spss统计分析及应用教程-第9章-结构方程模型

合集下载

多元统计分析讲座-结构方程模型

多元统计分析讲座-结构方程模型

02 结构方程模型的理论基础
线性代数基础
向量与矩阵
线性变换与矩阵表示
了解向量的基本概念、矩阵的运算规 则以及矩阵的逆、转置等基本性质。
理解线性变换的概念,掌握如何通过 矩阵表示一个线性变换。
特征值与特征向量
掌握特征值和特征向量的定义、性质 以及求解方法。
概率统计基础
概率论基础
理解概率的基本概念、条件概率 、独立性等基本概验的基本 原理和方法,包括最大似然估计 、贝叶斯估计等参数估计方法和 假设检验方法。
模型设定与识别
01
02
03
模型设定
理解模型设定的基本原则 和方法,包括对变量之间 关系的假设、对误差项的 假设等。
模型识别
掌握模型识别的基本方法, 包括基于样本数据的模型 识别和基于先验知识的模 型识别。
结构方程模型需要大量的样本数据,对于小样本数据可 能不太适用。
该模型对于数据的分布假设较为严格,如果数据不满足 正态分布假设,可能会导致估计结果的不准确。
未来发展方向与挑战
未来发展方向
随着大数据时代的到来,结构方程模型将与机器学习、人工智能等技术结合,实现更高效、 准确的因果关系推断。
随着研究领域的不断拓展,结构方程模型将应用于更多领域,如心理学、经济学、社会学等。
未来发展方向与挑战
01
未来发展挑战
02
03
04
需要进一步研究如何处理非正 态分布的数据,以提高模型的
适用性和稳健性。
需要进一步研究如何处理高维 度的数据,以适应大数据时代
的需求。
需要进一步研究如何将结构方 程模型与其他统计方法结合, 以更好地揭示数据背后的复杂
关系。
06 结论
研究总结

spss统计分析和应用教程_第9章_结构方程模型

spss统计分析和应用教程_第9章_结构方程模型

模型识别
确定所设定的模型是否能够对其估计求解.,如果模型是可 识別的,表示理论上模型中的每一个参数都可以估计出唯一的一 个估计值.
模型识别结果包括不能识别<Under-Identified>、适度识别 <just-Identified>及过度识别<Over-Identified>三种.
❖ 模型识别
实验一 结构方程模型
❖ 实验目的
明确结构方程分析有关的概念 熟练掌握结构方程模型构建的过程 能用SPSS软件中的AMOS插件进行结构方程模拟及检验 培养运用结构方程分析方法解决身边实际问题的能力
❖ 准备知识
结构方程模型中常用概念
测量变量:也叫观察变量或显示变量,是直接可以测量的指标. 潜变量:其测量是通过一个或几个可观察指标来间接完成的. 外生潜在变量:他们的影响因素处于模型之外,也就是常说的自变量. 内生潜在变量:由模型内变量作用所影响的变量〔因变量.
〔3可以在一个模型中同时处理因素的测量和因素之间的结构 传统的统计方法中,因素自身的测量和因素之间的结构关系往
往是分开处理的——对因素先进行测量,评估概念的信度与效度,通 过评估标准之后,才将测量资料用于进一步的分析.
在结构方程模型中,则允许将因素测量与因素之间的结构关系纳 入同一模型中同时予以拟合,这不仅可以检验因素测量的信度和效 度,还可以将测量信度的概念整合到路经分析等统计推理中.
❖ 请对大学生闲暇时间消费与满意度之间构 建结构方程模型.
❖ 实验步骤
❖ 结构方程分析由SPSS17.0软件中的 AMOS插件完成.下面以案例说明判别分析 的基本操作步骤.
❖ 实验步骤
〔1准备工作.在SPSSl7.0软件中安装AMOS插件后,先 调用SPSS17.0软件,打开数据文件9-1.sav,通过选择" 文件—打开"命令将数据调入SPSSl7.0的工作文件窗口.

