金属钝化曲线测定
金属腐蚀试验实验一:恒电位法测定阳极极化曲线

实验一:恒电位法测定阳极极化曲线一.实验目的1. 熟悉恒电位仪测定极化曲线的方法;2. 了解金属钝化现象及活化钝化转变过程二.基本原理极化曲线测量是金属电化学腐蚀和保护中一种重要的研究手段。
测量腐蚀体系的极化曲线,实际就是测量在外加电流作用下,金属在腐蚀介质中的电极电位与外加电流密度之间的关系。
某些金属在特定介质中存在钝化现象,表面生成一层具有保护作用的钝化膜,其阳极极化曲线如图所示:图1-1. 具有活化钝化转变的阳极极化曲线图中Ⅰ区为活化区,Ⅱ区为钝化过渡区,Ⅲ区为钝化区,此时金属表面生成一层具有保护性的钝化膜,Ⅳ区为过钝化区,钝化膜破裂,极化电流增大。
图中a 点所对应的电流密度为维钝电流密度,b 点所对应的电流密度为致钝电流密度。
为了判定金属在电解质溶液中采用阳极保护的可能性,选择阳极保护的三个主要技术参数——致钝电流密度、维钝电流密度和钝化电位,必须测定阳极极化曲线。
三.实验仪器及用品恒电位仪,极化池,参比电极,辅助电极,工作电极,天平,量筒,水浴锅,温度计,搅拌棒,碳酸氢铵,氨水,无水酒精棉,水砂纸,四.实验步骤1. 配制实验溶液100毫升去离子水在水浴中加热至40度左右,放入22.9克碳酸氢铵,用玻璃棒搅拌至完全溶解,再加入9毫升氨水;2. 测定阳极极化曲线用水砂纸打磨工作电极至光亮,用无水酒精棉擦干待用;按照仪器要求连线,盐桥尖端与研究电极齐高,经教师确认无误方可开始实验;极化速度100mv/分钟。
实验完毕后拆线,整理实验台。
lgiab五.实验报告要求1.姓名、学号、班级2.试验目的:根据自己的理解简述3.实验原理:根据自己的理解简述,请勿抄书或实验讲义4.仪器药品及实验步骤:简述5.实验数据在表中列出实验数据6.数据处理作E-lgi曲线图,在图中标明致钝电流密度、维钝电流密度及钝化电位区间,并附表列出。
7.结果分析要求对所得的试验结果进行讨论分析,得出最终结论,文中引用参考文献处用上角标[1]的格式标明,并在试验报告后列出所引用的文献。
金属极化曲线测定及机理分析

金属极化曲线测定及机理分析一、实验目的1. 了解测定金属极化曲线的意义和方法。
2. 了解自腐蚀电势、自腐蚀电流和钝化电势、钝化电流等概念以及它们的测定方法。
3. 了解电化学保护的概念、种类及其意义。
4. 了解CHI电化学工作站基本工作原理,掌握其使用方法。
二、基本原理将一种金属(电极)浸在电解液中,在金属与溶液之间就会形成电位,这种电位称为该金属在该溶液中的电极电位。
当有外加电流通过此电极(电解)时,其电极电位会发生变化,这种现象称为电极的极化。
如果电极为阳极,则电极电位将向正方向偏移,称为阳极极化;对于阴极,电极电位将向负方向偏移,称为阴极极化。
令:(16.1)图16.1 典型的阴、阳极极化曲线对于可逆电极,即为平衡电极电位; 对于不可逆电极,为系统达到稳态时的电极电位,即稳态电极电位,或称自腐蚀电位。
习惯上将电极电流密度为i 时对应的电极电位与平衡电极电位之差定义为在该电流密度时的过电位,用符号表示。
并规定阴、阳极的过电位均为正。
根据上述定义,可以分别写出阴、阳极的过电位计算公式为:过电位是一个很重要的电化学参量。
例如在金属电沉积中,析出金属的过电位越小,消耗的电能也就越少。
在电解提纯工艺中,往往借助改变析出金属的过电位,来改变金属的析出顺序,从而获得所需的金属,达到提纯的目的。
如前所述,过电位的大小与流经电极的电流密度有关,电极电位(或过电位)与电流密度的关系曲线称为极化曲线。
图16.1是一种典型的极化曲线。
随着电流密度的增加,电极电位将越来越偏离平衡电位,亦即过电位将越来越大。
