裂解:
C m H n ( m - n / 4 ) C + ( n / 4 ) C H 4
二段转化的化学反应:
2H2+O2=2H2O(g) △H0298= -482.99kJ/mol 2CO+O2=CO2 △H0298= -565.95kJ/mol CH4+O2=CO+3H2
2.1.1.4 转化反应的工艺条件
a. 压力 通常为3~4MPa
采用加压条件的主要原因:
降低能耗
能量合理利用
提高余热利用价值
表2-4 总压0.1MPa时空气煤气的平衡组成
温度℃ 650
CO2 10.8
CO
N2
α=CO/(CO+CO2)
16.9 72.3
61.0
800
1.6
31.9 66.5
95.2
900
0.4
34.1 65.5
98.8
1000
0.2
34.4 65.4
99.4
结论:T ,CO ,CO2 T>900℃ ,CO2含量很少,主要是CO
主要副反应