结构方程模型原理及其应用

结构方程模型原理及其应用

一、结构方程模型简介
结构方程模型由一种因素模型和一种结构方程式模型组 成,将心理测量学和经济计量学有效的结合起来。
一个包括一组自变量和一组或更多因变量的计量模型。
模型由两部分组成:测量模型(即验证性因素分析模型, Confirmatory Factor Analysis , CFA)和结构模型 (又称潜变量的因果关系模型,Causal Model )。测量 模型主要是用于表示观测变量和潜变量之间的关系;而 结构方程模型主要是用于来表示潜变量之间的关系。 其相应的统计分析软件:SPSS/AMOS与LISREL的应用,特 别是AMOS的操作与应用。
?1 ?2 ?3
情商
ξ1
? 21
? 21 外部潜在变量
? 11
智商
ξ2
?4 ?5 ?6
?12
η ? Βη ? Γξ ? ζ
?10 ?11 ?12
η2 ζ2 人际
关系
? 21 内部潜在变量
η1
ζ1 学业
成绩
?7 ?8 ?9
x4
x5
x6
y1
y2
y3
δ4 δ5 δ6
ε1 ε2 ε3
测量模型(验证性因素分析模型,如社会经济指
一、结构方程模型简介
结构方程模型是基于变量的协方差矩阵来分析变量之间关系的 一种统计方法,是路径分析和因素分析的有机结合。
对于那些不能准确、直接测量的潜变量( latent variable , 如家庭的社会经济地位、学业成就等),可以用一些外显指标 ( observed variable ,如学生父母的教育程度和父母职业及 收入作为家庭社会经济地位的指标,以学生的语文、数学英语 三科成绩作为学业成就的指标 )去间接测量。结构方程模型 可以同时处理潜变量及指标。