极化曲线还常用半对数座标表示,如图16.2 所示。
考察图16.2 可知,当电流密度较大时,过电位与电流密度的对数成线性关系,即:式(16.4),式(16.5) 均称为塔菲尔(Tafel)公式。
图16.2 半对数极化曲线示意图事实上,对于任一电极总是同时存在着两个共轭反应(也可存在两对或两对以上的反应),一是还原反应:(16.6)与之相对应的共轭反应是氧化反应:(16.7)式中o为氧化态;R 为还氧态。
铁的极化和钝化实验详细步骤及数据处理

实验13 铁的极化和钝化曲线的测定一、极化曲线1. 详细的实验步骤(1) 将电解液倒入三电极电解池指定的刻度,将工作电极(铁电极)、辅助电极(铂电极)以及参比电极(饱和甘汞电极)置于三电极电解池相应的玻璃管中并与电化学工作站相连(三个电极一一对应)。
(2) 打开电化学工作站开关,双击电脑桌面的文件夹” set660c”,双击应用程序“chi660c”进入电化学工作站专用软件。
(3) 单击工具栏中“T”按钮,选择” Tafel Plot”,点击”ok”进入极化曲线参数设置对话框,手动输入参数如下图所示:点击“ok”,再单击工具栏中“►”按钮即开始测定极化曲线。
测试完毕后要存盘,“File”-“Save as”,选择要存盘的地址并输入文件名如“04110711-2-Na”即可,文件格式为系统定义的格式(BIN文件),为了能用于撰写实验报告要先转化为txt格式并导入到origin7.5中作图。
在文件打开的情况下运行“File”-“Convert to text”,并使用相同的文件名存在相同的目录下即可。
(4) 先测定铁电极在中性水溶液中的极化曲线,数据存盘后用直尺测量铁电极没入电解液的高度(其宽度为1cm),从而求得其面积(用于计算自腐蚀电流密度)。
将铁电极用金相砂纸打磨备用。
将溶液换为1mol/LH2SO4溶液,重复上述步骤得到铁电极在1mol/LH2SO4溶液中的极化曲线,文件名可命名为“04110711-2-H”。
2.数据处理及报告撰写2.1 在origin 7.5中将铁电极在两个不同电解液中的极化曲线放在同一坐标内具体操作如下:先运行origin 7.5,执行如下命令:“File”-“Import”-“Simple Single ACSII”,在弹出的对话框中定位到已经换化好的文本文件(如04110711-2-Na),在显示器上你将看到:然后运行“File”-“Save Project as (或在汉化版中选择“保存工程为”)”,选择相应的目录,将文件名命名为“04110711-2-Na”备用,按上述方法建立另外一个文件“04110711-2-H”,备用。
腐蚀学原理金属的钝化

图5-8 氧化剂浓度的影响
若提高介质同金属表面的相对运动速度 如搅拌 ,则由于扩散层变薄,进而提高了氧的还原速度,使iL2>iPP 图5-9 。这样共轭极化曲线便交于点2,进入钝化区。
图5-9 搅拌的影响
溶液组分如溶液酸度、卤素离子、络合剂等也能影响金属钝化。通常金属在中性溶液中比较容易钝化,这与离子在中性溶液中形成的氧化物或氢氧化物的溶解度较小有关。在酸性或碱性溶液中金属较难钝化。这是因为在酸性溶液中金属离子不易形成氧化物,而在碱性溶液中又可能形成可溶性的酸根离子 例如MO2-2 的缘故。许多阴离子尤其是卤素离子的存在,甚至可以使已经钝化了的金属重新活化。例如,氯离子的存在可以使不锈钢出现点蚀现象。活化剂浓度越高,破坏越快。活化剂除氯外,按其活化能力的大小可排列为如下次序: Cl->Br->I->F-> >OH-> 视条件不同这个次序也是有变化的。 