结构方程模型及其应用

结构方程模型及其应用

结构方程模型及其应用引言结构方程模型(SEM)是一种广泛应用于社会科学、心理学、经济学、医学等领域的统计方法。

SEM可以同时处理潜在变量和观测变量,并能够准确地估计模型中各种参数的值,以便更好地理解和预测现实世界中的各种现象。

基本概念结构方程模型包括路径分析、因素分析和结构方程建模等方面。

路径分析旨在揭示变量之间的因果关系,通过建立变量之间的路径图来表现各个变量之间的相互作用。

因素分析则是将变量之间的关系转化为潜在因素之间的关系,从而更好地理解变量之间的本质。

而结构方程建模则是将路径分析和因素分析结合起来,建立一个完整的模型,并估计模型中各种参数的值。

方法与技术结构方程模型的方法和技术包括问卷调查、数据采集、数据分析等。

在建立SEM模型之前,需要通过问卷调查来收集数据,确定潜在变量和观测变量的具体指标。

数据采集的方法可以包括网络调查、调查、面对面访谈等。

在数据采集完成后,需要使用特定的统计分析软件,如SPSS、AMOS等,来进行数据分析,估计模型中各种参数的值,并检验模型的拟合程度。

应用场景结构方程模型在教育、金融、医疗等领域有广泛的应用。

在教育领域,SEM可以帮助教育工作者了解学生学习成果的影响因素,为教育政策的制定提供科学依据。

在金融领域,SEM可以用来研究投资组合优化、风险管理等问题,帮助投资者做出更加明智的投资决策。

在医疗领域,SEM可以用来研究疾病发生、发展及其影响因素,为疾病的预防和治疗提供新的思路和方法。

案例分析以一个实际案例来说明结构方程模型的应用过程。

假设我们想要研究学生的心理健康状况对其学业成绩的影响。

首先,我们需要通过问卷调查来收集数据,确定潜在变量和观测变量。

潜在变量包括学生的心理健康状况和学业成绩,观测变量则包括学生的性别、年龄、家庭背景等。

然后,我们使用AMOS软件来建立SEM模型,并估计模型中各种参数的值。

在模型中,我们建立了一条从心理健康状况到学业成绩的路径,表示心理健康状况对学业成绩的影响。

结 构 方 程 模 型

结 构 方 程 模 型

结构方程模型结构方程模型(Structural Equation Modeling,简称SEM)是一种多变量统计分析方法,其主要用于探究变量之间的关系和影响。

它不仅可以用于描述变量之间的相关性,还可以帮助我们理解变量之间的因果关系。

在社会科学、教育学、心理学等领域中,SEM已经成为了一种常用的分析方法。

本文将从以下几个方面对SEM进行详细介绍。

一、 SEM的基本概念1. 结构方程模型结构方程模型是一种复杂的统计分析方法,它可以同时考虑多个因素对某个结果变量的影响,并且可以建立一个包含多个因素和结果变量之间相互作用关系的模型。

2. 因果关系在SEM中,我们通常会建立一个因果模型来描述变量之间的关系。

因果关系指的是一个事件或现象引起另一个事件或现象发生的关系。

在SEM中,我们通过设定不同变量之间的路径来表示它们之间可能存在的因果关系。

3. 测量模型测量模型是指将观测到的数据转化为潜在变量(latent variable)或者隐含特征(hidden feature)所形成的数学模型。

在SEM中,我们通常会将多个测量指标(observed variables)用一个潜在变量来代表。

4. 结构模型结构模型是指变量之间的关系模型。

在SEM中,我们通常会建立一个结构方程模型,其中包含多个因素和结果变量之间相互作用的关系。

二、 SEM的应用领域1. 社会科学社会科学领域是SEM的主要应用领域之一。

在社会科学研究中,SEM 可以帮助研究人员探究不同因素对社会现象产生的影响,并且可以通过因果关系的建立来分析各种社会问题。

2. 教育学教育学领域也是SEM的重要应用领域之一。

在教育研究中,SEM可以帮助研究人员分析不同因素对学生学习成绩产生的影响,并且可以通过建立因果模型来探究各种教育问题。

3. 心理学心理学是SEM的另一个主要应用领域。

在心理学研究中,SEM可以帮助研究人员探究不同因素对心理问题产生的影响,并且可以通过建立因果模型来分析各种心理问题。

spssau 结构方程模型

spssau 结构方程模型

结构方程模型出现问题如何办?目录1结构方程模型SEM的拟合指标 (1)2 解决办法1:梳理建模流程(因子分析) (3)3 解决办法2:调整模型(MI指数调整和手工调整) (3)3 解决办法3:换用模型(路径分析或线性回归) (4)结构方程模型SEM是一种多元数据分析方法,其包括测量模型和结构模型,类似如下图:上图中红框即为测量模型,Factor1是A1~A4共4项表示;类似还有Factor2,Factor3和Factor4。

而结构模型是指影响关系情况,比如模型中Factor1和Factor2影响Factor3;Factor3影响Factor4。

如果说只研究测量模型,那么通常是指验证性因子分析CFA;如果说只研究结构模型,则称作路径分析path analysis。

验证性因子分析和路径分析均是结构方程模型的特殊形式。

结构方程模型由测量模型和结构模型构成,如果进行结构方程模型构建时想达到良好的模型效果。

那么就需要保证测量模型和结构模型均有着良好的拟合性,否则最终结构方程模型拟合效果都不会太好。

同时,结构方程模型有着非常多的拟合指标,比如卡方自由度比,RMSEA,CFA,RMR等几十种,但在实际研究中会发现基本上很难所有指标均达标,而且很多指标都不达标。