电流密度、温度以及金属表面状态对金属钝化也有显著影响。例如,当外加阳极电流密度大于致钝电流密度iPP时,可使金属进入钝化状态。提高阳极电流密度可加速金属钝化,缩短钝化时间。温度对金属钝化影响也很大,当温度升高时,往往由于金属阳极致钝电流密度变大及氧在水中溶解度下降,使金属难于钝化。反之,温度降低,金属容易出现钝化。金属表面状态如金属表面氧化物能促使金属钝化。又如用氢气处理后的铁,暴露于空气中使其表面形成氧化膜,再在碱中阳极极化,会立即出现钝化。若未在空气中暴露,立即在碱中进行阳极极化,则需经较长时间后才能出现钝化。
问题:为什么两种方法得到的极化曲线形状不一样
不同方法测得的阳极钝化曲线
a 控制电位法; b 控制电流法
解读: AB段:为金属的活性溶解区。在此区间金属进行正常的阳极溶解,溶解速度受活化极化控制,其中直线部分为Tafel直线。 BC段:为金属的活化—钝化过渡区。B点对应的电位称为初始钝化电位EPP,也叫致钝电位。B点对应的临界电流密度称为致钝电流密度,用iPP表示。因为一旦电流密度超过iPP,电位大于EPP,金属就开始钝化,此时电流密度急剧降低。但BC段为活化—钝化过渡区,在此电位区间,金属表面状态发生急剧变化,并处于不稳定状态。 CD段:为金属的稳定钝化区。电位达到C点后,金属转入完全钝态,通常把这点的电位称为初始稳态钝化电位EP。CD电位范围内,电流密度通常很小,为μA/cm2数量级,而且几乎不随电位变化,称为维钝电流密度iP。维钝电流密度很小反映了金属在钝态下的溶解速度很小。 DE段为金属的过钝化区。电位超过D点后电流密度又开始增大。D点的电位称为过钝化电位Etp。此电位区段电流密度又增大了,通常是由于形成了可溶性的高价金属离子,如不锈钢在此区段因有高价铬离子形成,引起钝化膜的破坏,使金属又发生腐蚀了。 2Cr3++7H2O → Cr2O72-+14H++6e
金属钝化曲线的测定实验报告

竭诚为您提供优质文档/双击可除金属钝化曲线的测定实验报告篇一:极化曲线-实验报告篇二:实验报告-极化曲线测量金属的腐蚀速度课程实验者名称页数()专业年级、班同组者姓名级别姓名实验日期年月日一、目的和要求1、掌握恒电位法测定电极极化曲线的原理和实验技术。
通过测定Fe在nacl溶液中的极化曲线,求算Fe的自腐蚀电位,自腐蚀电流2、论极化曲线在金属腐蚀与防护中的应用二、基本原理当金属浸于腐蚀介质时,如果金属的平衡电极电位低于介质中去极化剂(如h+或氧分子)的平衡电极电位,则金属和介质构成一个腐蚀体系,称为共轭体系。
此时,金属发生阳极溶解,去极化剂发生还原。
在本实验中,镁合金和钢分别与0.5mol/L的nacl溶液构成腐蚀体系。
镁合金与nacl溶液构成腐蚀体系的电化学反应式为:阳极:mg=mg2++2e阴极:2h2o+2e=h2+2oh-钢与nacl溶液构成腐蚀体系的电化学反应式为:阳极:Fe=Fe2++2e阴极:2h2o+2e=h2+2oh-腐蚀体系进行电化学反应时的阳极反应的电流密度以ia表示,阴极反应的速度以ik表示,当体系达到稳定时,即金属处于自腐蚀状态时,ia=ik=icorr(icorr为腐蚀电流),体系不会有净的电流积累,体系处于一稳定电位?c。
根据法拉第定律,即在电解过程中,阴极上还原物质析出的量与所通过的电流强度和通电时间成正比,故可阴阳极反应的电流密度代表阴阳极反应的腐蚀速度。
金属自腐蚀状态的腐蚀电流密度即代表了金属的腐蚀速度。
因此求得金属腐蚀电流即代表了金属的腐蚀速度。
金属处于自腐蚀状态时,外测电流为零。
极化电位与极化电流或极化电流密度之间的关系曲线称为极化曲线。
测量腐蚀体系的阴阳极极化曲线可以揭示腐蚀的控制因素及缓蚀剂的作用机理。