那怎么办呢?接下来针对结构方程模型的拟合指标、拟合效果不好时的3种解决办法等分别进行说明,期许得到最佳模型。

结构方程模型SEM的拟合指标结构方程模型拟合时,会有非常多的指标。

SPSSAU默认提供常用的15类指标,说明如下:在已有文献中,还会出现各类拟合指标,但基本上都是上述拟合指标的一种变型而已。

一般来说,模型拟合效果越好,各类指标越容易达标,但即使模型已经拟合非常好,也不能保证所有的参数均在标准范围内。

为什么会出现这种情况呢,比如卡方自由度值使用较多,但是该指标容易受到样本量的影响,样本量越大时,该指标越可能更小,有的指标在标准范围内,那么对应有的指标就可能不在标准范围内,没有一个指标可以完全性地确定模型的好或坏。

结构方程模型

结构方程模型
结构方程模型 课件
(Structural Equation Modeling,SEM) –
结构方程模型 结构方程模型是一门基于统计分析技术的研究方法学,它主要用于解决社会科学研 究中的多变量问题, 用来处理复杂的多变量研究数据的探究与分析。 在社会科学及经济、 市场、管理等研究领域,有时需处理多个原因、多个结果的关系,或者会碰到不可直接 观测的变量(即潜变量),这些都是传统的统计方法不能很好解决的问题。 SEM 能够对 抽象的概念进行估计与检定,而且能够同时进行潜在变量的估计与复杂自变量 /因变量 预测模型的参数估计。 结构方程模型是一种非常通用的、主要的线形统计建模技术,广泛应用于心理学、经济 学、社会学、行为科学等领域的研究。实际上,它是计量经济学、计量社会学与计量心理学 等领域的统计分析方法的综合。多元回归、因子分析和通径分析等方法都只是结构方程模型 中的一种特例。 结构方程模型是利用联立方程组求解,它没有很严格的假定限制条件,同时允许自变量 和因变量存在测量误差。在许多科学领域的研究中,有些变量并不能直接测量。实际上,这 些变量基本上是人们为了理解和研究某类目的而建立的假设概念,对于它们并不存在直接测 量的操作方法。人们可以找到一些可观察的变量作为这些潜在变量的“标识”,然而这些潜 在变量的观察标识总是包含了大量的测量误差。在统计分析中,即使是对那些可以测量的变 量,也总是不断受到测量误差问题的侵扰。自变量测量误差的发生会导致常规回归模型参数 估计产生偏差。虽然传统的因子分析允许对潜在变量设立多元标识,也可处理测量误差,但 是,它不能分析因子之间的关系。只有结构方程模型即能够使研究人员在分析中处理测量误 差,又可分析潜在变量之间的结构关系。
线性回归分析: 线性回归是比线性相关更复杂的方法,它在模型中定义了因变量和自变量。但它只 能提供变量间的直接效应而不能显示可能存在的间接效应。而且会因为共线性的原因, 导致出现单项指标与总体出现负相关等无法解释的数据分析结果。 结构方程模型分析: 结构方程模型是一种建立、估计和检验因果关系模型的方法。模型中既包含有可观 测的显在变量, 也可能包含无法直接观测的潜在变量。 结构方程模型可以替代多重回归、 通径分析、因子分析、协方差分析等方法,清晰分析单项指标对总体的作用和单项指标 间的相互关系。

IBM SPSS AMOS 结构方程模型教程

IBM SPSS AMOS 结构方程模型教程

表一、关于顾客满意调查数据的收集本次问卷调研的对象为居住在某大学校内的各类学生(包括全日制本科生、全日制硕士和博士研究生),并且近一个月内在校内某超市有购物体验的学生。

调查采用随机拦访的方式,并且为避免样本的同质性和重复填写,按照性别和被访者经常光顾的超市进行控制。

问卷内容包括7个潜变量因子,24项可测指标,7个人口变量,量表采用了Likert10级量度,如对1正向的,采用Likert10级量度从“非常低”到“非常高”二、缺失值的处理采用表列删除法,即在一条记录中,只要存在一项缺失,则删除该记录。

最终得到401条数据,基于这部分数据做分析。

三、数据的的信度和效度检验1.数据的信度检验信度(reliability)指测量结果(数据)一致性或稳定性的程度。

一致性主要反映的是测验内部题目之间的关系,考察测验的各个题目是否测量了相同的内容或特质。

稳定性是指用一种测量工具(譬如同一份问卷)对同一群受试者进行不同时间上的重复测量结果间的可靠系数。

如果问卷设计合理,重复测量的结果间应该高度相关。

由于本案例并没有进行多次重复测量,所以主要采用反映内部一致性的指标来测量数据的信度。

折半信度(split-half reliability)是将测量工具中的条目按奇偶数或前后分成两半,采用Spearman-brown公式估计相关系数,相关系数高提示内部一致性好。

然而,折半信度系数是建立在两半问题条目分数的方差相等这一假设基础上的,但实际数据并不一定满足这一假定,因此信度往往被低估。

Cronbach在1951年提出了一种新的方法(Cronbach's Alpha系数),这种方法将测量工具中任一条目结果同其他所有条目作比较,对量表内部一致性估计更为慎重,因此克服了折半信度的缺点。

本章采用SPSS16.0研究数据的内部一致性。

在Analyze菜单中选择Scale下的Reliability Analysis(如图7-1),将数据中在左边方框中待分析的24个题目一一选中,然后点击,左边方框中待分析的24个题目进入右边的items方框中,使用Alpha 模型(默认),得到图7-2,然后点击ok即可得到如表7-3的结果,显示Cronbach's Alpha系数为0.892,说明案例所使用数据具有较好的信度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