在腐蚀点位附近积弱极化区的举行集会测量可以可以快速求得腐蚀速度。
在活化极化控制下,金属腐蚀速度的一般方程式为:cI?ia?ik?icorr[exp()?exp(c)]?a?k其中I为外测电流密度,ia为金属阳极溶解的速度,ik 为去极化剂还原的速度,βa、βk分别?ec为金属阳极溶解的自然对数塔菲尔斜率和去极化剂还原的自然对数塔菲尔斜率。
金属钝化曲线测定

的瞬时电流值,并以瞬时电流与对应的电极电位作图,获得整个的极化曲线。所 采用的扫描速度( 即电位变化的速度)需要根据研究体系的性质选定。一般来说, 电极表面建立稳态的速度愈慢, 则扫描速度也应愈慢, 这样才能使所测得的极化 曲线与采用静态法的接近。 上述两种方法都巳获得了广泛的应用。从其测量结果的比较,可以看出静态 法测量结果虽较接近稳态值,但测量时间长,例如对于钢铁等金属及其合金,为 了测量钝态区的稳态电流往往需要在每一个电位下等待几个小时, 所以在实际工 作中,较常采用动态法来测量。 本实验亦采用动态法。 动态法测定极化曲线通常使用恒电位仪,它能自动地使被研究电极电位保持 在所需的电位值。 1.仪器和试剂 恒电位仪 一台
1.金属的钝化及钝化曲线 金属表面状态的变化,使阳极溶解过程的超电势升高,金属的溶解速度急剧 下降,这种现象称为金属的钝化。 可钝化金属可采用控制不同的恒电势来测量电 流密度的方法,绘制出如图的完整的阳极极化曲线 ,图中曲线分为以下四个区域: (1)从点 a 到点 b 的电势区为金属活化区, 在此区域内是金属的正常阳极溶解, a 点为金属的自然腐蚀电势。 (2)点 b 到点 c 为金属钝化过渡区,这是金属从活化态到钝化态的转变过程, b 点称为致钝电势,它所对应的电流 Ib 为致钝电流。 (3)点 c 到点 d 的电势范围叫钝化区,此时金用处于钝化阶段 .cd 段所对应的 电流 I m 称为钝化电流, 在钝化区维持在钝化电流下 ,金属的腐蚀速度将急剧下降。 (4)点 d 后的电势范围为过钝化区,阳极电流密度随电势的正移而增大,金属 的溶解速度加大。 钝化金属可以活化,凡能促使金属保护层被破坏的因素都能使钝化的金属 重新活化。例如,加热、通入还原性气体、加入某些活性离子等等。
将铁锈指示剂加热成粘稠状,放置一会。待凝固之前,涂在去锈的铁片上。 10min 后即可看到铁片上的阴阳区。在阳极区,铁成二价铁离子,进入溶液中, 由于二价铁离子和铁氰化钾反应的结果而出现蓝色斑点。 在阴极区, 由于氧的去 极化作用,指示剂变成弱碱性而呈现出粉红色斑点,这个过程为: 在阳极: 在阴极: Fe→Fe 2++2e3Fe2++2[Fe(CN)6]3-→Fe3[Fe(CN)6]2 O2+2H2O+4e-→40HOH-离子遇酚酞变成粉红色。 2.阴阳极防腐蚀镀层 取一镀锡的铁片(可用废罐头盒子) 用锉刀划破表面镀层,在划痕处滴上几滴 稀硫酸和一滴铁氰化钾, 不久可以看见在划破处发生蓝色沉淀, 证明铁层发生溶 解。 另取一镀锌铁片同样进行操作, 可以看到只有镀锌溶解而划痕处没有蓝色沉 淀。 3.阻化剂 取一铁片放入 20%的盐酸溶液中, 加热至 60~70℃, 则可以看到铁片迅速地 溶解并放出氢气。如果这时加入六次甲基四胺(CH2)6N4(乌洛托平) 则可以看到氢 气泡消失,说明铁的腐蚀已经停止。 (二 )动态法测定碳钢在碳酸铵溶液中的钝化曲线及极化曲线
金属钝化曲线的测量

3 实验仪器和测试方法
2273电化学工作站 1台; 数字电压表 1 只; 饱和甘汞电极(参比电极) 5只; 碳钢、Cu电极、不锈钢电极各 5只; 铂电极 1只; 饱和氯化钾溶液 0.5 mol/L H3BO3 0.1 mol/L Na2CO3
4 实验步骤
• 1 制备工作电极,并用金相砂纸打磨到1000#,丙 酮擦洗,吹干,带用。
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-7
-6
-5
-4
-3
-2
logi(A)
Cu 在0.07 mol/L Na2CO3
E/V SCE
-0.2
Al + 3.5% NaCl
-0.4
-0.6
-0.8
-1.0
-1.2
-1.4
-1.6
-8
-7
-6
-5
-4
-3
-2
logi / A/cm2
Al 在3.5 % NaCl
作业要求
1、写出实验报告—报告时间 5-28 2 、分别求出各电化学体系的自腐蚀电流
密度、自腐蚀电位、致钝电流密度及钝 化电位范围,以及维钝电流密度。
实验目的
1 学会处理电极表面,了解表面状态对钝化 曲线测量的影响。
2 以碳钢在硼酸溶液中的钝化曲线等为例, 掌握测定金属钝化曲线的基本方法,掌握 钝化曲线上各点的含义以及曲线上的每个 区域含义。
2 实验原理
• 在以金属作阳极的电解池中,通过电流时,通常 会发生阳极的电化学溶解过程: M→Mn+ + ne。 当阳极的极化不太大时,溶液速度随着阳极电极 电势(电极电位)的增大而增大,这是金属正常 的阳极溶解。但是在某些化学介质中,当阳极电 极电势超过某一正值后,阳极的溶解速度随着阳 极电极电势的增大反而大幅度地降低,这种现象 称为金属的钝化。
金属钝化过程的典型阳极极化曲线

金属钝化是一种保护金属表面的方法,通过形成一层非活性的氧化膜来降低金属的化学活性,从而延长其使用寿命。
这一过程可以通过阳极极化曲线来进行研究和表征。
1. 介绍金属钝化的概念金属钝化是一种重要的表面处理技术,它可以提高金属材料的耐腐蚀性和机械性能。
在金属表面形成的氧化膜可以有效地防止金属与外界介质(如空气、水)发生化学反应,从而起到保护作用。
这一过程常常通过阳极极化曲线进行分析和研究。
2. 金属钝化过程的典型阳极极化曲线通常,金属钝化过程的阳极极化曲线呈现出三个典型区域:主动状态区、传质控制区和钝化区。
在主动状态区,金属处于活跃状态,电流密度随阳极电位的升高而增大;在传质控制区,金属表面开始形成氧化膜,电流密度逐渐减小;金属进入钝化区,在这一区域内,电流密度几乎不变,金属表面形成的稳定氧化膜起到了保护作用。
3. 讨论金属钝化过程中的关键因素金属钝化过程受到多种因素的影响,例如金属种类、表面处理方式、介质性质等。
在阳极极化曲线上,这些因素会导致曲线形状发生变化,反映出金属钝化过程的不同特点和表现。
4. 金属钝化在工程实践中的应用金属钝化技术在航空航天、汽车、船舶等领域有着广泛的应用。
通过对金属钝化过程的深入研究,可以更好地设计和选择适合的金属材料,并优化工艺参数,从而提高产品的耐用性和可靠性。
总结与展望金属钝化过程的典型阳极极化曲线是研究金属材料表面特性的重要手段,通过对这一曲线的深入理解,可以丰富我们对金属钝化机制的认识,为相关工程应用提供科学依据。
未来,随着材料科学和工程技术的不断发展,金属钝化技术必将得到进一步完善和应用推广。
个人观点金属钝化作为保护金属材料的一种有效方法,其研究对于提高材料的抗腐蚀性和机械性能具有重要意义。
阳极极化曲线作为研究金属钝化过程的重要工具,可以为我们揭示金属表面特性的变化规律,为工程实践提供强有力的支持。
在未来的研究中,我将继续关注金属钝化领域的最新进展,为推动该领域的发展贡献自己的力量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。