❖ 模型评价
评价指标
绝对拟合评价
指 标
绝对拟合评价
绝对拟合评价
卡方值
拟合优度指数GFI
标准化均方根残余 SRMR 期望复核效度指标 AGFI 调整后的拟合指数 AGFI 不规范拟合指数 NNFI
增值拟合指数IFI
简效规范拟合指数 PNFI Akaike 信息标准化 AIC 规范卡方Normed Chi-Square
模型识别
确定所设定的模型是否能够对其估计求解。,如果模型是 可识別的,表示理论上模型中的每一个参数都可以估计出唯一 的一个估计值。
模型识别结果包括不能识别(Under-Identified)、适度识别 (just-Identified)及过度识别(Over-Identified)三种。
❖ 模型识别
要把路径图复制到另外的文档或其他文件中时,这里的调整
特别重要;
• Formats标签下提供了参数格式的设置选项; • Colors标签下提供了绘图时所涉及的线条颜色设置。
•Analysis Properties之下提供了一个菜单,用于设置模型 拟合过程中的一些选项 ,如图所示。
ቤተ መጻሕፍቲ ባይዱ
Analysis Properties
非集中化参数NCP 均方根残余RMR 近似误差的均方根 RMSEA 规范拟合指数NFI
比较拟合指数CFI
相对拟合指数RFI
简效良性拟合指数 PGFI 胡特的临界数值CN
❖ 卡方检验指标
❖ 残差分析指标
❖ 评价指标名称
❖ 替代性指标名称
❖ 实验内容
❖ 为了了解大学生闲暇时间消费状况与幸福指数之间的关 系,设计调查问卷并收集相关数据,在理论上将大学生 闲暇时间消费划分为社交活动时间、文化休闲时间和网 络休闲时间。大学生的幸福指数由其个体满意度、就业 准备满意度与社会满意度三个方面组成,
注意:把路径图文件存储在某一特定位置后,在该文件夹 中将会出现几个名字相同而后缀不同的存储文件,其中, *.amw是所存储的路径图文件;*.bk1和*.bk2是自动生 成的备份文件,可以通过Retrieve Backup打开; *.AmosTNP、*.AmosTN、*.AmosP、*.amp都是 AMOS的文件管理文件,可以双击这些文件打开相应的存 储文件。*.amo是模型拟合之后出现的拟合结果文件。
实验一 结构方程模型
❖ 实验目的
明确结构方程分析有关的概念 熟练掌握结构方程模型构建的过程 能用SPSS软件中的AMOS插件进行结构方程模拟及检验 培养运用结构方程分析方法解决身边实际问题的能力
❖ 准备知识
结构方程模型中常用概念
测量变量:也叫观察变量或显示变量,是直接可以测量的指标。 潜变量:其测量是通过一个或几个可观察指标来间接完成的。 外生潜在变量:他们的影响因素处于模型之外,也就是常说的自变 量。 内生潜在变量:由模型内变量作用所影响的变量(因变量)。
• Move是移动所选定的图形; • Duplicate是复制所选定的图形; • Erase是删除所选定的图形; • Move Parameter是移动所设定的参数位置;
•Edit按钮 在Edit下拉的菜单之中,提供了路径图编辑的相关工具, 如图所示。各选项的功能如下:
• Reflect是将所选定的图形作镜面对称; • Rotate是旋转所选定的图形; • Shape of Object是调整所选定的图形大小; • Space Horizontally是水平调整选定的图形; • Space Vertically是水垂直平调整选定的图形; • Drag Properties用来设定正在编辑的图形的性质; • Fit to page是使绘图区的图形与绘图区域大小相适应; • Touch up是用来使图形相对协调美观。
❖ 准备知识
结构方程模型的应用范围
结构方程模型的主要应用范围有两个:其一是对难以直接观测 到的潜变量提供一个可以观测和处理的方式,以便对该变量作进一 步的研究;其二是研究不同变量之间可能存在的相关关系。
如果所研究的变量都是可以直接观测得到的,结构方程模型所 能检验的就是变量之间相关关系的显著性,这种关系通常也称为结 构关系。
通过固定或限制一些参数,自由参数的数目就可以减少,原来不能 识别的模型有可以变为可以识别模型。
❖ 结构方程构建步骤 3
模型估计
最大似然法(maximum likelihood)和广义最小二乘法( generalized least square)
❖ 结构方程构建步骤 4
模型评价
对模型的整体拟合效果和单一参数的估计值进行评价。如 果模型拟合效果不佳,可以对模型进行修正来提高模型拟合效 果。
❖ 模型识别
自由参数:未知并需要估计的参数。
固定参数:不自由的并固定于设定值的参数。如在测量模型中,或 者将每个潜在变量标识的因子负荷之一设定为1,或将该潜在变量 的方差设定为1;对于结构方程,一些通径系数应该被设定为0,这 意味着被设定为无影响作用。
限制参数,那些未知的,但被规定相等于另一个或另一项参数值的 参数。
(2)打开AMOS对话框 执行“分析”——AMOS 命令,打开结构方程分析 的主对话框。操作过程见 图
❖ AMOS界面图
❖ File的下拉菜单
(3)AMOS界面简介——菜单栏的主要功能 File菜单,在File按钮下拉的菜单之中,提供了文件存取的 一系列选项,如图所示。各选项功能简介如下:
•File菜单 • New是在绘图区新建一个空白的路径图; • New with Template是从Templete文件夹中导 出*.amt文件; • Open是打开一个已知位置的存储文件; • Retrieve Backup是打开之前存储的备份文件; • Save是存储正在编辑的路径图; • Save as是把正在编辑的路径图存储至特定的位 置并重新命名;
如果在研究中所涉及的变量有部分为不可观测到的潜变量,此 时必须首先完成该潜变量的构建,将其转化为可观测的变量后再对 变量间可能的关系进行处理,在这一情况中,结构方程模型可以同 时处理测量关系和结构关系。
主成分分析的基本思想
它通过对原始变量相关矩阵或协方差矩阵内部结构关系的 研究,利用原始变量的线性组合形成几个综合指标(主成分), 在保留原始变量主要信息的前提下起到降维与简化问题的作用 ,使得在研究复杂问题时更容易抓住主要矛盾。
第9章 结构方程模型
第9章 结构方程模型
❖ 本章学习目标
理解结构方程分析的基本思想与原理 了解结构方程模型分析方法的优点 熟悉结构方程模型中常用的概念 掌握结构方程模型构建的步骤 熟练掌握应用SPSS软件中的AMOS插件进行结构方程模
拟的操作 掌握实验结果的分析与利用 了解结构方程模型在经济管理数据分析中的应用
(3)可以在一个模型中同时处理因素的测量和因素之间的结构 传统的统计方法中,因素自身的测量和因素之间的结构关系往
往是分开处理的——对因素先进行测量,评估概念的信度与效度, 通过评估标准之后,才将测量资料用于进一步的分析。
在结构方程模型中,则允许将因素测量与因素之间的结构关系 纳入同一模型中同时予以拟合,这不仅可以检验因素测量的信度和 效度,还可以将测量信度的概念整合到路经分析等统计推理中。
• Data Files是选择模型拟合所采用的数据文件;
(3)AMOS界面简介——菜单栏的主要功能 • Print是打印正在编辑的路径图; • File Manager是管理正在编辑的与文件相关的 一系列文件; • Exit是退出AMOS程序。
Exit下面提供了连接到AMOS最近访问的几个路径图文件 的快捷方式。单击该文件名即可打开相应的路径图文件。
❖ 结构方程模型的优点
(4)允许更具弹性的模型设定 在传统建模技术中,模型的设定通常限制较多,例如,单一指
标只能从属于一个因子,模型自变量之间不能有多重共线性等。 结构方程模型既可以处理单一指标从属于多个因子的因子分析,
也可以处理多阶的因子分析模型。在因素结构关系拟合上,也允许 自变量之间存在多重共线性关系。
• Estimation标签下提供了模型拟合方法的选项,在AMOS分析中 使用最多的是最大似然法,当然,在这一标签之下也提供了其他 几种拟合方法;
• Numerical标签下提供了模型分析过程中迭代法设定的选项,因 为模型的拟合实际上是用迭代法予以实现的;Bias标签下提供了 采用数据资料协方差矩阵进行模型拟合时的一些设定选项;
• Pen Width标签下提供了路径图绘制过程中线条和箭头的大 小格式选择;
• Misc标签下提供了界面属性的一些细微之处的调整,例如, 是否在绘图区设置带有方格的背景,图形过于密集而使用工
具栏上的放大工具查看时的放大倍率等;
• Page Layout标签下提供了界面设置的一些选项,例如绘图 区的上下和左右边距,绘图区是横向还是纵向等,使用者需
(2)可以同时处理多个因变量 在传统计量模型中,方程右边的因变量一般只有一个,但是在
管理学等社会科学领域,因变量常常有多个,例如员工素质可以影 响企业文化,也可以影响企业绩效,这样在结构方程模型中,允许 同一模型中出现多个因变量,在模型拟合时对所有变量的信息都予 以考虑,可以增强模型的有效性。
❖ 结构方程模型的优点
为了方便绘图,这些编辑工具基本上在工具栏中都可以找 到。使用者只需点击工具栏上的图标就可以激活这些工具。
❖ View/Set的下拉菜单
•Interface Properties之下提供了一个菜单,用于设置路径 图编辑界面的属性,如图所示。
Interface Properties
• Language标签下提供了文件界面语言的选择; • Typefaces标签下提供了变量名字、参数值、图形标题的字 体格式选择;
第9章 结构方程模型
❖ 结构方程模型(Structure Equation Modeling, SEM) 是应用线性方程系统表示观测变量与潜变量之间,以及 潜变量之间关系的一种方法,其实质是一种广义的一般 线性模型。与传统的线性回归模型不同,结构方程模型 允许研究人员能够同时检验一批回归方程,而且这些回 归方程在模型形式、变量设置、方程假设等方面也与传 统回归迥然不同,因此,其适用范围也比传统回归分析 更为多元化。
相关文档
最新文档